跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/10 14:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡億澄
研究生(外文):Yi-Chen Tsai
論文名稱:微波輔助加速氮化鋁水解之研究
論文名稱(外文):Rapid Hydrolysis of Aluminum Nitride by Microwave
指導教授:蔡政賢蔡政賢引用關係
指導教授(外文):Cheng-Hsien Tsai
口試委員:林宗曾謝輔宸林聖倫蔡政賢
口試委員(外文):Zong-Zeng LinFu-Chen SieSheng-Lun LinCheng-Hsien Tsai
口試日期:2015-07-16
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系碩士在職專班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:58
中文關鍵詞:氮化鋁加速水解微波氫氧化鋁
外文關鍵詞:Aluminum NitrideRapid HydrolysisMicrowaveHydroxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:418
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
氮化鋁 (AlN) 容易發生水解反應,但因生成產物層,使擴散阻力上升,導致水解速率逐漸緩慢而難以完全水解。因此,本研究以微波輔助加速氮化鋁水解,利用微波不須經由容器傳遞,且可透過分子之極化進行加熱之特性,降低熱傳導過程中的能量散失,提昇加熱的效率,縮短反應所需的時間。實驗探討反應溫度 (25, 45, 70, 90℃)、反應時間 (0~129 min) 與微波功率 (0, 50, 150 W) 對氮化鋁粉末水解之影響。
實驗結果顯示: AlN (2 µm) 粉末之水解,分別以平板加熱器、微波50 W與微波 150 W 加熱,在反應初期 (8 min) 時,因微波 150 W 加熱速率較快,AlN 轉化率達 73.0%,明顯較另外兩者為高 (AlN 轉化率 18.2%~20.1%);當溫度上升至 90℃後,且反應達末期 (129 min) 時,三種加熱方法之 AlN 轉化率即趨於相近。XRD圖顯示以微波輔助水解,無論反應初期還是接近完全水解之產物晶相均為氫氧化鋁 AlOOH (boehmite),與直接加熱水解主要生成 Al(OH)3 並不相同。SEM 圖亦顯示 AlN 粉體外觀以鱗片狀的 AlOOH 為主。

Aluminum nitride (AlN) can be easily hydrolyzed. However, the product layer increases the diffusion resistance, resulting to the decrease of hydrolysis rate. In this study, the microwave-assisted hydrolysis method was proposed for the rapid hydrolysis of AlN due to the energy transfer of microwave via the molecule polarization, leading to the reduction of the energy loss in the heat conduction process. Moreover, the effects of experimental parameters, including reaction temperature (25, 45, 70, 90 ℃), reaction time (0-129 min), and applied power (0, 50, 150 W) on the hydrolysis efficiency, were also discussed.
The heating methods for AlN (2 μm) hydrolysis process were by flat heater, and microwave energy applied at 150 W or 50 W. The results showed that in the induction period (reaction time = 8 min), due to the rapid heating by microwave at 150 W, the conversion of AIN reached 73.0%, much higher than that by microwave at 50 W or flat heater (AlN conversion was about 18.2-20.1%). When the temperature was at 90℃ with the reaction time = 129 min, the conversion of AIN was consistency for three kinds of heating methods. By XRD patterns, the product of microwave-assisted AlN hydrolysis was mainly AlOOH (boehmite), and was very different with by flat heater (Al(OH)3). SEM photos also showed that the morphology of product was mainly composed by a large amount of lamellas boehmite AlOOH.

摘 要 I
ABSTRACT II
誌 謝 IV
總目錄 V
表目錄 VIII
圖目錄 IX
1-1 研究動機及目的 1
1-2 研究內容 3
第二章 文獻回顧 4
2-1 氮化鋁特性 4
2-1-1 氮化鋁的晶體結構 4
2-1-2 氮化鋁的物理化學特性 5
2-2 氮化鋁的應用 6
2-3 氮化鋁水解 8
2-3-1 氮化鋁水解的反應原理 8
2-3-2 氮化鋁水解產物結晶機制 10
2-3-3 氮化鋁水解的影響因子 10
2-4 液固相反應動力模式 12
2-4-1 流體-固相反應模式 12
2-4-2 縮核模式解析氮化鋁水解的現況 14
2-4-3 縮核模式、轉化率與時間關係式 15
2-4-4 縮核模式修正項 16
2-5 微波的性質 17
2-5-1 微波的原理 17
2-5-2 影響介質吸收微波因素 17
2-5-3 微波機制 20
2-5-4 微波與傳統加熱之差異 22
2-5-5 微波加熱的特點 22
2-5-6 微波在加速水解的應用 23
第三章 實驗設備與方法 24
3-1 實驗設備與材料 24
3-1-1 藥品及材料 24
3-1-2 設備 24
3-2 實驗流程與參數設定 25
3-2-1 氮化鋁水解反應系統 25
3-2-2 實驗流程 27
3-2-2 參數設定 29
3-3 產物分析系統 29
3-4 熱力學參數計算 30
第四章 結果與討論 32
4-1 氮化鋁微波水解之轉化率 32
4-1-1 轉化率之計算 32
4-1-2 溫度及升溫時間對轉化率之影響 34
4-1-3 微波功率對轉化率之影響 37
4-1-4 計算Al(OH)3含量分析 42
4-2 氮化鋁粉末微波水解產物分析 44
4-2-1 晶相分析 44
4-2-2 掃描式電子顯微鏡形貌分析 46
4-3 微波水解對溶液pH值變化之影響 48
第五章 結論與建議 50
5-1 結論 50
5-2 建議 51
參考文獻 52
簡 歷 58


1.Al-Harahsheh, M., Kingman, S., Bradshaw, S., “The reality of non-thermal effects in microwave assisted leaching systems”, Int. J. Hydrogen. Energ., 36, 1442-1447, 2011.
2.Anthony, A., Charles. S., Kevin, E., Howard, S., Anderson, A., “Moisture resistant aluminum nitride filler for high conductivity microelectronic molding compounds”, electronic components and technology conference, 335-342, 1996.
3.Baraton, M. I., Chen, X., Gonsalves, K. E., " FTIR analysis of the surface of nanostructured aluminium nitride powder prepared via chemical synthesis", J. Mater. Chem., 6, 1407-1412, 1996.
4.Borgwardt, R. H., “Kinetics of the reaction of SO2 calcined limestone”, Environ. Sci. Technol., 4(1), 1970.
5.Bowen, P., James, G., Highfield., Mocellin, A., Ring, T.,“ Degradation of aluminum nitride powder in an aqueous environment ”, J. Am. Ceram. Soc., 73, 724-728, 1990.
6.Bye, G. C., Robinson, J. G., " Crystallization processes in aluminium hydroxide gels", Colloid Polym. Sci., 198, 53-60, 1964.
7.Bilbao-Sainz, C., Butler, M., Weaver, T., Bent, J., “Wheat starch gelatinization under microwave irradiation and conduction heating”, Cryst. Growth. Des., 12, 1299-1307, 2007.
8.Carter, R. E., “Kinetic model for solid-state reactions”, J. Chem. Phys., 34, 2010-2015, 1961.
9.Bilbao-Sainz, C., Butler, M., Weaver, T., Bent, J., “Rewove Space Wheat starch gelatinization under microwave irradiation and conduction heating” , J. Mater. Chem., 6, 1407-1412, 1996.
10.Carter, R. E., “Kinetic model for solid-state reactions”, J. Chem. Phys., 34, 2010-2015, 1961A.
11.Carter, R. E., “Kinetic model for solid-state reactions”, J. Chem. Phys., 35, 1137-1138, 1961B.
12.Chen, Q., Zeng, W., Gu, S., Yang, G., Zhou, H., Yin, Z., “Determination of the standard molar enthalpy of formation of α-AlOOH (diaspore)”, J. Chem. Thermodyn., 27, 443-446, 1995.
13.Doraiswamy, L. K., Sharma, M. M., "Heterogeneous reactions", Chem. Eng. Sci., 2, 232-257, 1984.
14.French, R. H., “Electronic structure and properties of AIN”, J. Am. Ceram. Soc., 73(3), 477-489, 1990.
15.Fukumoto, S., Hookabe, T., Tsubakino, H., “ Hydrolysis behavior of aluminum nitride in various solutions”, J. Mater. Sci., 35, 2743-2748, 2000.
16.Gai, W. Z., Liu, W. H., Deng, Z. Y., Zhou, J. G., “Reaction of Al powder with water for hydrogen generation under ambient condition”, Int. J. Hydrogen. Energ., 37, 13132-13140, 2012.
17.Gil, B., “Structural Defects and materials performance of the III-V nitride”, Semicond. Sci. Technol., 6, 124-127, 1998.
18.Graziani, T., Bellosi, A., “Degradation of dense AIN materials in aqueous environments”, Mater. Chem. Phys., 35, 43-48, 1993.
19.Guanghui, L., Shiyong, D., “Fabrication of aluminiferous nanofibers by simple hydrolysis of nano-sized Al/AlN powder”, Adv. Mater. Res., 10, 790-794, 2012.
20.Highfield, J. G., Bowen, P., "Diffuse-reflectance fourier transform infrared spectroscopic studies of the stability of aluminum nitride powder in an aqueous environment", Anal. Chem., 61, 2399-2402, 1989.
21.Hiroi, S., Hosokai, S., Akiyama, T., “Ultrasonic irradiation on hydrolysis of magnesium hydride to enhance hydrogen generation”, Int. J. Hydrogen. Energ., 36, 1442-1447, 1989.
22.Heslop, R., Jones, K., Inorganic chemistry: a guide to advanced study, Elsevier. Scientific. Pub. Co., 1994
23.Kocjan, A., Krnel, K., Kosma, T., “The influence of temperature and time on the AlN powder hydrolysis reaction products”, J. Eur. Ceram. Soc., 28, 1003-1008, 2008.
24.Kocjan, A., Dakskobler, A., Krnel, K., Kosmac, T., “The course of the hydrolysis and the reaction kinetics of AlN powder in diluted aqueous suspensions”, J. Eur. Ceram. Soc., 31, 815-823, 2011.
25.Kocjan, A., Dakskobler, A., Kosmac,T., “Evolution of aluminum hydroxides in diluted aqueous aluminum nitride powder suspensions”, Cryst. Growth. Des., 12, 1299-1307, 2012.
26.Krnel, K., Drazic, G., Kosmac, T., “Degradation of AlN powder in aqueous environments”, J. Mater. Res., 19, 1157-1163, 2004
27.Krnel, K., Kosmac, T., “Reactivity of AlN powder in an aqueous environment”, Eng. Mater., 264-268, 29-32, 2004.
28.Krnel, K., Kosmac, T., “Aqueous processing of AlN powder”, Mater. Sci. Forum., 554, 189-196,2007
29.Kuo, P. K., Aumer, G. W., and Wu, Z. L., “Microstructure and Therm Conductivity of Epitaxial AIN Thin Films”, Thin solid Flims, 253, 223-227, 1994
30.Li, J., Nakamura, N., Shirai, T., Matsumaru, K., Ishizaki, C., Ishizaki, K., “Mechanism and kinetics of aluminum nitride powder degradation in Moist Air”, J. Am. Ceram. Soc., 89, 937-943, 2006.
31.Mason, T. J., Sonochemistry the use of ultrasound in chemistry, Royal Society of Chemistry, 1990.
32.Nakashima, S., Sturgeon, R. E., Willie, S. N., and Berman, S. S, “Acid digestion of marine samples for trace element analysis using microwave heating”, Analyst, 113, 159-163, 1988.
33.Peryea, F. J., Kittrick, J. A., “Relative solubility of corundum, gibbsite, boehmite, and diaspore at standard state conditions”, Clays. Clay. Miner., 36 (5), 391-396, 1988.
34.Reetz, T., Monch, B., Saupe, M., “Aluminum nitride hydrolysis”, Ber. DKG., 68, 464-475, 1992.
35.Soler, L., Candela, A. M., Macanas, J., Munoz, M., Casado, J., “In situ generation of hydrogen from water by aluminium corrosion in solutions of sodium aluminate”, J. Power Sources, 192, 21-26, 2009.
36.Venkatesh, M.S., Raghavan, G.S.V., “An overview of microwave processing and dielectric properties of agri-food materials”, J. Fluid Mech., 169, 535-564, 2004.
37.Walkiewicz, J. W., Kazonich, G., and McGill. S. L., “Microwave heating characteristics of minerals and compounds”, AIME. Transactions, 284, 39-42, 1998.
38.Yoldas, B. E., “Hydrolysis of aluminium alkoxides and bayerite conversion”, J. Appl. Chem. Biotechnol., 23, 803-809, 1973.
39.Zhang, Y., "Effect of surfactant on depressing the hydrolysis process for aluminum nitride powder", Mater. Res. Bull., 37, 2393-2400, 2002.
40.Zhang, Y., Binner, J., “Hydrolysis process of a surface treated aluminum nitride powder - A FTIR study”, Bioresource. Technol., 101, 9792-9796, 2002.
41.Zhang, Y., Binner, J., “Characterisation of a surface treated AlN powder in aqueous media”, Int. J. Inorg. Mater., 1, 219-227, 1999.
42.李小雷,氮化鋁陶瓷,冶金工業出版社,2010。
43.李宜森、陳昇,微波原理與應用,國家出版社,2014。
44.羅方若、錢力、劉明臣,"微波機制的應用",理化檢驗-化學分冊,第40卷第一期,2004。
45.李建利,微波誘導奈米零價鐵、銅及Cu/Fe雙金屬顆粒降解水中氯苯之反應機制,國立高雄第一科技大學,工程科技研究所,博士論文,2008。
46.呂欣瑩,以浸鍍-電漿氮改質法製備超親水二氧化矽-二氧化鈦透明薄膜之研究,國立高雄應用科技大學,化學工程與材料工程系,碩士論文,2013。
47.黃硯毓,超音波輔助加速氮化鋁水解之研究,國立高雄應用科技大學,化學工程與材料工程系,碩士論文,2011。
48.謝承佑,氮化鋁粉體水解性質探討與抗濕技術開發,國立成功大學,化學工程研究系,碩士論文,2002。
49.徐林煒,"氮化鋁粉末的水解行為研究",南昌大學,材料科學與工程學院,應用科技研討會,2009。
50.徐林煒,AlN粉末的水解行為及抗水解性能研究,南昌大學,材料科學與工程學院,碩士論文,2010。
51.徐林煒、唐建成、周葉峰、劉盟、胡黨平,"磷酸酸洗對氮化鋁粉末抗水解性能的影響",南昌大學,材料科學與工程學院,應用科技研討會,2010。
52.張青山、郭炳南、陶寶萍,"微波幅射促进腈類化合物水解",火炸藥學報,第26卷第三期,2003。
53.張先如、徐政,"微波在有機合成化學中的應用及發展",合成化學,第一期,1-5, 2005。
54.張可翰,以氧化鈣移除氟氣的反應動力研究,國立高雄應用科技大學,化學工程與材料工程系,碩士論文,2008。
55.朱志鴻,添加助燒劑及特殊燒結製程對製備氮化鋁導熱陶瓷之燒結研究,國立成功大學,資源工程學系,碩士論文,2006。
56.蘇必正、蘇昌業,"高導熱材料氮化鋁之合成與應用",化工月刊,2008。
57.顏豐明,"高熱傳導率氮化鋁基板材料之簡介",材料與社會,73, 45-46, 1993。
58.楊宗霖,氫氧化鈣乾式移除氟氣之實驗與動力模式,國立高雄應用科技大學,化學工程與材料工程系,碩士論文,2010。
59.吳育豪,燃燒法合成氮化鋁粉體之新製程開發,國立成功大學,化學工程學系,碩士論文,2004。
60.汪建民,陶瓷技術手冊,經濟部技術部、中華民國粉末冶學會、中華民國產業發展協進會出版,1994。

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊