跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳凱筠
研究生(外文):Kai-Yun Chen
論文名稱:酪胺酸激酶Etk/Bmx在EGF與VEGF訊息傳遞路徑中之功能分析
論文名稱(外文):Analysis of biological functions of tyrosine kinase Etk/Bmx in EGF- and VEGF-signaling pathways
指導教授:施修明
指導教授(外文):Hsiu-Ming Shih , PhD
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2003
畢業學年度:92
語文別:英文
中文關鍵詞:酪胺酸激酶Etk/BmxEGF訊息傳遞路徑VEGF訊息傳遞路徑
外文關鍵詞:Etk/BmxEGFVEGFsignal transduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
蛋白質酪胺酸激酶包括受體型蛋白質酪胺酸激酶與非受體型蛋白質酪胺酸激酶是一群重要的訊息傳遞調控者,他們調控細胞生長,分化與發育。Tec非受體型蛋白質酪胺酸激酶與細胞激素受體,淋巴球表面抗原,G蛋白結合受體及integrin 的細胞傳遞有關。大多數的Tec非受體型蛋白質酪胺酸激酶表現在造血細胞,然而其中一員Etk/Bmx ,主要表現在上皮細胞與內皮細胞且其在這些細胞中的訊息傳遞及生物功能的研究有限。在我們探討Etk的活化因子時,發現EGF和VEGF皆能活化Etk。在HeLa及MDA-MB-468細胞株中,Etk可以在EGF的刺激下被磷酸化。並且在MDA-MB-468細胞株中,大量表達此蛋白會透過活化Stat1而增加EGF誘導的細胞凋亡。相反的,dominant-negative Etk (Ek)能抑制Stat1活性進而降低EGF誘導的細胞凋亡。再者,沒有EGF處理下,持續活化Etk能促使MDA-MB-468細胞凋亡。這些結果證實Etk是EGFR下游的一訊息傳遞分子並在EGF誘導的細胞凋亡中扮演重要角色。在VEGF的研究中,我們第一個發現在人類臍靜脈內皮細胞,突變型Etk可抑制VEGF誘導的血管生成作用。免疫螢光染色實驗也證實Ek降低VEGF誘導細胞與細胞間的分離,顯示Etk可調節內皮細胞間的連結。體外與體內蛋白結合實驗皆證實Etk直接與-catenin結合並能磷酸化-catenin。 此外,Ek降低-catenin磷酸化並防止-catenin離開細胞間的連結處。Etk抑制劑LFM-A13,也能抑制-catenin磷酸化及VEGF的在內皮細胞的作用。這些發現顯示Etk藉由與-catenin結合並磷酸化-catenin來調控VEGF所誘導的生物現象。綜合上述實驗結果,我們證實Etk的確在EGF誘導的細胞凋亡與VEGF誘導的細胞移行的訊息傳遞中扮演非常重要的角色。

Protein tyrosine kinases, including receptor protein-tyrosine kinases and non-receptor protein tyrosine kinases, are important regulators of signal transduction for activation of cell growth, differentiation and development. Tec family of non-receptor protein kinases are involved in the intracellular signaling mechanisms of cytokine receptors, lymphocyte surface antigens, heterotrimeric G-protein-coupled receptors and integrin molecules in various cell types. While most of Tec family kinase proteins are expressed in hematopoietic cells, Etk/Bmx, a member of the Tec family protein kinases, is mainly expressed in epithelial and endothelial cells. Very little is known about Etk’s signaling networks and biological functions in these cells. We have explored different stimuli in activating Etk activity in epithelial and endothelial cells. Among them, EGF and VEGF were found to activate Etk. More specifically, Etk could be phosphorylated and activated by EGF in HeLa and MDA-MB-468 cells, and overexpression of Etk enhanced EGF-induced cell apoptosis of MDA-MB-468 cells. In addition, the Etk-enhanced cell apoptosis in MDA-MB-468 cells is associated with the Stat1 activation. In contrast, a dominant-negative Etk could abrogate Stat1 activation and EGF-induced apoptosis in MDA-MB-468 cells. Furthermore, a conditionally active Etk could induce Stat1 activity and confer cell apoptosis in MDA-MB-468 cells in the absence of EGF treatment. These findings suggest that Etk functions as a downstream signal molecule of EGF receptor and plays an important role in EGF-induced apoptotic signaling. In prior VEGF studies, we first demonstrated that a dominant-negative Etk inhibited the capillary-like tube formation of human umbilical vein endothelial cells on the Matrigel and reduced endothelial cell migration induced by VEGF. Immunofluorescence studies revealed that the dominant-negative mutant of Etk abolished VEGF-induced cell-cell dissociation, suggesting that Etk is involved in regulating adherens junction of endothelial cells. In vitro and in vivo binding studies showed that Etk directly interacts and phosphorylates -catenin. Moreover, a kinase deletion mutant of Etk, blocks the phosphorylation of -catenin and prevents the dissociation of -catenin from the adherens junction in response to VEGF. Finally, LFM-A13, a compound inhibiting Etk activity, diminishes the tyrosine phosphorylation of -catenin and cell mobility induced by VEGF. These findings implicate a crucial role of Etk in VEGF-induced cellular events via the interaction and phosphorylation of -catenin. Together, Etk plays a pivotal role in mediating the intracellular signaling pathways and functions of EGF-induced apoptosis and VEGF-induced cell migration.

Table of Content ……………………………………………………………………………….1
中文摘要……………………………………………………………………………………….6
Abstract…………………………………………………………………………………………7
Chapter I General introduction………………………………………………………………..9
PH domain
TH (BH and PR) domain
SH3 domain
SH2 domain
Kinase domain
Activation of Tec kinases
EGF signaling and VEGF signaling
Cadherins junctions
Chapter II Role of tyrosine kinase Etk/Bmx in EGF-induced apoptosis of MDA-MB-468 breast cancer cells……………………………………………………………………………...19
Abstract……………………………………………………………………………………….20
Introduction…………………………………………………………………………………...21
Results…………………………………………………………………………………………23
EGF stimulates tyrosine phosphorylation of Etk
Etk potentiates EGF-induced apoptosis of MDA-MB-468 cells
Etk potentiates EGF-induced Stat1 activation
A dominant negative mutant of Etk inhibits
Conditionally activated Etk induces both Stat1 activation and cell apoptosis
Discussion…………………………………………………………………………………….28
Materials and methods………………………………………………………………………..32
Plasmid construction
Cell culture, Western blot analysis, transient transfection and luciferase assays
Flow cytometric analysis of apoptosis
Electrophoretic mobility shift assay (EMSA)
Chapter III The role of Etk/Bmx in vascular endothelial growth factor-induced endothelial cell-cell dissociation and migration……………………………………………………………34
Abstract......................................................................................................................................35
Introduction……………………………………………………………………………………36
Results........................................................................................................................................39
Dominant-negative Etk abrogates VEGF-induced capillary-like formation and cell migration
Etk associates with -catenin in HUVECs
The SH3 and SH2 domains of Etk mediates the association with -catenin
Etk stimulates tyrosine phosphorylation of -catenin
Dominant-negative Etk blocks VEGF-induced tyrosine phosphorylation of -catenin
Dominant-negative Etk blocks VEGF-induced dissociation of -catenin from adherens junctions
Etk kinase activity is crucial for the tyrosine phosphorylation of -catenin and cell mobility induced by VEGF treatment
Discussion..................................................................................................................................44
Materials and methods………………………………………………………………………...47
Plasmid and recombinant adenovirus construction
Cell culture
Cell migration assay and capillary-like tube formation
In vitro GST pull down assay
Immunoprecipitation and immunoblotting analyses
Immunofluorescence analysis
Chapter IV General discussion…………………………………………………………………50
Figures..........................................................................................................................................57
Chapter I General introduction.............................................................................................57
Fig. 1 Tec kinase activation
Fig. 2 Cadherens junctions
Chapter II Role of tyrosine kinase Etk/Bmx in EGF-induced apoptosis of MDA-MB-468 breast cancer cells................................................................................................................59
Fig. 1A+1B EGF stimulates tyrosine phosphorylation of Etk
A. HeLa cells
B. MDA-MB-468 cells.
Fig. 1C EGF induces the phosphorylation of ectopically expressed Etk
Fig. 2 Etk potentiates EGF-induced apoptosis
Fig. 3A Etk potentiates EGF-induced Stat1 activation
Fig. 3B Etk potentiates the effect of EGF on the Stat1-mediated promoter and p21 promoter
Fig. 4A + 4B
A. Dominant negative Etk inhibits EGF-induced Stat1 activation and apoptosis.
B. EtkK blocked EGF-induced Stat1 activation
Fig. 4C EtkK abrogated EGF-induced apoptosis.
Fig. 5 Activation of Etk kinase activity is sufficien t to induce the Stat1 activity and cell apoptosis
Fig. 5B Conditionally activated Etk induces Stat1 activity
Fig. 5C Conditionally activated Etk stimulates Stat1-mediated promoter and p21 promoter
Fig. 5D Conditionally activated Etk induces cell apoptosis
Chapter III The role of Etk/Bmx in vascular endothelial growth factor-induced endothelial cell-cell dissociation and migration…………………………………………………………71
Fig. 1A Role of Etk in VEGF-induced capillary-like tubule formation and cell migration of HUVECs
Fig. 1B Wild-type Etk promotes, while a dominant-negative EtkK inhibits, VEGF-induced cell migration of HUVECs.
Fig. 2A Etk associates with b—catenin in HUVECs.
Fig. 2B Etk and b-catenin associate together in HUVECs
Fig. 3 Multiple domains of Etk are involved in the interaction with-catenin
Fig. 3C Interaction of -catenin with SH3 and SH2 domains of Etk in vitro
Fig. 4A Etk is an upstream kinase of-catenin in VEGF signaling pathway
Fig. 4B Etk stimulates tyrosine phosphorylation of -catenin in Cos-1 cells
Fig. 4C EK downregulates VEGF-induced tyrosine phosphorylation of -catenin in HUVECs
Fig. 5 Effect of Etk on the distribution of cadherin-associated protein complexes in HUVECs in response to VEGF
Fig 6A Etk kinase activity is crucial for VEGF-induced tyrosine phosphorylation of -catenin and cell migration of HUVECs
Fig 6B Wound healing was observed after 16 hours of treatment with 20 ng/ml VEGF and 25 mM LFM-A13
Fig. 7 Schematic illustration of the role of Etk in VEGF-induced angiogenic pathway in endothelial cells
References..............................................................................................................................84

1. Robinson, D. R., Wu, Y. M., and Lin, S. F. The protein tyrosine kinase family of the human genome. Oncogene, 19: 5548-5557, 2000.
2. Smith, C. I., Islam, T. C., Mattsson, P. T., Mohamed, A. J., Nore, B. F., and Vihinen, M. The Tec family of cytoplasmic tyrosine kinases: mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species. Bioessays, 23: 436-446, 2001.
3. Yang, W. C., Collette, Y., Nunes, J. A., and Olive, D. Tec kinases: a family with multiple roles in immunity. Immunity, 12: 373-382, 2000.
4. Mano, H. Tec family of protein-tyrosine kinases: an overview of their structure and function. Cytokine Growth Factor Rev, 10: 267-280, 1999.
5. Lewis, C. M., Broussard, C., Czar, M. J., and Schwartzberg, P. L. Tec kinases: modulators of lymphocyte signaling and development. Curr Opin Immunol, 13: 317-325, 2001.
6. Debnath, J., Chamorro, M., Czar, M. J., Schaeffer, E. M., Lenardo, M. J., Varmus, H. E., and Schwartzberg, P. L. rlk/TXK encodes two forms of a novel cysteine string tyrosine kinase activated by Src family kinases. Mol Cell Biol, 19: 1498-1507, 1999.
7. Vihinen, M., Nore, B. F., Mattsson, P. T., Backesjo, C. M., Nars, M., Koutaniemi, S., Watanabe, C., Lester, T., Jones, A., Ochs, H. D., and Smith, C. I. Missense mutations affecting a conserved cysteine pair in the TH domain of Btk. FEBS Lett, 413: 205-210, 1997.
8. Rebecchi, M. J. and Scarlata, S. Pleckstrin homology domains: a common fold with diverse functions. Annu Rev Biophys Biomol Struct, 27: 503-528, 1998.
9. Qiu, Y. and Kung, H. J. Signaling network of the Btk family kinases. Oncogene, 19: 5651-5661, 2000.
10. Kojima, T., Fukuda, M., Watanabe, Y., Hamazato, F., and Mikoshiba, K. Characterization of the pleckstrin homology domain of Btk as an inositol polyphosphate and phosphoinositide binding domain. Biochem Biophys Res Commun, 236: 333-339, 1997.
11. Rameh, L. E., Arvidsson, A., Carraway, K. L., 3rd, Couvillon, A. D., Rathbun, G., Crompton, A., VanRenterghem, B., Czech, M. P., Ravichandran, K. S., Burakoff, S. J., Wang, D. S., Chen, C. S., and Cantley, L. C. A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J Biol Chem, 272: 22059-22066, 1997.
12. Salim, K., Bottomley, M. J., Querfurth, E., Zvelebil, M. J., Gout, I., Scaife, R., Margolis, R. L., Gigg, R., Smith, C. I., Driscoll, P. C., Waterfield, M. D., and Panayotou, G. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. Embo J, 15: 6241-6250, 1996.
13. Saito, K., Scharenberg, A. M., and Kinet, J. P. Interaction between the Btk PH domain and phosphatidylinositol-3,4,5-trisphosphate directly regulates Btk. J Biol Chem, 276: 16201-16206, 2001.
14. Lowry, W. E., Huang, J., Lei, M., Rawlings, D., and Huang, X. Y. Role of the PHTH module in protein substrate recognition by Bruton's agammaglobulinemia tyrosine kinase. J Biol Chem, 276: 45276-45281, 2001.
15. Cheng, G., Ye, Z. S., and Baltimore, D. Binding of Bruton's tyrosine kinase to Fyn, Lyn, or Hck through a Src homology 3 domain-mediated interaction. Proc Natl Acad Sci U S A, 91: 8152-8155, 1994.
16. Andreotti, A. H., Bunnell, S. C., Feng, S., Berg, L. J., and Schreiber, S. L. Regulatory intramolecular association in a tyrosine kinase of the Tec family. Nature, 385: 93-97, 1997.
17. Brazin, K. N., Fulton, D. B., and Andreotti, A. H. A specific intermolecular association between the regulatory domains of a Tec family kinase. J Mol Biol, 302: 607-623, 2000.
18. Hansson, H., Okoh, M. P., Smith, C. I., Vihinen, M., and Hard, T. Intermolecular interactions between the SH3 domain and the proline-rich TH region of Bruton's tyrosine kinase. FEBS Lett, 489: 67-70, 2001.
19. Hansson, H., Smith, C. I., and Hard, T. Both proline-rich sequences in the TH region of Bruton's tyrosine kinase stabilize intermolecular interactions with the SH3 domain. FEBS Lett, 508: 11-15, 2001.
20. Laederach, A., Cradic, K. W., Brazin, K. N., Zamoon, J., Fulton, D. B., Huang, X. Y., and Andreotti, A. H. Competing modes of self-association in the regulatory domains of Bruton's tyrosine kinase: intramolecular contact versus asymmetric homodimerization. Protein Sci, 11: 36-45, 2002.
21. Pursglove, S. E., Mulhern, T. D., Mackay, J. P., Hinds, M. G., and Booker, G. W. The solution structure and intramolecular associations of the Tec kinase SRC homology 3 domain. J Biol Chem, 277: 755-762, 2002.
22. Pawson, T. and Gish, G. D. SH2 and SH3 domains: from structure to function. Cell, 71: 359-362, 1992.
23. Afar, D. E., Park, H., Howell, B. W., Rawlings, D. J., Cooper, J., and Witte, O. N. Regulation of Btk by Src family tyrosine kinases. Mol Cell Biol, 16: 3465-3471, 1996.
24. Park, H., Wahl, M. I., Afar, D. E., Turck, C. W., Rawlings, D. J., Tam, C., Scharenberg, A. M., Kinet, J. P., and Witte, O. N. Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity, 4: 515-525, 1996.
25. Morrogh, L. M., Hinshelwood, S., Costello, P., Cory, G. O., and Kinnon, C. The SH3 domain of Bruton's tyrosine kinase displays altered ligand binding properties when auto-phosphorylated in vitro. Eur J Immunol, 29: 2269-2279, 1999.
26. Bunnell, S. C., Diehn, M., Yaffe, M. B., Findell, P. R., Cantley, L. C., and Berg, L. J. Biochemical interactions integrating Itk with the T cell receptor-initiated signaling cascade. J Biol Chem, 275: 2219-2230, 2000.
27. Hashimoto, S., Iwamatsu, A., Ishiai, M., Okawa, K., Yamadori, T., Matsushita, M., Baba, Y., Kishimoto, T., Kurosaki, T., and Tsukada, S. Identification of the SH2 domain binding protein of Bruton's tyrosine kinase as BLNK--functional significance of Btk-SH2 domain in B-cell antigen receptor-coupled calcium signaling. Blood, 94: 2357-2364, 1999.
28. Su, Y. W., Zhang, Y., Schweikert, J., Koretzky, G. A., Reth, M., and Wienands, J. Interaction of SLP adaptors with the SH2 domain of Tec family kinases. Eur J Immunol, 29: 3702-3711, 1999.
29. Brazin, K. N., Mallis, R. J., Fulton, D. B., and Andreotti, A. H. Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A. Proc Natl Acad Sci U S A, 99: 1899-1904, 2002.
30. Rawlings, D. J., Scharenberg, A. M., Park, H., Wahl, M. I., Lin, S., Kato, R. M., Fluckiger, A. C., Witte, O. N., and Kinet, J. P. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science, 271: 822-825, 1996.
31. Tsai, Y. T., Su, Y. H., Fang, S. S., Huang, T. N., Qiu, Y., Jou, Y. S., Shih, H. M., Kung, H. J., and Chen, R. H. Etk, a Btk family tyrosine kinase, mediates cellular transformation by linking Src to STAT3 activation. Mol Cell Biol, 20: 2043-2054, 2000.
32. Ohya, K., Kajigaya, S., Kitanaka, A., Yoshida, K., Miyazato, A., Yamashita, Y., Yamanaka, T., Ikeda, U., Shimada, K., Ozawa, K., and Mano, H. Molecular cloning of a docking protein, BRDG1, that acts downstream of the Tec tyrosine kinase. Proc Natl Acad Sci U S A, 96: 11976-11981, 1999.
33. Vargas, L., Nore, B. F., Berglof, A., Heinonen, J. E., Mattsson, P. T., Smith, C. I., and Mohamed, A. J. Functional interaction of caveolin-1 with Bruton's tyrosine kinase and Bmx. J Biol Chem, 277: 9351-9357, 2002.
34. Vetrie, D., Vorechovsky, I., Sideras, P., Holland, J., Davies, A., Flinter, F., Hammarstrom, L., Kinnon, C., Levinsky, R., Bobrow, M., and et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature, 361: 226-233, 1993.
35. Tsukada, S., Saffran, D. C., Rawlings, D. J., Parolini, O., Allen, R. C., Klisak, I., Sparkes, R. S., Kubagawa, H., Mohandas, T., Quan, S., and et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell, 72: 279-290, 1993.
36. Thomas, J. D., Sideras, P., Smith, C. I., Vorechovsky, I., Chapman, V., and Paul, W. E. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science, 261: 355-358, 1993.
37. Rawlings, D. J., Saffran, D. C., Tsukada, S., Largaespada, D. A., Grimaldi, J. C., Cohen, L., Mohr, R. N., Bazan, J. F., Howard, M., Copeland, N. G., and et al. Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science, 261: 358-361, 1993.
38. Sideras, P. and Smith, C. I. Molecular and cellular aspects of X-linked agammaglobulinemia. Adv Immunol, 59: 135-223, 1995.
39. Liao, X. C. and Littman, D. R. Altered T cell receptor signaling and disrupted T cell development in mice lacking Itk. Immunity, 3: 757-769, 1995.
40. Lowry, W. E. and Huang, X. Y. G Protein beta gamma subunits act on the catalytic domain to stimulate Bruton's agammaglobulinemia tyrosine kinase. J Biol Chem, 277: 1488-1492, 2002.
41. Chen, R., Kim, O., Li, M., Xiong, X., Guan, J. L., Kung, H. J., Chen, H., Shimizu, Y., and Qiu, Y. Regulation of the PH-domain-containing tyrosine kinase Etk by focal adhesion kinase through the FERM domain. Nat Cell Biol, 3: 439-444, 2001.
42. van Dijk, T. B., van Den Akker, E., Amelsvoort, M. P., Mano, H., Lowenberg, B., and von Lindern, M. Stem cell factor induces phosphatidylinositol 3'-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells. Blood, 96: 3406-3413, 2000.
43. Tamagnone, L., Lahtinen, I., Mustonen, T., Virtaneva, K., Francis, F., Muscatelli, F., Alitalo, R., Smith, C. I., Larsson, C., and Alitalo, K. BMX, a novel nonreceptor tyrosine kinase gene of the BTK/ITK/TEC/TXK family located in chromosome Xp22.2. Oncogene, 9: 3683-3688, 1994.
44. Robinson, D., He, F., Pretlow, T., and Kung, H. J. A tyrosine kinase profile of prostate carcinoma. Proc Natl Acad Sci U S A, 93: 5958-5962, 1996.
45. Saharinen, P., Ekman, N., Sarvas, K., Parker, P., Alitalo, K., and Silvennoinen, O. The Bmx tyrosine kinase induces activation of the Stat signaling pathway, which is specifically inhibited by protein kinase Cdelta. Blood, 90: 4341-4353, 1997.
46. Wen, X., Lin, H. H., Shih, H. M., Kung, H. J., and Ann, D. K. Kinase activation of the non-receptor tyrosine kinase Etk/BMX alone is sufficient to transactivate STAT-mediated gene expression in salivary and lung epithelial cells. J Biol Chem, 274: 38204-38210, 1999.
47. Jui, H. Y., Tseng, R. J., Wen, X., Fang, H. I., Huang, L. M., Chen, K. Y., Kung, H. J., Ann, D. K., and Shih, H. M. Protein-tyrosine phosphatase D1, a potential regulator and effector for Tec family kinases. J Biol Chem, 275: 41124-41132, 2000.
48. Bagheri-Yarmand, R., Mandal, M., Taludker, A. H., Wang, R. A., Vadlamudi, R. K., Kung, H. J., and Kumar, R. Etk/Bmx tyrosine kinase activates Pak1 and regulates tumorigenicity of breast cancer cells. J Biol Chem, 276: 29403-29409, 2001.
49. Mao, J., Xie, W., Yuan, H., Simon, M. I., Mano, H., and Wu, D. Tec/Bmx non-receptor tyrosine kinases are involved in regulation of Rho and serum response factor by Galpha12/13. Embo J, 17: 5638-5646, 1998.
50. Pan, S., An, P., Zhang, R., He, X., Yin, G., and Min, W. Etk/Bmx as a tumor necrosis factor receptor type 2-specific kinase: role in endothelial cell migration and angiogenesis. Mol Cell Biol, 22: 7512-7523, 2002.
51. Abassi, Y. A., Rehn, M., Ekman, N., Alitalo, K., and Vuori, K. p130Cas Couples the tyrosine kinase Bmx/Etk with regulation of the actin cytoskeleton and cell migration. J Biol Chem, 278: 35636-35643, 2003.
52. Rahimi, N., Dayanir, V., and Lashkari, K. Receptor chimeras indicate that the vascular endothelial growth factor receptor-1 (VEGFR-1) modulates mitogenic activity of VEGFR-2 in endothelial cells. J Biol Chem, 275: 16986-16992, 2000.
53. Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M., and Heldin, C. H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem, 269: 26988-26995, 1994.
54. Cross, M. J., Dixelius, J., Matsumoto, T., and Claesson-Welsh, L. VEGF-receptor signal transduction. Trends Biochem Sci, 28: 488-494, 2003.
55. Ria, R., Roccaro, A. M., Merchionne, F., Vacca, A., Dammacco, F., and Ribatti, D. Vascular endothelial growth factor and its receptors in multiple myeloma. Leukemia, 17: 1961-1966, 2003.
56. Ferrara, N., Gerber, H. P., and LeCouter, J. The biology of VEGF and its receptors. Nat Med, 9: 669-676, 2003.
57. Cleaver, O. and Melton, D. A. Endothelial signaling during development. Nat Med, 9: 661-668, 2003.
58. Shinkaruk, S., Bayle, M., Lain, G., and Deleris, G. Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy. Curr Med Chem Anti-Canc Agents, 3: 95-117, 2003.
59. Moehler, T. M., Ho, A. D., Goldschmidt, H., and Barlogie, B. Angiogenesis in hematologic malignancies. Crit Rev Oncol Hematol, 45: 227-244, 2003.
60. Steinberg, M. S. and McNutt, P. M. Cadherins and their connections: adhesion junctions have broader functions. Curr Opin Cell Biol, 11: 554-560, 1999.
61. Ozawa, M., Baribault, H., and Kemler, R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. Embo J, 8: 1711-1717, 1989.
62. Ozawa, M., Ringwald, M., and Kemler, R. Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci U S A, 87: 4246-4250, 1990.
63. Marrs, J. A. and Nelson, W. J. Cadherin cell adhesion molecules in differentiation and embryogenesis. Int Rev Cytol, 165: 159-205, 1996.
64. Daniel, J. M. and Reynolds, A. B. Tyrosine phosphorylation and cadherin/catenin function. Bioessays, 19: 883-891, 1997.
65. Zondag, G. C. and Moolenaar, W. H. Receptor protein tyrosine phosphatases: involvement in cell-cell interaction and signaling. Biochimie, 79: 477-483, 1997.
66. Matsuyoshi, N., Hamaguchi, M., Taniguchi, S., Nagafuchi, A., Tsukita, S., and Takeichi, M. Cadherin-mediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J Cell Biol, 118: 703-714, 1992.
67. Kinch, M. S., Clark, G. J., Der, C. J., and Burridge, K. Tyrosine phosphorylation regulates the adhesions of ras-transformed breast epithelia. J Cell Biol, 130: 461-471, 1995.
68. Papkoff, J. Regulation of complexed and free catenin pools by distinct mechanisms. Differential effects of Wnt-1 and v-Src. J Biol Chem, 272: 4536-4543, 1997.
69. Muller, T., Choidas, A., Reichmann, E., and Ullrich, A. Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J Biol Chem, 274: 10173-10183, 1999.
70. Polakis, P. Wnt signaling and cancer. Genes Dev, 14: 1837-1851, 2000.
71. Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G. H., Tan, Y., Zhang, Z., Lin, X., and He, X. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell, 108: 837-847, 2002.
72. Barker, N. and Clevers, H. Catenins, Wnt signaling and cancer. Bioessays, 22: 961-965, 2000.
73. van Es, J. H., Barker, N., and Clevers, H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev, 13: 28-33, 2003.
74. Blackledge, G. Growth factor receptor tyrosine kinase inhibitors; clinical development and potential for prostate cancer therapy. J Urol, 170: S77-83; discussion S83, 2003.
75. Levitzki, A. EGF receptor as a therapeutic target. Lung Cancer, 41 Suppl 1: S9-14, 2003.
76. Wells, A. EGF receptor. Int J Biochem Cell Biol, 31: 637-643, 1999.
77. Jorissen, R. N., Walker, F., Pouliot, N., Garrett, T. P., Ward, C. W., and Burgess, A. W. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res, 284: 31-53, 2003.
78. Suhardja, A. and Hoffman, H. Role of growth factors and their receptors in proliferation of microvascular endothelial cells. Microsc Res Tech, 60: 70-75, 2003.
79. Misra, U. K. and Pizzo, S. V. Ligation of the alpha2M signalling receptor elevates the levels of p21Ras-GTP in macrophages. Cell Signal, 10: 441-445, 1998.
80. Tsang, D. K. and Crowe, D. L. The mitogen activated protein kinase pathway is required for proliferation but not invasion of human squamous cell carcinoma lines. Int J Oncol, 15: 519-523, 1999.
81. Yart, A., Laffargue, M., Mayeux, P., Chretien, S., Peres, C., Tonks, N., Roche, S., Payrastre, B., Chap, H., and Raynal, P. A critical role for phosphoinositide 3-kinase upstream of Gab1 and SHP2 in the activation of ras and mitogen-activated protein kinases by epidermal growth factor. J Biol Chem, 276: 8856-8864, 2001.
82. Price, J. T., Tiganis, T., Agarwal, A., Djakiew, D., and Thompson, E. W. Epidermal growth factor promotes MDA-MB-231 breast cancer cell migration through a phosphatidylinositol 3'-kinase and phospholipase C-dependent mechanism. Cancer Res, 59: 5475-5478, 1999.
83. Merlino, G. T., Xu, Y. H., Richert, N., Clark, A. J., Ishii, S., Banks-Schlegel, S., and Pastan, I. Elevated epidermal growth factor receptor gene copy number and expression in a squamous carcinoma cell line. J Clin Invest, 75: 1077-1079, 1985.
84. Costa, S., Stamm, H., Almendral, A., Ludwig, H., Wyss, R., Fabbro, D., Ernst, A., Takahashi, A., and Eppenberger, U. Predictive value of EGF receptor in breast cancer. Lancet, 2: 1258, 1988.
85. Sainsbury, J. R., Nicholson, S., Angus, B., Farndon, J. R., Malcolm, A. J., and Harris, A. L. Epidermal growth factor receptor status of histological sub-types of breast cancer. Br J Cancer, 58: 458-460, 1988.
86. Kikuchi, A., Amagai, M., Hayakawa, K., Ueda, M., Hirohashi, S., Shimizu, N., and Nishikawa, T. Association of EGF receptor expression with proliferating cells and of ras p21 expression with differentiating cells in various skin tumours. Br J Dermatol, 123: 49-58, 1990.
87. Ibrahim, S. O., Vasstrand, E. N., Liavaag, P. G., Johannessen, A. C., and Lillehaug, J. R. Expression of c-erbB proto-oncogene family members in squamous cell carcinoma of the head and neck. Anticancer Res, 17: 4539-4546, 1997.
88. Xu, Y. H., Richert, N., Ito, S., Merlino, G. T., and Pastan, I. Characterization of epidermal growth factor receptor gene expression in malignant and normal human cell lines. Proc Natl Acad Sci U S A, 81: 7308-7312, 1984.
89. Ro, J., North, S. M., Gallick, G. E., Hortobagyi, G. N., Gutterman, J. U., and Blick, M. Amplified and overexpressed epidermal growth factor receptor gene in uncultured primary human breast carcinoma. Cancer Res, 48: 161-164, 1988.
90. Wong, A. J., Bigner, S. H., Bigner, D. D., Kinzler, K. W., Hamilton, S. R., and Vogelstein, B. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci U S A, 84: 6899-6903, 1987.
91. Ekstrand, A. J., James, C. D., Cavenee, W. K., Seliger, B., Pettersson, R. F., and Collins, V. P. Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res, 51: 2164-2172, 1991.
92. Garcia de Palazzo, I. E., Adams, G. P., Sundareshan, P., Wong, A. J., Testa, J. R., Bigner, D. D., and Weiner, L. M. Expression of mutated epidermal growth factor receptor by non-small cell lung carcinomas. Cancer Res, 53: 3217-3220, 1993.
93. Gulli, L. F., Palmer, K. C., Chen, Y. Q., and Reddy, K. B. Epidermal growth factor-induced apoptosis in A431 cells can be reversed by reducing the tyrosine kinase activity. Cell Growth Differ, 7: 173-178, 1996.
94. Armstrong, D. K., Kaufmann, S. H., Ottaviano, Y. L., Furuya, Y., Buckley, J. A., Isaacs, J. T., and Davidson, N. E. Epidermal growth factor-mediated apoptosis of MDA-MB-468 human breast cancer cells. Cancer Res, 54: 5280-5283, 1994.
95. Maa, M. C., Leu, T. H., McCarley, D. J., Schatzman, R. C., and Parsons, S. J. Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proc Natl Acad Sci U S A, 92: 6981-6985, 1995.
96. Berclaz, G., Altermatt, H. J., Rohrbach, V., Siragusa, A., Dreher, E., and Smith, P. D. EGFR dependent expression of STAT3 (but not STAT1) in breast cancer. Int J Oncol, 19: 1155-1160, 2001.
97. Albes, J. M., Brandes, H., Heinemann, M. K., Scheule, A., and Wahlers, T. Potassium-reduced lung preservation solutions: a screening study. Eur Surg Res, 29: 327-338, 1997.
98. Chan, T. O., Rittenhouse, S. E., and Tsichlis, P. N. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem, 68: 965-1014, 1999.
99. Bromberg, J. F., Fan, Z., Brown, C., Mendelsohn, J., and Darnell, J. E., Jr. Epidermal growth factor-induced growth inhibition requires Stat1 activation. Cell Growth Differ, 9: 505-512, 1998.
100. Khan, W. N., Sideras, P., Rosen, F. S., and Alt, F. W. The role of Bruton's tyrosine kinase in B-cell development and function in mice and man. Ann N Y Acad Sci, 764: 27-38, 1995.
101. Kerner, J. D., Appleby, M. W., Mohr, R. N., Chien, S., Rawlings, D. J., Maliszewski, C. R., Witte, O. N., and Perlmutter, R. M. Impaired expansion of mouse B cell progenitors lacking Btk. Immunity, 3: 301-312, 1995.
102. Satterthwaite, A. B., Li, Z., and Witte, O. N. Btk function in B cell development and response. Semin Immunol, 10: 309-316, 1998.
103. Vihinen, M., Mattsson, P. T., and Smith, C. I. Bruton tyrosine kinase (BTK) in X-linked agammaglobulinemia (XLA). Front Biosci, 5: D917-928, 2000.
104. Czar, M. J., Debnath, J., Schaeffer, E. M., Lewis, C. M., and Schwartzberg, P. L. Biochemical and genetic analyses of the Tec kinases Itk and Rlk/Txk. Biochem Soc Trans, 29: 863-867, 2001.
105. Miller, A. T. and Berg, L. J. Defective Fas ligand expression and activation-induced cell death in the absence of IL-2-inducible T cell kinase. J Immunol, 168: 2163-2172, 2002.
106. August, A., Fischer, A., Hao, S., Mueller, C., and Ragin, M. The Tec family of tyrosine kinases in T cells, amplifiers of T cell receptor signals. Int J Biochem Cell Biol, 34: 1184-1189, 2002.
107. Matsuda, T., Takahashi-Tezuka, M., Fukada, T., Okuyama, Y., Fujitani, Y., Tsukada, S., Mano, H., Hirai, H., Witte, O. N., and Hirano, T. Association and activation of Btk and Tec tyrosine kinases by gp130, a signal transducer of the interleukin-6 family of cytokines. Blood, 85: 627-633, 1995.
108. Mano, H., Yamashita, Y., Sato, K., Yazaki, Y., and Hirai, H. Tec protein-tyrosine kinase is involved in interleukin-3 signaling pathway. Blood, 85: 343-350, 1995.
109. Tang, B., Mano, H., Yi, T., and Ihle, J. N. Tec kinase associates with c-kit and is tyrosine phosphorylated and activated following stem cell factor binding. Mol Cell Biol, 14: 8432-8437, 1994.
110. Qiu, Y., Robinson, D., Pretlow, T. G., and Kung, H. J. Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol 3'-kinase and is involved in interleukin 6-induced neuroendocrine differentiation of prostate cancer cells. Proc Natl Acad Sci U S A, 95: 3644-3649, 1998.
111. Banai, J. and Szanto, I. [Endoscopic diagnosis of gastrointestinal bleeding of unknown origin]. Magy Seb, 54: 155-157, 2001.
112. Xue, L. Y., Qiu, Y., He, J., Kung, H. J., and Oleinick, N. L. Etk/Bmx, a PH-domain containing tyrosine kinase, protects prostate cancer cells from apoptosis induced by photodynamic therapy or thapsigargin. Oncogene, 18: 3391-3398, 1999.
113. Wu, Y. M., Huang, C. L., Kung, H. J., and Huang, C. Y. Proteolytic activation of ETK/Bmx tyrosine kinase by caspases. J Biol Chem, 276: 17672-17678, 2001.
114. Ekman, N., Arighi, E., Rajantie, I., Saharinen, P., Ristimaki, A., Silvennoinen, O., and Alitalo, K. The Bmx tyrosine kinase is activated by IL-3 and G-CSF in a PI-3K dependent manner. Oncogene, 19: 4151-4158, 2000.
115. Rajantie, I., Ekman, N., Iljin, K., Arighi, E., Gunji, Y., Kaukonen, J., Palotie, A., Dewerchin, M., Carmeliet, P., and Alitalo, K. Bmx tyrosine kinase has a redundant function downstream of angiopoietin and vascular endothelial growth factor receptors in arterial endothelium. Mol Cell Biol, 21: 4647-4655, 2001.
116. Chau, C. H., Chen, K. Y., Deng, H. T., Kim, K. J., Hosoya, K., Terasaki, T., Shih, H. M., and Ann, D. K. Coordinating Etk/Bmx activation and VEGF upregulation to promote cell survival and proliferation. Oncogene, 21: 8817-8829, 2002.
117. Filmus, J., Pollak, M. N., Cailleau, R., and Buick, R. N. MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited by EGF. Biochem Biophys Res Commun, 128: 898-905, 1985.
118. Jamieson, C. P., Obeid, O. A., and Powell-Tuck, J. The thiamin, riboflavin and pyridoxine status of patients on emergency admission to hospital. Clin Nutr, 18: 87-91, 1999.
119. Hsueh, R. C. and Scheuermann, R. H. Tyrosine kinase activation in the decision between growth, differentiation, and death responses initiated from the B cell antigen receptor. Adv Immunol, 75: 283-316, 2000.
120. Anderson, J. S., Teutsch, M., Dong, Z., and Wortis, H. H. An essential role for Bruton's [corrected] tyrosine kinase in the regulation of B-cell apoptosis. Proc Natl Acad Sci U S A, 93: 10966-10971, 1996.
121. Islam, T. C. and Smith, C. I. The cellular phenotype conditions Btk for cell survival or apoptosis signaling. Immunol Rev, 178: 49-63, 2000.
122. Uckun, F. M., Waddick, K. G., Mahajan, S., Jun, X., Takata, M., Bolen, J., and Kurosaki, T. BTK as a mediator of radiation-induced apoptosis in DT-40 lymphoma B cells. Science, 273: 1096-1100, 1996.
123. Ramsauer, K., Sadzak, I., Porras, A., Pilz, A., Nebreda, A. R., Decker, T., and Kovarik, P. p38 MAPK enhances STAT1-dependent transcription independently of Ser-727 phosphorylation. Proc Natl Acad Sci U S A, 99: 12859-12864, 2002.
124. Stephanou, A., Scarabelli, T. M., Brar, B. K., Nakanishi, Y., Matsumura, M., Knight, R. A., and Latchman, D. S. Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701. J Biol Chem, 276: 28340-28347, 2001.
125. Stephanou, A., Scarabelli, T. M., Townsend, P. A., Bell, R., Yellon, D., Knight, R. A., and Latchman, D. S. The carboxyl-terminal activation domain of the STAT-1 transcription factor enhances ischemia/reperfusion-induced apoptosis in cardiac myocytes. Faseb J, 16: 1841-1843, 2002.
126. Hognason, T., Chatterjee, S., Vartanian, T., Ratan, R. R., Ernewein, K. M., and Habib, A. A. Epidermal growth factor receptor induced apoptosis: potentiation by inhibition of Ras signaling. FEBS Lett, 491: 9-15, 2001.
127. Chin, Y. E., Kitagawa, M., Kuida, K., Flavell, R. A., and Fu, X. Y. Activation of the STAT signaling pathway can cause expression of caspase 1 and apoptosis. Mol Cell Biol, 17: 5328-5337, 1997.
128. Sieg, D. J., Hauck, C. R., Ilic, D., Klingbeil, C. K., Schaefer, E., Damsky, C. H., and Schlaepfer, D. D. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol, 2: 249-256, 2000.
129. Brady-Kalnay, S. M., Rimm, D. L., and Tonks, N. K. Receptor protein tyrosine phosphatase PTPmu associates with cadherins and catenins in vivo. J Cell Biol, 130: 977-986, 1995.
130. Lin, M. T., Yen, M. L., Lin, C. Y., and Kuo, M. L. Inhibition of vascular endothelial growth factor-induced angiogenesis by resveratrol through interruption of Src-dependent vascular endothelial cadherin tyrosine phosphorylation. Mol Pharmacol, 64: 1029-1036, 2003.
131. Xu, G., Arregui, C., Lilien, J., and Balsamo, J. PTP1B modulates the association of beta-catenin with N-cadherin through binding to an adjacent and partially overlapping target site. J Biol Chem, 277: 49989-49997, 2002.
132. Taddei, M. L., Chiarugi, P., Cirri, P., Buricchi, F., Fiaschi, T., Giannoni, E., Talini, D., Cozzi, G., Formigli, L., Raugei, G., and Ramponi, G. Beta-catenin interacts with low-molecular-weight protein tyrosine phosphatase leading to cadherin-mediated cell-cell adhesion increase. Cancer Res, 62: 6489-6499, 2002.
133. Hiscox, S. and Jiang, W. G. Association of PTPmu with catenins in cancer cells: a possible role for E-cadherin. Int J Oncol, 13: 1077-1080, 1998.
134. Taniguchi, Y., London, R., Schinkmann, K., Jiang, S., and Avraham, H. The receptor protein tyrosine phosphatase, PTP-RO, is upregulated during megakaryocyte differentiation and Is associated with the c-Kit receptor. Blood, 94: 539-549, 1999.
135. Pathre, P., Arregui, C., Wampler, T., Kue, I., Leung, T. C., Lilien, J., and Balsamo, J. PTP1B regulates neurite extension mediated by cell-cell and cell-matrix adhesion molecules. J Neurosci Res, 63: 143-150, 2001.
136. Esser, S., Lampugnani, M. G., Corada, M., Dejana, E., and Risau, W. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci, 111 ( Pt 13): 1853-1865, 1998.
137. Zhang, R., Xu, Y., Ekman, N., Wu, Z., Wu, J., Alitalo, K., and Min, W. Etk/Bmx transactivates VEGFR2 and recruits phosphatidylinositol 3-kinase to mediate TNF-induced angiogenic pathway. J Biol Chem, 2003.
138. Mahajan, S., Ghosh, S., Sudbeck, E. A., Zheng, Y., Downs, S., Hupke, M., and Uckun, F. M. Rational design and synthesis of a novel anti-leukemic agent targeting Bruton's tyrosine kinase (BTK), LFM-A13 [alpha-cyano-beta-hydroxy-beta-methyl-N-(2, 5-dibromophenyl)propenamide]. J Biol Chem, 274: 9587-9599, 1999.
139. Chen, K. Y., Huang, L. M., Kung, H. J., Ann, D. K., and Shih, H. M. The role of tyrosine kinase Etk/Bmx in EGF-induced apoptosis of MDA-MB-468 breast cancer cells. Oncogene, 2003.
140. Shizukuda, Y., Helisch, A., Yokota, R., and Ware, J. A. Downregulation of protein kinase cdelta activity enhances endothelial cell adaptation to hypoxia. Circulation, 100: 1909-1916, 1999.
141. Russell, K. S., Stern, D. F., Polverini, P. J., and Bender, J. R. Neuregulin activation of ErbB receptors in vascular endothelium leads to angiogenesis. Am J Physiol, 277: H2205-2211, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top