|
1. Robinson, D. R., Wu, Y. M., and Lin, S. F. The protein tyrosine kinase family of the human genome. Oncogene, 19: 5548-5557, 2000. 2. Smith, C. I., Islam, T. C., Mattsson, P. T., Mohamed, A. J., Nore, B. F., and Vihinen, M. The Tec family of cytoplasmic tyrosine kinases: mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species. Bioessays, 23: 436-446, 2001. 3. Yang, W. C., Collette, Y., Nunes, J. A., and Olive, D. Tec kinases: a family with multiple roles in immunity. Immunity, 12: 373-382, 2000. 4. Mano, H. Tec family of protein-tyrosine kinases: an overview of their structure and function. Cytokine Growth Factor Rev, 10: 267-280, 1999. 5. Lewis, C. M., Broussard, C., Czar, M. J., and Schwartzberg, P. L. Tec kinases: modulators of lymphocyte signaling and development. Curr Opin Immunol, 13: 317-325, 2001. 6. Debnath, J., Chamorro, M., Czar, M. J., Schaeffer, E. M., Lenardo, M. J., Varmus, H. E., and Schwartzberg, P. L. rlk/TXK encodes two forms of a novel cysteine string tyrosine kinase activated by Src family kinases. Mol Cell Biol, 19: 1498-1507, 1999. 7. Vihinen, M., Nore, B. F., Mattsson, P. T., Backesjo, C. M., Nars, M., Koutaniemi, S., Watanabe, C., Lester, T., Jones, A., Ochs, H. D., and Smith, C. I. Missense mutations affecting a conserved cysteine pair in the TH domain of Btk. FEBS Lett, 413: 205-210, 1997. 8. Rebecchi, M. J. and Scarlata, S. Pleckstrin homology domains: a common fold with diverse functions. Annu Rev Biophys Biomol Struct, 27: 503-528, 1998. 9. Qiu, Y. and Kung, H. J. Signaling network of the Btk family kinases. Oncogene, 19: 5651-5661, 2000. 10. Kojima, T., Fukuda, M., Watanabe, Y., Hamazato, F., and Mikoshiba, K. Characterization of the pleckstrin homology domain of Btk as an inositol polyphosphate and phosphoinositide binding domain. Biochem Biophys Res Commun, 236: 333-339, 1997. 11. Rameh, L. E., Arvidsson, A., Carraway, K. L., 3rd, Couvillon, A. D., Rathbun, G., Crompton, A., VanRenterghem, B., Czech, M. P., Ravichandran, K. S., Burakoff, S. J., Wang, D. S., Chen, C. S., and Cantley, L. C. A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J Biol Chem, 272: 22059-22066, 1997. 12. Salim, K., Bottomley, M. J., Querfurth, E., Zvelebil, M. J., Gout, I., Scaife, R., Margolis, R. L., Gigg, R., Smith, C. I., Driscoll, P. C., Waterfield, M. D., and Panayotou, G. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. Embo J, 15: 6241-6250, 1996. 13. Saito, K., Scharenberg, A. M., and Kinet, J. P. Interaction between the Btk PH domain and phosphatidylinositol-3,4,5-trisphosphate directly regulates Btk. J Biol Chem, 276: 16201-16206, 2001. 14. Lowry, W. E., Huang, J., Lei, M., Rawlings, D., and Huang, X. Y. Role of the PHTH module in protein substrate recognition by Bruton's agammaglobulinemia tyrosine kinase. J Biol Chem, 276: 45276-45281, 2001. 15. Cheng, G., Ye, Z. S., and Baltimore, D. Binding of Bruton's tyrosine kinase to Fyn, Lyn, or Hck through a Src homology 3 domain-mediated interaction. Proc Natl Acad Sci U S A, 91: 8152-8155, 1994. 16. Andreotti, A. H., Bunnell, S. C., Feng, S., Berg, L. J., and Schreiber, S. L. Regulatory intramolecular association in a tyrosine kinase of the Tec family. Nature, 385: 93-97, 1997. 17. Brazin, K. N., Fulton, D. B., and Andreotti, A. H. A specific intermolecular association between the regulatory domains of a Tec family kinase. J Mol Biol, 302: 607-623, 2000. 18. Hansson, H., Okoh, M. P., Smith, C. I., Vihinen, M., and Hard, T. Intermolecular interactions between the SH3 domain and the proline-rich TH region of Bruton's tyrosine kinase. FEBS Lett, 489: 67-70, 2001. 19. Hansson, H., Smith, C. I., and Hard, T. Both proline-rich sequences in the TH region of Bruton's tyrosine kinase stabilize intermolecular interactions with the SH3 domain. FEBS Lett, 508: 11-15, 2001. 20. Laederach, A., Cradic, K. W., Brazin, K. N., Zamoon, J., Fulton, D. B., Huang, X. Y., and Andreotti, A. H. Competing modes of self-association in the regulatory domains of Bruton's tyrosine kinase: intramolecular contact versus asymmetric homodimerization. Protein Sci, 11: 36-45, 2002. 21. Pursglove, S. E., Mulhern, T. D., Mackay, J. P., Hinds, M. G., and Booker, G. W. The solution structure and intramolecular associations of the Tec kinase SRC homology 3 domain. J Biol Chem, 277: 755-762, 2002. 22. Pawson, T. and Gish, G. D. SH2 and SH3 domains: from structure to function. Cell, 71: 359-362, 1992. 23. Afar, D. E., Park, H., Howell, B. W., Rawlings, D. J., Cooper, J., and Witte, O. N. Regulation of Btk by Src family tyrosine kinases. Mol Cell Biol, 16: 3465-3471, 1996. 24. Park, H., Wahl, M. I., Afar, D. E., Turck, C. W., Rawlings, D. J., Tam, C., Scharenberg, A. M., Kinet, J. P., and Witte, O. N. Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity, 4: 515-525, 1996. 25. Morrogh, L. M., Hinshelwood, S., Costello, P., Cory, G. O., and Kinnon, C. The SH3 domain of Bruton's tyrosine kinase displays altered ligand binding properties when auto-phosphorylated in vitro. Eur J Immunol, 29: 2269-2279, 1999. 26. Bunnell, S. C., Diehn, M., Yaffe, M. B., Findell, P. R., Cantley, L. C., and Berg, L. J. Biochemical interactions integrating Itk with the T cell receptor-initiated signaling cascade. J Biol Chem, 275: 2219-2230, 2000. 27. Hashimoto, S., Iwamatsu, A., Ishiai, M., Okawa, K., Yamadori, T., Matsushita, M., Baba, Y., Kishimoto, T., Kurosaki, T., and Tsukada, S. Identification of the SH2 domain binding protein of Bruton's tyrosine kinase as BLNK--functional significance of Btk-SH2 domain in B-cell antigen receptor-coupled calcium signaling. Blood, 94: 2357-2364, 1999. 28. Su, Y. W., Zhang, Y., Schweikert, J., Koretzky, G. A., Reth, M., and Wienands, J. Interaction of SLP adaptors with the SH2 domain of Tec family kinases. Eur J Immunol, 29: 3702-3711, 1999. 29. Brazin, K. N., Mallis, R. J., Fulton, D. B., and Andreotti, A. H. Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A. Proc Natl Acad Sci U S A, 99: 1899-1904, 2002. 30. Rawlings, D. J., Scharenberg, A. M., Park, H., Wahl, M. I., Lin, S., Kato, R. M., Fluckiger, A. C., Witte, O. N., and Kinet, J. P. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science, 271: 822-825, 1996. 31. Tsai, Y. T., Su, Y. H., Fang, S. S., Huang, T. N., Qiu, Y., Jou, Y. S., Shih, H. M., Kung, H. J., and Chen, R. H. Etk, a Btk family tyrosine kinase, mediates cellular transformation by linking Src to STAT3 activation. Mol Cell Biol, 20: 2043-2054, 2000. 32. Ohya, K., Kajigaya, S., Kitanaka, A., Yoshida, K., Miyazato, A., Yamashita, Y., Yamanaka, T., Ikeda, U., Shimada, K., Ozawa, K., and Mano, H. Molecular cloning of a docking protein, BRDG1, that acts downstream of the Tec tyrosine kinase. Proc Natl Acad Sci U S A, 96: 11976-11981, 1999. 33. Vargas, L., Nore, B. F., Berglof, A., Heinonen, J. E., Mattsson, P. T., Smith, C. I., and Mohamed, A. J. Functional interaction of caveolin-1 with Bruton's tyrosine kinase and Bmx. J Biol Chem, 277: 9351-9357, 2002. 34. Vetrie, D., Vorechovsky, I., Sideras, P., Holland, J., Davies, A., Flinter, F., Hammarstrom, L., Kinnon, C., Levinsky, R., Bobrow, M., and et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature, 361: 226-233, 1993. 35. Tsukada, S., Saffran, D. C., Rawlings, D. J., Parolini, O., Allen, R. C., Klisak, I., Sparkes, R. S., Kubagawa, H., Mohandas, T., Quan, S., and et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell, 72: 279-290, 1993. 36. Thomas, J. D., Sideras, P., Smith, C. I., Vorechovsky, I., Chapman, V., and Paul, W. E. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science, 261: 355-358, 1993. 37. Rawlings, D. J., Saffran, D. C., Tsukada, S., Largaespada, D. A., Grimaldi, J. C., Cohen, L., Mohr, R. N., Bazan, J. F., Howard, M., Copeland, N. G., and et al. Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science, 261: 358-361, 1993. 38. Sideras, P. and Smith, C. I. Molecular and cellular aspects of X-linked agammaglobulinemia. Adv Immunol, 59: 135-223, 1995. 39. Liao, X. C. and Littman, D. R. Altered T cell receptor signaling and disrupted T cell development in mice lacking Itk. Immunity, 3: 757-769, 1995. 40. Lowry, W. E. and Huang, X. Y. G Protein beta gamma subunits act on the catalytic domain to stimulate Bruton's agammaglobulinemia tyrosine kinase. J Biol Chem, 277: 1488-1492, 2002. 41. Chen, R., Kim, O., Li, M., Xiong, X., Guan, J. L., Kung, H. J., Chen, H., Shimizu, Y., and Qiu, Y. Regulation of the PH-domain-containing tyrosine kinase Etk by focal adhesion kinase through the FERM domain. Nat Cell Biol, 3: 439-444, 2001. 42. van Dijk, T. B., van Den Akker, E., Amelsvoort, M. P., Mano, H., Lowenberg, B., and von Lindern, M. Stem cell factor induces phosphatidylinositol 3'-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells. Blood, 96: 3406-3413, 2000. 43. Tamagnone, L., Lahtinen, I., Mustonen, T., Virtaneva, K., Francis, F., Muscatelli, F., Alitalo, R., Smith, C. I., Larsson, C., and Alitalo, K. BMX, a novel nonreceptor tyrosine kinase gene of the BTK/ITK/TEC/TXK family located in chromosome Xp22.2. Oncogene, 9: 3683-3688, 1994. 44. Robinson, D., He, F., Pretlow, T., and Kung, H. J. A tyrosine kinase profile of prostate carcinoma. Proc Natl Acad Sci U S A, 93: 5958-5962, 1996. 45. Saharinen, P., Ekman, N., Sarvas, K., Parker, P., Alitalo, K., and Silvennoinen, O. The Bmx tyrosine kinase induces activation of the Stat signaling pathway, which is specifically inhibited by protein kinase Cdelta. Blood, 90: 4341-4353, 1997. 46. Wen, X., Lin, H. H., Shih, H. M., Kung, H. J., and Ann, D. K. Kinase activation of the non-receptor tyrosine kinase Etk/BMX alone is sufficient to transactivate STAT-mediated gene expression in salivary and lung epithelial cells. J Biol Chem, 274: 38204-38210, 1999. 47. Jui, H. Y., Tseng, R. J., Wen, X., Fang, H. I., Huang, L. M., Chen, K. Y., Kung, H. J., Ann, D. K., and Shih, H. M. Protein-tyrosine phosphatase D1, a potential regulator and effector for Tec family kinases. J Biol Chem, 275: 41124-41132, 2000. 48. Bagheri-Yarmand, R., Mandal, M., Taludker, A. H., Wang, R. A., Vadlamudi, R. K., Kung, H. J., and Kumar, R. Etk/Bmx tyrosine kinase activates Pak1 and regulates tumorigenicity of breast cancer cells. J Biol Chem, 276: 29403-29409, 2001. 49. Mao, J., Xie, W., Yuan, H., Simon, M. I., Mano, H., and Wu, D. Tec/Bmx non-receptor tyrosine kinases are involved in regulation of Rho and serum response factor by Galpha12/13. Embo J, 17: 5638-5646, 1998. 50. Pan, S., An, P., Zhang, R., He, X., Yin, G., and Min, W. Etk/Bmx as a tumor necrosis factor receptor type 2-specific kinase: role in endothelial cell migration and angiogenesis. Mol Cell Biol, 22: 7512-7523, 2002. 51. Abassi, Y. A., Rehn, M., Ekman, N., Alitalo, K., and Vuori, K. p130Cas Couples the tyrosine kinase Bmx/Etk with regulation of the actin cytoskeleton and cell migration. J Biol Chem, 278: 35636-35643, 2003. 52. Rahimi, N., Dayanir, V., and Lashkari, K. Receptor chimeras indicate that the vascular endothelial growth factor receptor-1 (VEGFR-1) modulates mitogenic activity of VEGFR-2 in endothelial cells. J Biol Chem, 275: 16986-16992, 2000. 53. Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M., and Heldin, C. H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem, 269: 26988-26995, 1994. 54. Cross, M. J., Dixelius, J., Matsumoto, T., and Claesson-Welsh, L. VEGF-receptor signal transduction. Trends Biochem Sci, 28: 488-494, 2003. 55. Ria, R., Roccaro, A. M., Merchionne, F., Vacca, A., Dammacco, F., and Ribatti, D. Vascular endothelial growth factor and its receptors in multiple myeloma. Leukemia, 17: 1961-1966, 2003. 56. Ferrara, N., Gerber, H. P., and LeCouter, J. The biology of VEGF and its receptors. Nat Med, 9: 669-676, 2003. 57. Cleaver, O. and Melton, D. A. Endothelial signaling during development. Nat Med, 9: 661-668, 2003. 58. Shinkaruk, S., Bayle, M., Lain, G., and Deleris, G. Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy. Curr Med Chem Anti-Canc Agents, 3: 95-117, 2003. 59. Moehler, T. M., Ho, A. D., Goldschmidt, H., and Barlogie, B. Angiogenesis in hematologic malignancies. Crit Rev Oncol Hematol, 45: 227-244, 2003. 60. Steinberg, M. S. and McNutt, P. M. Cadherins and their connections: adhesion junctions have broader functions. Curr Opin Cell Biol, 11: 554-560, 1999. 61. Ozawa, M., Baribault, H., and Kemler, R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. Embo J, 8: 1711-1717, 1989. 62. Ozawa, M., Ringwald, M., and Kemler, R. Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci U S A, 87: 4246-4250, 1990. 63. Marrs, J. A. and Nelson, W. J. Cadherin cell adhesion molecules in differentiation and embryogenesis. Int Rev Cytol, 165: 159-205, 1996. 64. Daniel, J. M. and Reynolds, A. B. Tyrosine phosphorylation and cadherin/catenin function. Bioessays, 19: 883-891, 1997. 65. Zondag, G. C. and Moolenaar, W. H. Receptor protein tyrosine phosphatases: involvement in cell-cell interaction and signaling. Biochimie, 79: 477-483, 1997. 66. Matsuyoshi, N., Hamaguchi, M., Taniguchi, S., Nagafuchi, A., Tsukita, S., and Takeichi, M. Cadherin-mediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J Cell Biol, 118: 703-714, 1992. 67. Kinch, M. S., Clark, G. J., Der, C. J., and Burridge, K. Tyrosine phosphorylation regulates the adhesions of ras-transformed breast epithelia. J Cell Biol, 130: 461-471, 1995. 68. Papkoff, J. Regulation of complexed and free catenin pools by distinct mechanisms. Differential effects of Wnt-1 and v-Src. J Biol Chem, 272: 4536-4543, 1997. 69. Muller, T., Choidas, A., Reichmann, E., and Ullrich, A. Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J Biol Chem, 274: 10173-10183, 1999. 70. Polakis, P. Wnt signaling and cancer. Genes Dev, 14: 1837-1851, 2000. 71. Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G. H., Tan, Y., Zhang, Z., Lin, X., and He, X. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell, 108: 837-847, 2002. 72. Barker, N. and Clevers, H. Catenins, Wnt signaling and cancer. Bioessays, 22: 961-965, 2000. 73. van Es, J. H., Barker, N., and Clevers, H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev, 13: 28-33, 2003. 74. Blackledge, G. Growth factor receptor tyrosine kinase inhibitors; clinical development and potential for prostate cancer therapy. J Urol, 170: S77-83; discussion S83, 2003. 75. Levitzki, A. EGF receptor as a therapeutic target. Lung Cancer, 41 Suppl 1: S9-14, 2003. 76. Wells, A. EGF receptor. Int J Biochem Cell Biol, 31: 637-643, 1999. 77. Jorissen, R. N., Walker, F., Pouliot, N., Garrett, T. P., Ward, C. W., and Burgess, A. W. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res, 284: 31-53, 2003. 78. Suhardja, A. and Hoffman, H. Role of growth factors and their receptors in proliferation of microvascular endothelial cells. Microsc Res Tech, 60: 70-75, 2003. 79. Misra, U. K. and Pizzo, S. V. Ligation of the alpha2M signalling receptor elevates the levels of p21Ras-GTP in macrophages. Cell Signal, 10: 441-445, 1998. 80. Tsang, D. K. and Crowe, D. L. The mitogen activated protein kinase pathway is required for proliferation but not invasion of human squamous cell carcinoma lines. Int J Oncol, 15: 519-523, 1999. 81. Yart, A., Laffargue, M., Mayeux, P., Chretien, S., Peres, C., Tonks, N., Roche, S., Payrastre, B., Chap, H., and Raynal, P. A critical role for phosphoinositide 3-kinase upstream of Gab1 and SHP2 in the activation of ras and mitogen-activated protein kinases by epidermal growth factor. J Biol Chem, 276: 8856-8864, 2001. 82. Price, J. T., Tiganis, T., Agarwal, A., Djakiew, D., and Thompson, E. W. Epidermal growth factor promotes MDA-MB-231 breast cancer cell migration through a phosphatidylinositol 3'-kinase and phospholipase C-dependent mechanism. Cancer Res, 59: 5475-5478, 1999. 83. Merlino, G. T., Xu, Y. H., Richert, N., Clark, A. J., Ishii, S., Banks-Schlegel, S., and Pastan, I. Elevated epidermal growth factor receptor gene copy number and expression in a squamous carcinoma cell line. J Clin Invest, 75: 1077-1079, 1985. 84. Costa, S., Stamm, H., Almendral, A., Ludwig, H., Wyss, R., Fabbro, D., Ernst, A., Takahashi, A., and Eppenberger, U. Predictive value of EGF receptor in breast cancer. Lancet, 2: 1258, 1988. 85. Sainsbury, J. R., Nicholson, S., Angus, B., Farndon, J. R., Malcolm, A. J., and Harris, A. L. Epidermal growth factor receptor status of histological sub-types of breast cancer. Br J Cancer, 58: 458-460, 1988. 86. Kikuchi, A., Amagai, M., Hayakawa, K., Ueda, M., Hirohashi, S., Shimizu, N., and Nishikawa, T. Association of EGF receptor expression with proliferating cells and of ras p21 expression with differentiating cells in various skin tumours. Br J Dermatol, 123: 49-58, 1990. 87. Ibrahim, S. O., Vasstrand, E. N., Liavaag, P. G., Johannessen, A. C., and Lillehaug, J. R. Expression of c-erbB proto-oncogene family members in squamous cell carcinoma of the head and neck. Anticancer Res, 17: 4539-4546, 1997. 88. Xu, Y. H., Richert, N., Ito, S., Merlino, G. T., and Pastan, I. Characterization of epidermal growth factor receptor gene expression in malignant and normal human cell lines. Proc Natl Acad Sci U S A, 81: 7308-7312, 1984. 89. Ro, J., North, S. M., Gallick, G. E., Hortobagyi, G. N., Gutterman, J. U., and Blick, M. Amplified and overexpressed epidermal growth factor receptor gene in uncultured primary human breast carcinoma. Cancer Res, 48: 161-164, 1988. 90. Wong, A. J., Bigner, S. H., Bigner, D. D., Kinzler, K. W., Hamilton, S. R., and Vogelstein, B. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci U S A, 84: 6899-6903, 1987. 91. Ekstrand, A. J., James, C. D., Cavenee, W. K., Seliger, B., Pettersson, R. F., and Collins, V. P. Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res, 51: 2164-2172, 1991. 92. Garcia de Palazzo, I. E., Adams, G. P., Sundareshan, P., Wong, A. J., Testa, J. R., Bigner, D. D., and Weiner, L. M. Expression of mutated epidermal growth factor receptor by non-small cell lung carcinomas. Cancer Res, 53: 3217-3220, 1993. 93. Gulli, L. F., Palmer, K. C., Chen, Y. Q., and Reddy, K. B. Epidermal growth factor-induced apoptosis in A431 cells can be reversed by reducing the tyrosine kinase activity. Cell Growth Differ, 7: 173-178, 1996. 94. Armstrong, D. K., Kaufmann, S. H., Ottaviano, Y. L., Furuya, Y., Buckley, J. A., Isaacs, J. T., and Davidson, N. E. Epidermal growth factor-mediated apoptosis of MDA-MB-468 human breast cancer cells. Cancer Res, 54: 5280-5283, 1994. 95. Maa, M. C., Leu, T. H., McCarley, D. J., Schatzman, R. C., and Parsons, S. J. Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proc Natl Acad Sci U S A, 92: 6981-6985, 1995. 96. Berclaz, G., Altermatt, H. J., Rohrbach, V., Siragusa, A., Dreher, E., and Smith, P. D. EGFR dependent expression of STAT3 (but not STAT1) in breast cancer. Int J Oncol, 19: 1155-1160, 2001. 97. Albes, J. M., Brandes, H., Heinemann, M. K., Scheule, A., and Wahlers, T. Potassium-reduced lung preservation solutions: a screening study. Eur Surg Res, 29: 327-338, 1997. 98. Chan, T. O., Rittenhouse, S. E., and Tsichlis, P. N. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem, 68: 965-1014, 1999. 99. Bromberg, J. F., Fan, Z., Brown, C., Mendelsohn, J., and Darnell, J. E., Jr. Epidermal growth factor-induced growth inhibition requires Stat1 activation. Cell Growth Differ, 9: 505-512, 1998. 100. Khan, W. N., Sideras, P., Rosen, F. S., and Alt, F. W. The role of Bruton's tyrosine kinase in B-cell development and function in mice and man. Ann N Y Acad Sci, 764: 27-38, 1995. 101. Kerner, J. D., Appleby, M. W., Mohr, R. N., Chien, S., Rawlings, D. J., Maliszewski, C. R., Witte, O. N., and Perlmutter, R. M. Impaired expansion of mouse B cell progenitors lacking Btk. Immunity, 3: 301-312, 1995. 102. Satterthwaite, A. B., Li, Z., and Witte, O. N. Btk function in B cell development and response. Semin Immunol, 10: 309-316, 1998. 103. Vihinen, M., Mattsson, P. T., and Smith, C. I. Bruton tyrosine kinase (BTK) in X-linked agammaglobulinemia (XLA). Front Biosci, 5: D917-928, 2000. 104. Czar, M. J., Debnath, J., Schaeffer, E. M., Lewis, C. M., and Schwartzberg, P. L. Biochemical and genetic analyses of the Tec kinases Itk and Rlk/Txk. Biochem Soc Trans, 29: 863-867, 2001. 105. Miller, A. T. and Berg, L. J. Defective Fas ligand expression and activation-induced cell death in the absence of IL-2-inducible T cell kinase. J Immunol, 168: 2163-2172, 2002. 106. August, A., Fischer, A., Hao, S., Mueller, C., and Ragin, M. The Tec family of tyrosine kinases in T cells, amplifiers of T cell receptor signals. Int J Biochem Cell Biol, 34: 1184-1189, 2002. 107. Matsuda, T., Takahashi-Tezuka, M., Fukada, T., Okuyama, Y., Fujitani, Y., Tsukada, S., Mano, H., Hirai, H., Witte, O. N., and Hirano, T. Association and activation of Btk and Tec tyrosine kinases by gp130, a signal transducer of the interleukin-6 family of cytokines. Blood, 85: 627-633, 1995. 108. Mano, H., Yamashita, Y., Sato, K., Yazaki, Y., and Hirai, H. Tec protein-tyrosine kinase is involved in interleukin-3 signaling pathway. Blood, 85: 343-350, 1995. 109. Tang, B., Mano, H., Yi, T., and Ihle, J. N. Tec kinase associates with c-kit and is tyrosine phosphorylated and activated following stem cell factor binding. Mol Cell Biol, 14: 8432-8437, 1994. 110. Qiu, Y., Robinson, D., Pretlow, T. G., and Kung, H. J. Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol 3'-kinase and is involved in interleukin 6-induced neuroendocrine differentiation of prostate cancer cells. Proc Natl Acad Sci U S A, 95: 3644-3649, 1998. 111. Banai, J. and Szanto, I. [Endoscopic diagnosis of gastrointestinal bleeding of unknown origin]. Magy Seb, 54: 155-157, 2001. 112. Xue, L. Y., Qiu, Y., He, J., Kung, H. J., and Oleinick, N. L. Etk/Bmx, a PH-domain containing tyrosine kinase, protects prostate cancer cells from apoptosis induced by photodynamic therapy or thapsigargin. Oncogene, 18: 3391-3398, 1999. 113. Wu, Y. M., Huang, C. L., Kung, H. J., and Huang, C. Y. Proteolytic activation of ETK/Bmx tyrosine kinase by caspases. J Biol Chem, 276: 17672-17678, 2001. 114. Ekman, N., Arighi, E., Rajantie, I., Saharinen, P., Ristimaki, A., Silvennoinen, O., and Alitalo, K. The Bmx tyrosine kinase is activated by IL-3 and G-CSF in a PI-3K dependent manner. Oncogene, 19: 4151-4158, 2000. 115. Rajantie, I., Ekman, N., Iljin, K., Arighi, E., Gunji, Y., Kaukonen, J., Palotie, A., Dewerchin, M., Carmeliet, P., and Alitalo, K. Bmx tyrosine kinase has a redundant function downstream of angiopoietin and vascular endothelial growth factor receptors in arterial endothelium. Mol Cell Biol, 21: 4647-4655, 2001. 116. Chau, C. H., Chen, K. Y., Deng, H. T., Kim, K. J., Hosoya, K., Terasaki, T., Shih, H. M., and Ann, D. K. Coordinating Etk/Bmx activation and VEGF upregulation to promote cell survival and proliferation. Oncogene, 21: 8817-8829, 2002. 117. Filmus, J., Pollak, M. N., Cailleau, R., and Buick, R. N. MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited by EGF. Biochem Biophys Res Commun, 128: 898-905, 1985. 118. Jamieson, C. P., Obeid, O. A., and Powell-Tuck, J. The thiamin, riboflavin and pyridoxine status of patients on emergency admission to hospital. Clin Nutr, 18: 87-91, 1999. 119. Hsueh, R. C. and Scheuermann, R. H. Tyrosine kinase activation in the decision between growth, differentiation, and death responses initiated from the B cell antigen receptor. Adv Immunol, 75: 283-316, 2000. 120. Anderson, J. S., Teutsch, M., Dong, Z., and Wortis, H. H. An essential role for Bruton's [corrected] tyrosine kinase in the regulation of B-cell apoptosis. Proc Natl Acad Sci U S A, 93: 10966-10971, 1996. 121. Islam, T. C. and Smith, C. I. The cellular phenotype conditions Btk for cell survival or apoptosis signaling. Immunol Rev, 178: 49-63, 2000. 122. Uckun, F. M., Waddick, K. G., Mahajan, S., Jun, X., Takata, M., Bolen, J., and Kurosaki, T. BTK as a mediator of radiation-induced apoptosis in DT-40 lymphoma B cells. Science, 273: 1096-1100, 1996. 123. Ramsauer, K., Sadzak, I., Porras, A., Pilz, A., Nebreda, A. R., Decker, T., and Kovarik, P. p38 MAPK enhances STAT1-dependent transcription independently of Ser-727 phosphorylation. Proc Natl Acad Sci U S A, 99: 12859-12864, 2002. 124. Stephanou, A., Scarabelli, T. M., Brar, B. K., Nakanishi, Y., Matsumura, M., Knight, R. A., and Latchman, D. S. Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701. J Biol Chem, 276: 28340-28347, 2001. 125. Stephanou, A., Scarabelli, T. M., Townsend, P. A., Bell, R., Yellon, D., Knight, R. A., and Latchman, D. S. The carboxyl-terminal activation domain of the STAT-1 transcription factor enhances ischemia/reperfusion-induced apoptosis in cardiac myocytes. Faseb J, 16: 1841-1843, 2002. 126. Hognason, T., Chatterjee, S., Vartanian, T., Ratan, R. R., Ernewein, K. M., and Habib, A. A. Epidermal growth factor receptor induced apoptosis: potentiation by inhibition of Ras signaling. FEBS Lett, 491: 9-15, 2001. 127. Chin, Y. E., Kitagawa, M., Kuida, K., Flavell, R. A., and Fu, X. Y. Activation of the STAT signaling pathway can cause expression of caspase 1 and apoptosis. Mol Cell Biol, 17: 5328-5337, 1997. 128. Sieg, D. J., Hauck, C. R., Ilic, D., Klingbeil, C. K., Schaefer, E., Damsky, C. H., and Schlaepfer, D. D. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol, 2: 249-256, 2000. 129. Brady-Kalnay, S. M., Rimm, D. L., and Tonks, N. K. Receptor protein tyrosine phosphatase PTPmu associates with cadherins and catenins in vivo. J Cell Biol, 130: 977-986, 1995. 130. Lin, M. T., Yen, M. L., Lin, C. Y., and Kuo, M. L. Inhibition of vascular endothelial growth factor-induced angiogenesis by resveratrol through interruption of Src-dependent vascular endothelial cadherin tyrosine phosphorylation. Mol Pharmacol, 64: 1029-1036, 2003. 131. Xu, G., Arregui, C., Lilien, J., and Balsamo, J. PTP1B modulates the association of beta-catenin with N-cadherin through binding to an adjacent and partially overlapping target site. J Biol Chem, 277: 49989-49997, 2002. 132. Taddei, M. L., Chiarugi, P., Cirri, P., Buricchi, F., Fiaschi, T., Giannoni, E., Talini, D., Cozzi, G., Formigli, L., Raugei, G., and Ramponi, G. Beta-catenin interacts with low-molecular-weight protein tyrosine phosphatase leading to cadherin-mediated cell-cell adhesion increase. Cancer Res, 62: 6489-6499, 2002. 133. Hiscox, S. and Jiang, W. G. Association of PTPmu with catenins in cancer cells: a possible role for E-cadherin. Int J Oncol, 13: 1077-1080, 1998. 134. Taniguchi, Y., London, R., Schinkmann, K., Jiang, S., and Avraham, H. The receptor protein tyrosine phosphatase, PTP-RO, is upregulated during megakaryocyte differentiation and Is associated with the c-Kit receptor. Blood, 94: 539-549, 1999. 135. Pathre, P., Arregui, C., Wampler, T., Kue, I., Leung, T. C., Lilien, J., and Balsamo, J. PTP1B regulates neurite extension mediated by cell-cell and cell-matrix adhesion molecules. J Neurosci Res, 63: 143-150, 2001. 136. Esser, S., Lampugnani, M. G., Corada, M., Dejana, E., and Risau, W. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci, 111 ( Pt 13): 1853-1865, 1998. 137. Zhang, R., Xu, Y., Ekman, N., Wu, Z., Wu, J., Alitalo, K., and Min, W. Etk/Bmx transactivates VEGFR2 and recruits phosphatidylinositol 3-kinase to mediate TNF-induced angiogenic pathway. J Biol Chem, 2003. 138. Mahajan, S., Ghosh, S., Sudbeck, E. A., Zheng, Y., Downs, S., Hupke, M., and Uckun, F. M. Rational design and synthesis of a novel anti-leukemic agent targeting Bruton's tyrosine kinase (BTK), LFM-A13 [alpha-cyano-beta-hydroxy-beta-methyl-N-(2, 5-dibromophenyl)propenamide]. J Biol Chem, 274: 9587-9599, 1999. 139. Chen, K. Y., Huang, L. M., Kung, H. J., Ann, D. K., and Shih, H. M. The role of tyrosine kinase Etk/Bmx in EGF-induced apoptosis of MDA-MB-468 breast cancer cells. Oncogene, 2003. 140. Shizukuda, Y., Helisch, A., Yokota, R., and Ware, J. A. Downregulation of protein kinase cdelta activity enhances endothelial cell adaptation to hypoxia. Circulation, 100: 1909-1916, 1999. 141. Russell, K. S., Stern, D. F., Polverini, P. J., and Bender, J. R. Neuregulin activation of ErbB receptors in vascular endothelium leads to angiogenesis. Am J Physiol, 277: H2205-2211, 1999.
|