|
[1]N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 810-820, May 1992. [2]S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998. [3]J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003. [4]T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998. [5]H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974. [6]J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997. [7]P. Yue, C. Ryu, JackLau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996. [8]J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000. [9]E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661-664, June 1989. [10]P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000. [11]P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005. [12]J.J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000. [13]T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000. [14]D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966. [15]A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998. [16]A. Hajimiri and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999. [17]H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999. [18]W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25μm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002 [19]H. Wu, “Signal generation and processing in high-frequency/high-speed siliconbased integrated circuits,” PhD thesis, California Institute of Technology,2003.A. P. Wel, S. L. J. Gierkink, R. C. Frye, V. Boccuzzi, B. Nauta, “A robust 43-GHz VCO in CMOS for OC-768 SONET applications,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1159–1163, July. 2004. [20]R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973. [21]H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp.27–29. [22]Jeong J., Kwon Y.: “A fully integrated V-band PLL MMIC using 0.15um GaAs pHEMT technology,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp.1042-1050, May. 2006. [23]Jang S.-L., Liu C.-C., and Huang J.-F.: ” Divide-by-3 injection-locked frequency divider using two linear mixers,” IEICE Trans. on Electron., Vol.E93-C,No.1,pp.136-139, Jan. 2010. [24]Jang S.-L., and Chang C.-W.: ” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, April, 2010. [25]Jang S.-L., Chen Y.-S., Chang C.-W, and Liu C.-C.: ” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.390-392, July, 2010. [26]Chang C.-W., Jang S.-L., and Hsieh C.-W.,” Wide-locking range ÷3 active-inductor injection-locked frequency divider using the push-push oscillator,” Microw. Opt. Technol. Lett., pp.2771-2773, Dec, 2011. [27]Jang S.-L. and Lin C.-Y,” A wide-locking range Class-C injection-locked frequency divider,” Electron. Lett., vol. 50, 23, pp.1710-1712, 2014. [28]Jang S.-L., Lin C.-Y., and Juang M.-H., ” Enhanced locking range technique for a divide-by-3 differential injection-locked Frequency divider,” Electron. Lett., vol. 51, 19, pp. 456 – 458, 2015. [29]Wu J.-W, Chen C.-C., Kao H.-W., Chen J.-K., and Tu M-C., ” Divide-by-three injection-locked frequency divider combined with divide-by-two locking,” IEEE Microw. Wireless Compon. Lett., pp. 590-592, Nov., 2013. [30]Chen Y.-T., Li M.-W., Kuo H.-C., Huang T.-H., and Chuang H.-R. : “Low-voltage K-band divide-by-3 injection-locked frequency divider with floating-source differential injector,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 160–67, 2012. [31]P.-K. Tsai, C.-C. Liu, T.-H. Huang, "Wideband injection-locked divide-by-3 frequency divider design with regenerative second-harmonic feedback technique," 2012, EuMIC, pp. 293 - 296 [32]B. Razavi, "A study of injection locking and pulling in oscillators," IEEE J. Solid-State Circuits, 39(9):1415-1424, Sept. 2004. [33]Jang S.-L., Wu Z.-H., Hsue C.-W. and Teng H.-F.,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, Oct. 2013. [34]Jang S.-L. and Chuang, C.-Y.: ” Wide-locking range ÷3 series-tuned injection-locked frequency divider,” Analog Integr Circ Sig Process., Vol. 76, Issue 1, pp. 111-116, 2013. [35]Jang S.-L. and Hsieh J.-H.: ” A wide-locking range ÷3 injection-locked frequency divider using concurrent injection mechanisms,” Analog Integr Circ Sig Process., Vol. 77, pp 593-598 2013. [36]X. P. Yu, van Roermund, A., X.-L. Yan, Cheema, H.M., Mahmoudi, R., " A 3 mW 54.6 GHz divide-by-3 injection locked frequency divider with resistive harmonic enhancement," IEEE Microw. Wireless Compon. Lett.vol.19, no.9, pp.575,577, Sept. 2009. [37]J. Jeong and Y Kwon.: “A fully integrated V-band PLL MMIC using 0.15um GaAs pHEMT technology,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp.1042-1050, May. 2006. [38]S.-L. Jang, W. Yeh, C.-F. Lee, and M.-H. Juang” A low power CMOS divide-by-3 LC-tank injection locked frequency divider ,” Microw. Opt. Technol. Lett.,Vol. 50, no. 1, pp.259-262, Jan. 2008. [39]S.-L. Jang, R.-K. Yang, C.-W. Chang and M.-H. Juang, ” Multi-modulus LC injection-locked frequency dividers using single-ended injection,” IEEE Microw. Wireless Compon. Lett., pp. 311-313, May, 2009. [40]S.-L. Jang, C.-F. Lee and W.H. Yeh, ” A divide-by-3 injection locked frequency divider with single-ended input,” IEEE Microw. Wireless Compon. Lett., pp. 142-144, Feb. 2008. [41]S.-L. Jang, J.-C. Luo, C.-W. Chang, C.-F. Lee and J.-F. Huang, ” LC-tank Colpitts injection-locked frequency divider with even and odd modulo,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 113-115, Feb. 2009. [42]H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers,Feb. 2006, pp.27–29. [43]S.-L. Jang and C.-W. Chang,” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, April, 2010. [44]X. Yi, C. C. Boon, M. A. Do, K. S. Yeo, and W. M. Lim, “Design of ring-oscillator-based injection-locked frequency dividers with single-phase inputs”, IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, 559 - 561, Oct. 2011. [45]M. Motoyoshi and M. Fujishima, "43μW 6GHz CMOS divide-by-3 frequency divider based on three-phase harmonic injection locking," in IEEE Asian Solid-State Circuits Conf., pp.183-186, Nov. 2006 [46]S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, ” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.390-392, July, 2010. [47]Wu J.-W, C.-C. Chen, H.-W. Kao, J.-K. Chen, and M.-C. Tu,”Divide-by-three injection-locked frequency divider combined with divide-by-two locking,” IEEE Microw. Wireless Compon. Lett., pp. 590-592, Nov.,2013. [48]S.-L. Jang and C.-Y. Lin,” A wide-locking range Class-C injection-locked frequency divider,” Electron. Lett., vol. 50, 23, pp.1710-1712, 2014. [49]S.-L. Jang and C.-Y. Chuang, ” Wide-locking range ÷3 series-tuned injection-locked frequency divider,” Analog Integr Circ Sig Process., Vol. 76, Issue 1, pp. 111-116, 2013. [50]S.-L. Jang and J.-H. Hsieh,” A wide-locking range ÷3 injection-locked frequency divider using concurrent injection mechanisms,” Analog Integr Circ Sig Process., Vol. 77, pp 593-598 2013. [51]S.-L. Jang, C.-Y. Lin, and M.-H. Juang, ”Enhanced locking range technique for a divide-by-3 differential injection-locked Frequency divider,” Electron. Lett., vol. 51, 19, pp. 456 – 458, 2015. [52]M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits,vol. 39, no. 7, pp. 1170–1174, Jul. 2004. [53]K. Yamamoto and M. Fujishima, “55GHz CMOS frequency dividerwith 3.2GHz locking range” ESSCC, pp. 135-138, Aug., 2004. [54]H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35 μm CMOS frequencydivider with shunt-peaking locking-range enhancement,” in IEEE Int.Solid-State Circuits Conf., pp. 412-413, Feb. 2001. [55]Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006. [56]A. Buonomoand A. Lo Schiavo, "Analytical approach to the study of injection-locked frequency dividers", IEEE Trans. Circuits and Systems -I: Regular Papers, vol. 60, n. 1, pp. 51-62, Jan. 2013 [57]F. Yuan, Y. Zhou, "Frequency-domain study of lock range of non-harmonic oscillators with multiple multi-tone injections" IEEE Trans. on Circuits and Systems - I: Regular Papers, vol. 60, n. 6, pp.1395-1406, June 2013 [58]A. Buonomoand A. Lo Schiavo, "Nonlinear dynamics of divide-by-two injection-locked frequency dividers in locked operation mode", Int. J. CircTheor App, vol.42, n.8, pp. 794-807, 2014 [59]S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013. [60]S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang," Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195,March 2015. [61]H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999. [62]J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2003, pp.259–262. [63]S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang,” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008. [64]S. Lee, S. Jang, and C. Nguyen, “Low-power-consumption wide-locking-range dual-injection-locked 1/2 divider through simultaneous optimization of VCO loaded Q and current,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3161–3168, Oct. 2012. [65]N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014. [66]S.-L. Jang, F.-B. Lin,and J.-F. Huang, ” Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int. J. Circ Theor App, 12, Jan. 2015. [67]S.-L. Jang and T.-C. Fu, " Effects of hot-carrier stress on the RF performance of a 0.18μm MOS divide-by-4 LC injection-locked frequency divider," Fluct. Noise Lett. 13, No. 2, 1450009 (2014).
|