|
[1] T. Yang and K. B. Crozier, "Dispersion and extinction of surface plasmons in an array of gold nanoparticle chains: influence of the air/glass interface," Optics express, vol. 16, pp. 8570-8580, 2008. [2] Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, "Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays," Applied Physics Letters, vol. 93, p. 181108, 2008. [3] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, 2003. [4] J. Zhang, L. Zhang, and W. Xu, "Surface plasmon polaritons: physics and applications," Journal of Physics D: Applied Physics, vol. 45, p. 113001, 2012. [5] S. A. Maier, Plasmonics: fundamentals and applications: Springer Science &; Business Media, 2007. [6] H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. Yang, "Nanoplasmonics: classical down to the nanometer scale," Nano letters, vol. 12, pp. 1683-1689, 2012. [7] P. Biagioni, J.-S. Huang, and B. Hecht, "Nanoantennas for visible and infrared radiation," Reports on Progress in Physics, vol. 75, p. 024402, 2012. [8] Z.-Y. Yang and K.-P. Chen, "Effective absorption enhancement in dielectric thin-films with embedded paired-strips gold nanoantennas," Optics Express, vol. 22, pp. 12737-12749, 2014. [9] R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, et al., "Near-field excitation of nanoantenna resonance," Optics Express, vol. 15, pp. 13682-13688, 2007. [10] M. Gu, P. Bai, and E.-P. Li, "Enhancing the reception of propagating surface plasmons using a nanoantenna," Photonics Technology Letters, IEEE, vol. 22, pp. 245-247, 2010. [11] J. Li, D. Fattal, and Z. Li, "Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy," Applied Physics Letters, vol. 94, p. 263114, 2009. [12] V. Rivera, E. Marega Jr, and F. Ferri, Localized Surface Plasmon Resonances: Noble Metal Nanoparticle Interaction with Rare-Earth Ions: INTECH Open Access Publisher, 2012. [13] N. Engheta, "From RF Circuits to Optical Nanocircuits," Microwave Magazine, IEEE, vol. 13, pp. 100-113, 2012. [14] N. Engheta, "Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials," Science, vol. 317, pp. 1698-1702, 2007. [15] E. S. Ünlü, R. U. Tok, and K. Şendur, "Broadband plasmonic nanoantenna with an adjustable spectral response," Optics express, vol. 19, pp. 1000-1006, 2011. [16] R. U. Tok and K. Şendur, "Engineering the broadband spectrum of close-packed plasmonic honeycomb array surfaces," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 120, pp. 70-80, 2013. [17] R. Penciu, K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. Economou, et al., "Multi-gap individual and coupled split-ring resonator structures," Optics express, vol. 16, pp. 18131-18144, 2008. [18] S. V. Boriskina and L. Dal Negro, "Multiple-wavelength plasmonic nanoantennas," Optics letters, vol. 35, pp. 538-540, 2010. [19] M. Navarro-Cia and S. A. Maier, "Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation," ACS nano, vol. 6, pp. 3537-3544, 2012. [20] K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature communications, vol. 2, p. 517, 2011. [21] R. U. Tok and K. Şendur, "Plasmonic spiderweb nanoantenna surface for broadband hotspot generation," Optics letters, vol. 39, pp. 6977-6980, 2014. [22] B. B. Tsema, Y. B. Tsema, M. R. Shcherbakov, Y.-H. Lin, D.-R. Liu, V. V. Klimov, et al., "Handedness-sensitive emission of surface plasmon polaritons by elliptical nanohole ensembles," Optics express, vol. 20, pp. 10538-10544, 2012. [23] D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, "Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible," Nano Letters, vol. 4, pp. 957-961, 2004. [24] N. A. Cinel, S. Bütün, and E. Özbay, "Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance," Optics express, vol. 20, pp. 2587-2597, 2012. [25] M. D. Wissert, C. Moosmann, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Gold nanoantenna resonance diagnostics via transversal particle plasmon luminescence," Optics Express, vol. 19, pp. 3686-3693, 2011. [26] K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, "Drude relaxation rate in grained gold nanoantennas," Nano letters, vol. 10, pp. 916-922, 2010. [27] M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, et al., "Aluminum plasmonic nanoantennas," Nano letters, vol. 12, pp. 6000-6004, 2012. [28] Y. Sun, B. Edwards, A. Alù, and N. Engheta, "Experimental realization of optical lumped nanocircuits at infrared wavelengths," Nature materials, vol. 11, pp. 208-212, 2012. [29] H. Caglayan, S.-H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, "Near-infrared metatronic nanocircuits by design," Physical review letters, vol. 111, p. 073904, 2013. [30] H. Shen, N. Guillot, J. Rouxel, M. Lamy de la Chapelle, and T. Toury, "Optimized plasmonic nanostructures for improved sensing activities," Optics express, vol. 20, pp. 21278-21290, 2012. [31] H. Fischer and O. J. Martin, "Engineering the optical response of plasmonic nanoantennas," Optics Express, vol. 16, pp. 9144-9154, 2008. [32] G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, "Mapping the plasmon resonances of metallic nanoantennas," Nano letters, vol. 8, pp. 631-636, 2008. [33] D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, et al., "Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes," Optics express, vol. 19, pp. 15047-15061, 2011. [34] Y.-H. Chen, K.-P. Chen, M.-H. Shih, and C.-Y. Chang, "Observation of the high-sensitivity plasmonic dipolar antibonding mode of gold nanoantennas in evanescent waves," Applied Physics Letters, vol. 105, p. 031117, 2014. [35] M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, "Optical antenna enhanced spontaneous emission," Proceedings of the National Academy of Sciences, p. 201423294, 2015. [36] B. Lee, L. Wang, and Z. Zhang, "Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film," Optics Express, vol. 16, pp. 11328-11336, 2008. [37] L. Wang and Z. M. Zhang, "Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays," JOSA B, vol. 27, pp. 2595-2604, 2010. [38] C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, et al., "Magnetic metamaterials at telecommunication and visible frequencies," Physical review letters, vol. 95, p. 203901, 2005. [39] T. Corrigan, P. Kolb, A. Sushkov, H. Drew, D. Schmadel, and R. Phaneuf, "Optical plasmonic resonances in split-ring resonator structures: an improved LC model," Optics express, vol. 16, pp. 19850-19864, 2008. [40] L. Wang and Z. Zhang, "Resonance transmission or absorption in deep gratings explained by magnetic polaritons," Applied Physics Letters, vol. 95, p. 111904, 2009. [41] P. B. Johnson and R.-W. Christy, "Optical constants of the noble metals," Physical Review B, vol. 6, p. 4370, 1972. [42] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, "Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films," Thin Solid Films, vol. 326, pp. 72-77, 1998. [43] I. Wang and Y.-p. Du, "Optical input impedance of nanostrip antennas," Optical Engineering, vol. 51, pp. 054002-1-054002-5, 2012. [44] A. Alù and N. Engheta, "Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas," Physical review letters, vol. 101, p. 043901, 2008. [45] A. Alu and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nature Photonics, vol. 2, pp. 307-310, 2008. [46] N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, et al., "Individual nanoantennas loaded with three-dimensional optical nanocircuits," Nano letters, vol. 13, pp. 142-147, 2012. [47] N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Physical Review Letters, vol. 95, p. 095504, 2005. [48] R. L. Olmon and M. B. Raschke, "Corrigendum: Antenna–load interactions at optical frequencies: impedance matching to quantum systems," Nanotechnology, vol. 24, pp. 229501-229501, 2013. [49] D. Zhu, M. Bosman, and J. K. Yang, "A circuit model for plasmonic resonators," Optics express, vol. 22, pp. 9809-9819, 2014. [50] X. Li, L. Yang, C. Hu, X. Luo, and M. Hong, "Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency," Optics express, vol. 19, pp. 5283-5289, 2011. [51] M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, "Circuit analysis in metal-optics," Photonics and Nanostructures-Fundamentals and Applications, vol. 10, pp. 166-176, 2012. [52] Y. R. Padooru, A. B. Yakovlev, P.-Y. Chen, and A. Alù, "Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays," Journal of Applied Physics, vol. 112, p. 034907, 2012. [53] C.-p. Huang, X.-g. Yin, H. Huang, and Y.-y. Zhu, "Study of plasmon resonance in a gold nanorod with an LC circuit model," Optics express, vol. 17, pp. 6407-6413, 2009. [54] L. Wang and Z. Zhang, "Phonon-mediated magnetic polaritons in the infrared region," Optics express, vol. 19, pp. A126-A135, 2011. [55] H. Shen, P. Bienstman, and B. Maes, "Plasmonic absorption enhancement in organic solar cells with thin active layers," Journal of Applied Physics, vol. 106, p. 073109, 2009.
|