跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林秀芬
研究生(外文):Hsiu-Fen Lin
論文名稱:拮抗微生物枯草桿菌生物防治作用機制之探討及其高產能發酵技術開發
論文名稱(外文):The Mechanism of Biological Control with Antagonistic Microorganism Bacillus subtilis and Development of High Yeild Fermentation Technique
指導教授:劉顯達陳滄海陳滄海引用關係
指導教授(外文):Shan-Da LiuTsang-Hai Chen
學位類別:博士
校院名稱:國立屏東科技大學
系所名稱:生物資源研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:125
中文關鍵詞:枯草桿菌BS-99-H生物防治抗生物質發酵技術
外文關鍵詞:Bacillus subtilis BS-99-Hbiocontrolantibioticsfermentation technique
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1042
  • 評分評分:
  • 下載下載:174
  • 收藏至我的研究室書目清單書目收藏:0
有鑑於施用化學農藥於植物病害防治對環境及人類等造成之負面影響,因此開發安全性之微生物農藥乃成為重要之課題。本論文研究目的期望能開發枯草桿菌微生物農藥之商品化,作為有效的病害生物防治藥劑。本研究取自本土性土壤之拮抗微生物細菌,經微生物學方法及分子技術鑑定為枯草桿菌Bacillus subtilis,進一步以溫度篩選出代號BS-99-H之耐高溫菌株。枯草桿菌BS-99-H具有產生內生孢子之特性,因而菌體不易有自溶現象產生;平板對峙培養結果得知,枯草桿菌 BS-99-H 對 12 屬 26 種的供試植物病原真菌皆具抑制其菌絲生長的作用,其中對蓮霧果腐病菌(Pestalotiopsis eugeniae)抑制效果為最佳。萃取枯草桿菌BS-99-H之DNA,利用ituD 及 lpa-14兩個專一性引子對進行PCR反應結果得知,枯草桿菌BS-99-H菌株分別可增幅出1203 bp及675 bp片段,顯示BS-99-H含有產生iturin之基因。自枯草桿菌BS-99-H發酵液萃取可能的抗菌物質,經高效能液相層析儀(HPLC)及串聯式質譜儀(MS/MS)分析得知其為 iturin A 抗生物質。
另將部分純化 iturin A 與 P. eugeniae 菌絲混合處理後,發現菌體細胞導電度於 8 小時後顯著增加 3.4 倍,至 28 小時達到高峰,為 5.3 倍;以顯微鏡觀察 P. eugeniae 菌絲呈現異膨脹與扭曲。BS-99-H 所產生的 iturin A 抑制 P. eugeniae 孢子發芽之 IC50 為 0.51 mg/mL,當 iturin A 濃度達 ≥ 0.84 mg/mL 則可完全抑制 P. eugeniae 孢子發芽與菌絲生長。由本研究結果顯示出 BS-99-H 產生的 iturin A 是抑制 P. eugeniae 很重要的因子,在發展對 P. eugeniae 之生物防治上將可扮演重要的角色。高產能SYM-d液態發酵基質配方C/N比率高,每公升以3 %接菌量、180 rpm、通氣量0.82 L/min培養枯草桿菌BS-99-H,於28℃經培養2天,其細菌濃度可達1010 cfu/mL以上;枯草桿菌BS-99-H粉劑成品,細菌濃度為5 × 109 cfu/g,稀釋500倍可有效地防治蓮霧病害及芒果炭疽病等。綜合以上試驗結果得知,本枯草桿菌BS-99-H製劑生產成本低,極具未來開發為植物病害生物性殺菌劑之市場競爭力。
Due to adverse effect of chemical pesticides on the environment and human health, development of the environmentally friendly and safe microbial pesticides has become an important issue. The purpose of this study was to develop the microbial pesticide Bacillus subtilis, into a commercial product for effective control of plant diseases. The antagonistic bacterium used in this study was isolated from the local soil in Taiwan. The identification of bacterial isolate was performed both by microbiological methods using Gram stain and Biolog system, and by molecular methods. According to these data, the isolate was identified as Bacillus subtilis. The effective BS-99-H strain was obtained by screening from the original culture using temperature treatment. B. subtilis BS-99-H produced a large amount of endospores compared with stock isolate. The dual culture tests showed that B. subtilis BS-99-H was strongly inhibiting to the mycelium growth of 12 genera and 26 species of fungal plant pathogens, especially the wax apple fruit rot pathogen of Pestalotiopsis eugeniae. The DNA of BS-99-H was extracted for identification of antibiotic compound producing genes. In the PCR reaction test, the amplification products with expected length of 1203 bp for ituD and 675 bp for lpa were detected, In suggesting that the iturin coding genes are present in the region specific for the primers used. When the extract of the BS-99-H fermentation broth medium was analyzed with HPLC and tandem mass spectrometry (MS/MS), iturin A was detected.
The partially purified iturin A was found to cause electrolyte leakage of P. eugeniae mycelia. The leakage was increased 3.4 folds at 8 hours post treatment and reached maximum increase of 5.3 folds at 28 hours post treatment. Treatment with the BS-99-H iturin A also caused swelling and malformed shape of the hyphae of P. eugeniae. The IC50 value of iturin A from BS-99-H for conidial germination inhibition of P. eugeniae was 0.51 mg/mL. The conidial germination and mycelia growth were both completely inhibited by iturin A at ≥ 0.84 mg/mL. The results indicated that antibiotic iturin A produced by BS-99-H played an important role in the antagonism against P. eugeniae. A new liquid fermentation medium SYM-d was formulated to meet the purpose of high yield mass production. The substrate C/N ratio is high in SYM-d liquid medium. Under the shaking condition of 180 rpm, aeration rate of 0.82 liter/min and 3% bacterial inoculum, culture concentration of Bacillus subtilis BS-99-H reached 1010 cfu/mL or more at 28℃ in 2 days. The powder-formulated product of Bacillus subtilis BS-99-H had the bacterial concentration of 5 × 109 cfu/g. The product at 500X dilution effectively controlled wax apple and mango anthracnose and other diseases in the field tests. The method developed in this study greatly decreased the cost for mass production of BS-99-H and increased the performance of the product which is important in the commercialization of this product in the future.

中文摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 X
壹、前言 1
一、研究目的 1
二、研究架構 2
貳、文獻回顧 5
一、枯草桿菌基本性質 5
二、發酵培養因子對枯草桿菌產生二次代謝抗生物質影響 6
三、枯草桿菌之內生孢子 7
四、枯草桿菌對植物病原真菌之多重作用機制 9
五、枯草桿菌微生物農藥之應用與開發 13
六、參考文獻 19
參、試驗內容與結果 29
第1章、枯草桿菌之菌株鑑定與基本特性探討 29
一、材料與方法 29
二、結果與討論 35
三、參考文獻 51
第2章、枯草桿菌防治真菌性病原菌作用機制探討 55
一、材料與方法 55
二、結果與討論 58
三、參考文獻 66
第3章、枯草桿菌高產能發酵技術與製劑開發 69
一、材料與方法 69
二、結果與討論 73
三、參考文獻 91
第4章、枯草桿菌之生物防治試驗 95
一、材料與方法 95
二、結果與討論 101
三、參考文獻 117
肆、綜合結論 121
伍、作者簡介 123
Arakawa, E. T., Lavrik, N. V., and Datskos, P. G. 2003. Detection of anthrax simulants with microcalorimetric spectroscopy:Bacillus subtilis and Bacillus cereus spores. Appl. Opt. 42: 1757-1762.
Arau’jo, F. F., Henning, A. A., and Hungria, M. 2005. Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J. Microbiol. Biotechnol. 21: 1639-1645.
Asaka, O., and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081–4085.
Backman, P. A., Rodríguez-Kábana, R., Hammond, J. M., and Thurlow, D. L. 1979. Cultivar, environment, and fungicide effects on foliar disease losses in soybeans. Phytopathology 69:562-564.
Barbeau, B., Boulos, L., Desjardins, R., Coallier, J., Prévost, M., M., and Duchesne, D. 1997. A modified method for the enumeration of aerobic spore-forming bacteria. Can. J. Microbiol. 43: 976-980.
Barea, J., M., Calvet, C., Estat, V., and Camprubi, A. 1996. Biological control as a key component in sustainable agriculture. Plant Soil. 185: 171-172.
Bechard, J., Eastwell, K. C., Sholberg, P.L., Mazza, G., and Skura, B. 1998. Isolation and partial characterization of an antimicrobial peptide produced by a strain of Bacillus subtilis. J. Agric. Food Chem. 46:5355-5361.
Bemheimer, A. W., and Avigad, L. S. 1970. Nature and properties of a cytolytic agent produced by Bacillus subtilis. J. Gen. Microbiol. 61: 361-369.
Bernal, G., Iiianes, A., and Ciampi, L. 2002. Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents. Electron. J. Biotechnol. 5: 12-19.
Broadwater, W. T., Hoehn, R. C., and King, P. H. 1973. Sensitivity of three selected bacterial species to ozone. Appl. Environ. Microbiol. 26: 391-393.
Chan, Y. K., McCormick, W. A., and Seifert, K. A. 2003. Characterization of an antifungal soil bacterium and its antagonistic activities against Fusarium species. Can. J. Microbiol. 49: 253-262.
Chen, W. Q., and Michailides, T. J. 2001. Biological control of Botryosphaeria blight of pistachio by an antagonistic strain of Bacillus subtilis. KAC Plant Protection Quarterly 11: 4-7
Chitarra, G. S., Breeuwer, P., Nout, M. J., van Aelst, A. C., Rombouts, F. M., and Abee, T. 2003. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol. 94:159-166.
Choudhary, D. K., and Johri, B. N. 2008. Interactions of Bacillus spp. and plants -with special reference to induced systemic resistance (ISR). Microbiol. Res. 164: 493–513.
Chung, S., Lim, M. H., and Kim, S. D. 2007. Formulation of stable Bacillus subtilis AH18 against temperature fluctuation with highly heat-resistant endospores and micropore inorganic carriers. Appl. Microbiol. Biotechnol. 76: 217-224.
Cody, R. M., Davis, N. D., Lin, J., and Shaw, D. 1990. Screening microorganisms from chitin hydrolysis and production of ethanol from amino sugar. Biomass 21: 285-295.
Collins, D. P., and Jacobsen, B. J. 2003. Optimizing a Bacillus subtilis isolate for biological control of sugar beet cercospora leaf spot. Biol. Control 26, 153-161.
Cubeta, M. A., Hartman, G. L., and Sinclair, J. B. 1985 Interaction between Bacillus subtilis and fungi associated with soybean seeds. Plant Dis. 69: 506-509.
Earl A. M., Losick R., and Kolter R. 2008. Ecology and genomics of Bacillus subtilis. Trends Microbiol. 16: 269-275.
El-Mougy, N. S., Abdel-Kader, M. M., and Alhabeb, R. S. 2011. In vitro antifungal activity of chitinolytic enzymes produced by bio-agents against root rot pathogenic fungi. Arch. Phytopathol. Plant Protection 44: 613-622.
Errington, J. 2003. Regulation of endospore formation in Bacillus subtilis. Nature Rev. Microbiol. 1: 117-126.
Eshita, S. M., Roberto, N. H., Beale, J. M., Mamiya, B. M., and Workman, R. F. 1995. Bacillomycin Lc, a new antibiotic of iturin group: isolation, structures and antifungal activities of the congeners. J. Antibiot. 48: 1240-1247.
Fickers, P., Lecle`re, V., Guez, J. S., Be´chet, M., Coucheney, F., Joris, B., and Jacques, P. 2008. Temperature dependence of mycosubtilin homologue production in Bacillus subtilis ATCC6633. Res. Microbiol. 159: 449-457.
Gardener, B. B. M. 2004. Ecology of Bacillus and Paenibacillus spp. in agriculture systems. Phytopathology 94: 1252-1258.
Gardener, B. B. M., and Driks, A. 2004. Overview of the nature and application of biocontrol microbes: Bacillus spp. Phytopathology 94: 1244.
Genest, M., Marion, D., and Ptak, M. 1985. Calculations of the conformations of iturin A in relation with NMR studies. J. Biomol. Struct. Dyn. 2: 849-857.
Handelsman, J., and Stabb, E. V. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8: 1855-1869.
Henriques, A. O., and Moran, C. P. Jr. 2000. Structure and assembly of the bacterial endospore coat. Methods 20: 95-110.
Holzinger, A., Nagendra-Prasad, D., and Huys, G. 2011. Plant protection potential and ultrastructure of Bacillus subtilis strain 3A25. Crop Protection 30: 739-744.
Hsieh, F. C., Li, M. C., Lin, T. C., and Kao, S. S. 2004. Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr. Microbiol. 49:186-191.
Jayaraj, J., N. V. Radhakrishnan, N. V., Kannan, R., Sakthivel, K., Suganya, D., Venkatesan, S., and Velazhahan, R. 2005. Development of new formulations of Bacillus subtilis for management of tomato damping-off caused by Pythium aphanidermatum. Biocontrol Sci. Technol. 15: 55-65.
Kajimura, Y., Sugiyama, M., and Kaneda, M. 1995. Bacillopeptins, new cyclic lipopeptide antibiotics from Bacillus subtilis FR-2. J. Antibiot. 48: 1095-1103.
Katz, E., and Demain, A. L. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis and possible functions. Bacteriol. Rev. 41: 449-474.
Kim, D., Cook, R. J., and Weller, D. 1997. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology 87: 551-558.
Kim, H. S., Park, J., Choi, S. W., Choi, K. H., Lee, G. P., Ban, S. J., Lee, C. H., and Kim, C. S. 2003. Isolation and Characterization of Bacillus Strains for Biological Control. J. Microbiol. 41: 196-201.
Klich, M. A., Arthur, K. S., Lax, A. R., and Bland, J. M. 1994. Iturin A: a potential new fungicide for stored grains. Mycopathologia 127: 123-127.
Klich, M. A., Lax, A. R., and Bland, J. M. 1991. Inhibition of some mycotoxigenic fungi by iturin A, a peptidolipid produced by Bacillus subtilis. Mycopathologia 116: 77-80.
Kloepper, J. W., Ryu, C. M., and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266.
Kowall, M., Vater, J., Kluge, B., Stein, T., Franke, P., and Ziessow, D. 1998. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J. Colloid Interface Sci. 204: 1-8.
Lang, W. S., Shih, I. L., Wang, C. H., Tseng, K. C., Chang, W. T., Twu, Y. K., Ro, J. J., and Wang, C. L. 2002. Production of antifungal compounds from chitin by Bacillus subtilis. Enzyme Microbiol. Technol. 31: 321-328.
Lee, K. D., Bai, Y., Smith, D., Han, H. S., and Supanjani, S. 2005. Isolation of plant-growth-promoting endophytic bacteria from bean nodules. Res. J. Agric. Biol. Sci. 1: 232-236.
Lee, N. K., Yeo, I. C., Park, J. W., Kang, B. S., and Hahm, Y. T. 2010. Isolation and characterization of a novel analyte from Bacillus subtilis SC-8 antagonistic to Bacillus cereus. J. Biosci. Bioeng. 110: 298-303.
Li, D. M., and Alexander, M. 1988. Co-inoculation with antibioticproducing bacteria to increase colonization and nodulation by rhizobia. Plant soil. 108, 211-219.
Liang, W. J. and Liu, S. D. 1989. The use of antagonistic microorganisms to control green and blue mold diseases of citrus. Plant Prot. Bull. 31: 263-275.
Liu, Y., Tao, J., Yan, Y., Li, B., Li, H., and Li, C. 2011. Biocontrol Efficiency of Bacillus subtilis SL-13 and Characterization of an Antifungal Chitinase. Chinese J. Chem. Eng. 19: 128-134.
Lopez-Valdeza, F., Fernandez-Luque˜noa, F., Ceballos-Ramireza J. M., Marscha R., Olalde-Portugalc V., and Dendoovena L. 2011. A strain of Bacillus subtilis stimulates sunflower growth (Helianthus annuus L.) temporarily. Scientia Horticulturae 128: 499-505.
Maget-Dana, R., and Peypoux, F. 1994. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87: 151-174.
Mahaffee, W. F., and Backman, P. A. 1993. Effects of seed factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis GBO3. Phytopathology 83:1120-1125.
Manjula, K., and Podile, A. R. 2001. Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF 1. Can. J. Microbiol. 47: 618-25.
Manjula, K., Kishore, G. K., and Podile, A. R. 2004. Whole cells of Bacillus subtilis AF 1 proved more effective than cell-free and chitinase-based formulations in biological control of citrus fruit rot and groundnut rust. Can. J. Microbiol. 50: 737-744.
McKeen, C. D., Reilly, C. C., and Pusey, P. L. 1986. Production and partial characterization of antifungal substances antagonistic to Monilinia fructicola from Bacillus subtilis. Phytopathology 76, 136-139.
Meador-Parton, J., and Popham, D. L. 2000. Structural Analysis of Bacillus subtilis Spore Peptidoglycan during Sporulation. J Bacteriol. 182: 4491-4499.
Nakano, M. M., Marahiel, M. A., and Zuber, P. 1988. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J. Bacteriol. 170: 5662-5668.
Ngugi, H. K., Dedej, S., Delaplane, K. S., Savelle, A. T., and Scherm, H. 2005. Effect of flower-applied Serenade biofungicide (Bacillus subtilis) on pollination-related variables in rabbiteye blueberry. Biol. Control 33: 32-38.
Nihorimbere, V., Ongena, M., Cawoy, H., Brostaux, Y., Kakana, P., Jourdan, E., and Thonart, P. 2010. Beneficial effects of Bacillus subtilis on field-grown tomato in Burundi: Reduction of local Fusarium disease and growth promotion. Afr. J. Microbiol. Res. 4: 1135-1142.
Ohno, A., Ano, T., and Shoda, M. 1995. Effect of temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, Bacillus subtilis RB14, in solid-state fermentation. J. Ferment. Technol. 80: 517-519.
Ongena, M., and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125.
Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L., and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Appl. Environ. Microbiol. 9: 1084-1090.
Phae, C. G., Shoda, M., and Kubota, H. 1990. Suppressive effect of Bacillus subtilis and its products on phytopathogenic microorganisms. J. Ferment. Bioeng. 69:1–7.
Pyong-il, K., Ryu, J., Kim, Y. H., and Chi, Y. T. 2010. Production of biosurfactant lipopeptides iturin A, fengycin, and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 20: 138-145.
Ryder, M. H., Yan, Z., Terrace, T. E., Rovira, A. D., Tang, W., and Correll, R. L. 1999. Use of strains of Bacillus isolated in China to suppress take-all and Rhizoctonia root rot, and promote seedling growth of glasshouse-grown wheat in Australian soils. Soil Biol. Biochem. 31: 19-29.
Sadfi, N., Cherif, M., Hajlaoui, M. R., and Boudabbous, A. 2002. Isolation and partial purification of antifungal metabolites produced by Bacillus cereus. Ann. Microbiol. 52: 323-337.
Schisler, D. A., Slininger, P. J., Behle, R. W., and Jackson, M. A. 2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267-1271.
Shanmugaiah, V., Mathivanan, N., Balasubramanian, N., and Manoharan, P.T. 2008. Optimization of cultural conditions for production of chitinase by Bacillus laterosporous MML2270 isolated from rice rhizosphere soil. Afr. J. Biotechnol. 7: 2562-2568.
Sharga, B. M. 1997. Bacillus isolates as potential biocontrol agent against chocolate spot on faba beans. Can. J. Microbiol. 43: 915-924.
Sharifi-Tehrani, A., Ahmadzadeh, M., Farzaneh, M., and Sarani, S. 2006. Powder formulations of two strains of Bacillus subtilis for control of rape seed damping-off caused by Rhizoctonia solani. Commun. Agric. Appl. Biol. Sci. 71:131-40.
Shih, I. L., Lin, C. Y., Wu, J. Y., and Hsieh, C. Y. 2009. Production of antifungal lipopeptide from Bacillus subtilis in submerged fermentation using shake flask and fermentor. Korean J. Chem. Eng. 26: 1652-1661.
Shoda, M. 2000. Bacterial control of plant diseases. J. Biosci. Bioeng. 89: 515-521.
Souto, G. I., Correa, O. S., Montecchia, M. S., Kerber, N. L., Pucheu, N. L., Bachur, M., and García, A. F. 2004. Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. J. Appl. Microbiol. 97: 1247-1256.
Spurrier, E. C. 1990. Plant health management issues of public concern: focus on pesticides. Plant Dis. 74: 103-110.
Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857.
Tamehiro, N., Okamoto-Hosoya, Y., Okamoto, S., Ubukata, M., Hamada, M., Naganawa, H., and Ochi, K. 2002. Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrob. Agents Chemother. 46: 315-320.
Turner, J. T., and Backman, P. A. 1991. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 75:347-353.
von der Weid, I., Alviano, D. S., Santos, A. L. S., Soares, R. M. A., Alviano, C. S., and Seldin, L. 2003. Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J. Appl. Microbiol. 95: 1143-1151.
Wilhelm, E., Arthofer, W., Schafleitner, R., and Krebs, B. 1998. Bacillus subtilis an endophyte of chestnut (Castanea sativa) as antagonist against chestnut blight (Cryphonectria parasitica). Plant Cell Tissue Organ Cult. 52: 105-108.
Wulff, E. G., Mguni, C. M., Mortensen, C. N., Keswani, C. L., and Hockenhull, J. 2002. Biological control of black rot (Xanthomonas campestris pv. campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe. Eur. J. Plant Pathol. 108: 317-325.
Wuytack, E. Y., Soons, J., Poschet, F., and Michiels, C. W. 2000. Comparative study of pressure- and nutrient-induced germination of Bacillus subtilis spores. Appl. Environ. Microbiol. 66: 257-261.
Yu, G. Y., Sinclair, J. B., Hartman, G. L., and Bertagnolli, B. L. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34: 955-963.
Yu, X. M., Ai, C. X., Xin, L., and Zhou, G. F. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47: 138-145.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top