|
[1] T. M. Apostol, Mathematical Analysis, Second Edition, Addision-Wesley Publishing Company, 1975. [2] S. S Dragomir and S. Wang, A new inequality of Ostrowski’s type in L_1 norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math., 28(1997) , 239-244. [3] S.S Dragomir and S Wang, Applications of Ostrowski''s inequality to the estimation of error bounds for some special means and for some numerical quadrature rules, Appl. Math. Lett., 11(1) (1998) , 105-109 [4]. S. S. Dragomir and S. Wang, An new inequality of Ostrowski.s type in L_p [a,b]- norm, Indian J. Math. 40(3) (1998), 299-304. [5] S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation, Bull. Australian Math. Soc., 60(1999),495-508 [6] S. S. Dragomir, Ostrowski’s inequality for monotonous mappings and applications, J. KSIAM 3 (1) (1999), 127-135. [7] S. S. Dragomir, The Ostrowski’s integral inequality for Lip-schitzian mappings and applications, Comput. Math. Appl., 38 (1999), 33-37. [8] S. S. Dragomir, A New generalization of Ostrowski’s integral inequality for mappings whose derivatives are bounded and applications in numberical integration and for special means, Appl.Math. Lett., 13(2000) 19-25. [9] S. S. Dragomir, P. Cerone and J. Roumeliotis, A new generalization of Ostrowski.s integral inequality for mappings whode derivatives are bounded and applications in numerical integration and for special means, Appl. Math. Lett., 13(1) (2000),19-25. [10] S. S. Dragomir, On the Ostrowski.s integral inequality for mappings with bounded variation and applications, Math. Inequal.Apple., 4(1) (2001), 59-66. [11] S. S. Dragomir, A generalization of Ostrowski integral inequality for mappings whose derivatives belong to L_p [a,b] and applications in numerical integration, J. Math. Anal. Appl., 255(2001),605-626. [12] S. S. Dragomir, A generalization of Ostrowski integral inequality for mappings whose derivatives belong to L_1 [a,b] and applications in numerical integration, J. Comput. Anal. Appl.,3(4)(2001), 343-360. [13] S. S. Dragomir, A generalization of Ostrowski integral inequality for mappings whose derivatives belong to L_∞ [a,b] and applications in numerical integration, J. KSIAM, 5(2)(2001), 117-136. [14] D. S. Mitrinovi´c, J. E. Peµcari´c and A. M. Fink, Inequalitiesinvolving functions and their integrals and derivatives ,Kluwer Academic Publishers( Dordrecht), 1994. [15] A. Ostrowski, üeber die Absolutabweichung einer differenzierbaren funktion von ihren integralmittelwert, Comment. Math.Helv. 10 (1938), 226-227 (German). [16] J. Pečcarić and A. Vukelić, Milovanović-Pečarić-Fink , Inequality for difference of two integral means, Taiwanese J. Math.,10(4) (2006), 933-947. [17] Kuei-Lin Tseng, Shiow-Ru Hwang, S.S. Dragomir, Generalizations of weighted Ostrowski type inequalities for mappings of bounded variation and their applications, Comput. Math.Appl., 55(8)(2008), 1785-1793. [18] Kuei-Lin Tseng, Improvements of some inequalites of Ostrowskitype and their applications, Taiwanese J. Math., 12(9)(2008),2427-2441. [19] Kuei-Lin Tseng, Shiow-Ru Hwang, Gou-Sheng Yang, Yi-Ming Chou, Improvements of the ostrowski integral inequality for mappings of bounded variation I, Appl. Math. Comp., 217(8)(2010)2348-2355 [20] Kuei-Lin Tseng, Shiow-Ru Hwang, Gou-Sheng Yang, Yi-Ming Chou, Weighted Ostrowski integral inequality for mappings of bounded variation, Taiwanese J. Math., 15(2)(2011),573-585.
|