跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 06:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林冠宇
研究生(外文):Guan-Yu Lin
論文名稱:超寬鎖頻範圍及操作頻帶注入鎖定除頻器研製
論文名稱(外文):Design of Ultra Wide Locking Range and Operation Range Injection-Locked Frequency Divider
指導教授:張勝良
指導教授(外文):Sheng-Lyang Jang
口試委員:張勝良
口試委員(外文):Sheng-Lyang Jang
口試日期:2015-07-15
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:116
中文關鍵詞:注入鎖定除頻器壓控振盪器
外文關鍵詞:injection-locked frequency dividervoltage-controlled oscillator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在一個收發機系統裡,PLL是一個重要且不可缺少的一個部分,PLL包含了頻率相位偵測器、充電幫浦、迴路濾波器、壓控振盪器、除頻器,除了追求效能外,低功耗,低相位雜訊,較寬的工作頻率範圍都是我們所注重的目標,其中又以壓控振盪器和除頻器特性最重要。
首先,第一部分我們提出一個超寬頻注入鎖定除3除頻器,此除頻器使用台積電0.18微米製程,晶片面積為0.803 × 0.851 mm2。此篇論文使用了雙注入的MOSFETs及共振腔,設計出一個好的被動共振腔是獲得超寬頻除頻範圍的關鍵。工作電壓操作在0.76伏特,整體功耗為7.77 mW,在注入強度為0 dBm時,除頻範圍可從8.4 GHz~13.5 GHz,百分比為46.58 %。
接著,我們呈現一個利用單端注入的注入鎖定除3除頻器。其使用台積電0.18微米製程,晶片面積為0.803 × 0.851 mm2。此篇論文使用了兩種觀念,一是線性混波器,另一個則是利用了一組可以有效降低品質因素(Q-factor)的LC共振腔,來達到超寬操作範圍與除頻範圍。工作電壓操作在0.76伏特,整體功耗為7.97 mW,在注入強度為0 dBm時,除頻範圍從10.28GHz~13.25GHz,百分比為25.25 %。操作範圍為8.08~13.25 GHz,百分比為48.5 %
最後,我們呈現一個注入鎖定除2除頻器,使用的是一個雙頻RLC共振腔。其使用台積電0.18微米製程,晶片面積為0.785×0.883 mm2。此篇論文使用了一組LC震盪器並同時讓LC震盪器並聯電路下方的交叉耦合以補償LC震盪器的損耗。於兩個可變電容連接處加上電阻,使其增加電路的除頻範圍。工作電壓操作在0.8伏特,整體功耗5.57 mW,在注入強度為0 dBm時,除頻範圍從2.2 GHz~9.1 GHz,百分比為122.12 %。
In a RF transceiver system, PLL is a part not only important but also indispensable, PLL include Phase Frequency Detector (PFD),Charge Pump (CP),Loop Filter (LF),Voltage Controlled Oscillator (VCO), and Frequency Divider (FD),low-power, low phase noise, wide operating frequency range are what we focus on , and they are the most important performance of the VCO and Divider.
First, we proposes an ultra-wide-locking-range CMOS divide-by-3 injection-locked frequency dividers (ILFD). The fabricated 0.18 μm CMOS ÷3 ILFD uses cross-coupled switching transistors, direct-injection dual-injection MOSFETs and a resonator. Proper design of passive resonator is the key to obtain an ultra large locking range. The consumed power of the ÷3 ILFD core is 7.77 mW at the dc drain-source voltage of 0.76 V. The measured single-band locking range percentage is 46.58% at the injection power of 0 dBm.
Secondly, a wide-locking-range CMOS divide-by-3 injection-locked frequency dividers (ILFD) using single-ended injection signal is presented. The fabricated 0.18 μm CMOS ÷3 ILFD uses cross-coupled switching transistors, single injection MOSFET and a dual-resonance RLC resonator. We use both the concept of linear mixer and Q-factor degraded LC resonator. These two concepts are used to enhance the operation range and locking range. At an external injected signal power Pinj = 0 dBm, the measured locking range is 2.97 GHz (25.25%) from 10.28 to 13.25 GHz and the operation range is 5.17 GHz (48.5%) from 8.08 to 13.25 GHz. The die area is 0.803 × 0.851 mm2. The consumed power of the ÷3 ILFD core is 7.97 mW
Finally, a wide locking range divide-by-2 RLC injection-locked frequency divider (ILFD) is designed and implemented in the TSMC 0.18 μm 1P6M CMOS process. The ILFD is based on a cross-coupled oscillator with two direct injection MOSFETs in series and a dual-resonance RLC resonator. The resonator is used to enhance the locking range. At the drain-source bias of 0.8 V ranging and at the incident power of 0 dBm ,the locking range of the divide-by-2 ILFD is 6.9 GHz, from the incident frequency 2.2 to 9.1 GHz and the locking range percentage is 122.12 %. The power consumption of ILFD core is 5.57 mW. The die area is 0.785 × 0.883 mm2.
中文摘要 I
Abstract III
Table of Contents VI
List of Figures VIII
List of Tables XII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 5
Chapter 2 Overview of Oscillators 7
2.1 Introduction 7
2.2 Basic Theory of Oscillators 9
2.2.1 One-Port (Negative Resistance) View 10
2.2.2 Two-Port (Feedback) View 14
2.3 Classification of Oscillator 16
2.3.1 LC-Tank Oscillators 16
2.3.2 Resonatorless Oscillators 19
2.4 Parallel RLC Tank 21
2.4.1 Design of Inductor 22
2.4.2 Inductor’s Quality Factor 26
2.4.3 Design of Transformer 31
2.4.4 Design of Resistors 39
2.4.5 Design of Capacitors 40
2.4.6 Design of MOSFET Varactors 42
2.5 Design Concepts of VCOs 47
2.5.1 VCO Characteristic Parameters 48
2.5.2 Phase Noise in Oscillators 50
2.5.3 Quality Factor 58
2.5.4 Pulling in Oscillators 61
2.5.5 Tail Current Source 64
Chapter 3 Overviews of Injection Locked Frequency Divider 66
3.1 Introduction 66
3.2 Operation Principle 67
3.1.1 Locking Range 68
3.1.2 Example For A Single Injection Of ILFD 71
Chapter 4 A Wide-Locking Range and Operation Range Divide-by-3
Injection-Locked Frequency Divider With Quality-Factor Degraded LC Resonator 73
4.1 Introduction 73
4.2 Circuit Design 75
4.3 Measurement Result 81
Chapter 5 Wide-Locking Range Single-Injection Divide-by-3 Injection-Locked Frequency Divider 88
5.1 Introduction 88
5.2 Circuit Design 89
5.3 Measurement Result 91
Chapter 6 Divide-by-2 Injection-Locked Frequency Divider Using Dual-Resonance RLC Resonator 96
6.1 Introduction 96
6.2 Circuit Design 98
6.3 Measurement Result 104
Chapter 7 Conclusion 109
References 111
[1]N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 810-820, May 1992.
[2]S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
[3]J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003.
[4]T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
[5]H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
[6]J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
[7]P. Yue, C. Ryu, JackLau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
[8]J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
[9]E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661-664, June 1989.
[10]P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[11]P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
[12]J.J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000.
[13]T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.
[14]D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
[15]A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[16]A. Hajimiri and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999.
[17]H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[18]W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25μm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002
[19]H. Wu, “Signal generation and processing in high-frequency/high-speed siliconbased integrated circuits,” PhD thesis, California Institute of Technology,2003.A. P. Wel, S. L. J. Gierkink, R. C. Frye, V. Boccuzzi, B. Nauta, “A robust 43-GHz VCO in CMOS for OC-768 SONET applications,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1159–1163, July. 2004.
[20]R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[21]H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp.27–29.
[22]Jeong J., Kwon Y.: “A fully integrated V-band PLL MMIC using 0.15um GaAs pHEMT technology,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp.1042-1050, May. 2006.
[23]Jang S.-L., Liu C.-C., and Huang J.-F.: ” Divide-by-3 injection-locked frequency divider using two linear mixers,” IEICE Trans. on Electron., Vol.E93-C,No.1,pp.136-139, Jan. 2010.
[24]Jang S.-L., and Chang C.-W.: ” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, April, 2010.
[25]Jang S.-L., Chen Y.-S., Chang C.-W, and Liu C.-C.: ” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.390-392, July, 2010.
[26]Chang C.-W., Jang S.-L., and Hsieh C.-W.,” Wide-locking range ÷3 active-inductor injection-locked frequency divider using the push-push oscillator,” Microw. Opt. Technol. Lett., pp.2771-2773, Dec, 2011.
[27]Jang S.-L. and Lin C.-Y,” A wide-locking range Class-C injection-locked frequency divider,” Electron. Lett., vol. 50, 23, pp.1710-1712, 2014.
[28]Jang S.-L., Lin C.-Y., and Juang M.-H., ” Enhanced locking range technique for a divide-by-3 differential injection-locked Frequency divider,” Electron. Lett., vol. 51, 19, pp. 456 – 458, 2015.
[29]Wu J.-W, Chen C.-C., Kao H.-W., Chen J.-K., and Tu M-C., ” Divide-by-three injection-locked frequency divider combined with divide-by-two locking,” IEEE Microw. Wireless Compon. Lett., pp. 590-592, Nov., 2013.
[30]Chen Y.-T., Li M.-W., Kuo H.-C., Huang T.-H., and Chuang H.-R. : “Low-voltage K-band divide-by-3 injection-locked frequency divider with floating-source differential injector,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 160–67, 2012.
[31]P.-K. Tsai, C.-C. Liu, T.-H. Huang, "Wideband injection-locked divide-by-3 frequency divider design with regenerative second-harmonic feedback technique," 2012, EuMIC, pp. 293 - 296
[32]B. Razavi, "A study of injection locking and pulling in oscillators," IEEE J. Solid-State Circuits, 39(9):1415-1424, Sept. 2004.
[33]Jang S.-L., Wu Z.-H., Hsue C.-W. and Teng H.-F.,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, Oct. 2013.
[34]Jang S.-L. and Chuang, C.-Y.: ” Wide-locking range ÷3 series-tuned injection-locked frequency divider,” Analog Integr Circ Sig Process., Vol. 76, Issue 1, pp. 111-116, 2013.
[35]Jang S.-L. and Hsieh J.-H.: ” A wide-locking range ÷3 injection-locked frequency divider using concurrent injection mechanisms,” Analog Integr Circ Sig Process., Vol. 77, pp 593-598 2013.
[36]X. P. Yu, van Roermund, A., X.-L. Yan, Cheema, H.M., Mahmoudi, R., " A 3 mW 54.6 GHz divide-by-3 injection locked frequency divider with resistive harmonic enhancement," IEEE Microw. Wireless Compon. Lett.vol.19, no.9, pp.575,577, Sept. 2009.
[37]J. Jeong and Y Kwon.: “A fully integrated V-band PLL MMIC using 0.15um GaAs pHEMT technology,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp.1042-1050, May. 2006.
[38]S.-L. Jang, W. Yeh, C.-F. Lee, and M.-H. Juang” A low power CMOS divide-by-3 LC-tank injection locked frequency divider ,” Microw. Opt. Technol. Lett.,Vol. 50, no. 1, pp.259-262, Jan. 2008.
[39]S.-L. Jang, R.-K. Yang, C.-W. Chang and M.-H. Juang, ” Multi-modulus LC injection-locked frequency dividers using single-ended injection,” IEEE Microw. Wireless Compon. Lett., pp. 311-313, May, 2009.
[40]S.-L. Jang, C.-F. Lee and W.H. Yeh, ” A divide-by-3 injection locked frequency divider with single-ended input,” IEEE Microw. Wireless Compon. Lett., pp. 142-144, Feb. 2008.
[41]S.-L. Jang, J.-C. Luo, C.-W. Chang, C.-F. Lee and J.-F. Huang, ” LC-tank Colpitts injection-locked frequency divider with even and odd modulo,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 113-115, Feb. 2009.
[42]H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers,Feb. 2006, pp.27–29.
[43]S.-L. Jang and C.-W. Chang,” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, April, 2010.
[44]X. Yi, C. C. Boon, M. A. Do, K. S. Yeo, and W. M. Lim, “Design of ring-oscillator-based injection-locked frequency dividers with single-phase inputs”, IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, 559 - 561, Oct. 2011.
[45]M. Motoyoshi and M. Fujishima, "43μW 6GHz CMOS divide-by-3 frequency divider based on three-phase harmonic injection locking," in IEEE Asian Solid-State Circuits Conf., pp.183-186, Nov. 2006
[46]S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, ” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.390-392, July, 2010.
[47]Wu J.-W, C.-C. Chen, H.-W. Kao, J.-K. Chen, and M.-C. Tu,”Divide-by-three injection-locked frequency divider combined with divide-by-two locking,” IEEE Microw. Wireless Compon. Lett., pp. 590-592, Nov.,2013.
[48]S.-L. Jang and C.-Y. Lin,” A wide-locking range Class-C injection-locked frequency divider,” Electron. Lett., vol. 50, 23, pp.1710-1712, 2014.
[49]S.-L. Jang and C.-Y. Chuang, ” Wide-locking range ÷3 series-tuned injection-locked frequency divider,” Analog Integr Circ Sig Process., Vol. 76, Issue 1, pp. 111-116, 2013.
[50]S.-L. Jang and J.-H. Hsieh,” A wide-locking range ÷3 injection-locked frequency divider using concurrent injection mechanisms,” Analog Integr Circ Sig Process., Vol. 77, pp 593-598 2013.
[51]S.-L. Jang, C.-Y. Lin, and M.-H. Juang, ”Enhanced locking range technique for a divide-by-3 differential injection-locked Frequency divider,” Electron. Lett., vol. 51, 19, pp. 456 – 458, 2015.
[52]M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits,vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
[53]K. Yamamoto and M. Fujishima, “55GHz CMOS frequency dividerwith 3.2GHz locking range” ESSCC, pp. 135-138, Aug., 2004.
[54]H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35 μm CMOS frequencydivider with shunt-peaking locking-range enhancement,” in IEEE Int.Solid-State Circuits Conf., pp. 412-413, Feb. 2001.
[55]Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
[56]A. Buonomoand A. Lo Schiavo, "Analytical approach to the study of injection-locked frequency dividers", IEEE Trans. Circuits and Systems -I: Regular Papers, vol. 60, n. 1, pp. 51-62, Jan. 2013
[57]F. Yuan, Y. Zhou, "Frequency-domain study of lock range of non-harmonic oscillators with multiple multi-tone injections" IEEE Trans. on Circuits and Systems - I: Regular Papers, vol. 60, n. 6, pp.1395-1406, June 2013
[58]A. Buonomoand A. Lo Schiavo, "Nonlinear dynamics of divide-by-two injection-locked frequency dividers in locked operation mode", Int. J. CircTheor App, vol.42, n.8, pp. 794-807, 2014
[59]S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013.
[60]S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang," Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195,March 2015.
[61]H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999.
[62]J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2003, pp.259–262.
[63]S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang,” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
[64]S. Lee, S. Jang, and C. Nguyen, “Low-power-consumption wide-locking-range dual-injection-locked 1/2 divider through simultaneous optimization of VCO loaded Q and current,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3161–3168, Oct. 2012.
[65]N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
[66]S.-L. Jang, F.-B. Lin,and J.-F. Huang, ” Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int. J. Circ Theor App, 12, Jan. 2015.
[67]S.-L. Jang and T.-C. Fu, " Effects of hot-carrier stress on the RF performance of a 0.18μm MOS divide-by-4 LC injection-locked frequency divider," Fluct. Noise Lett. 13, No. 2, 1450009 (2014).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top