跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/16 18:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇晨瑋
研究生(外文):Su, Chen-Wei
論文名稱:寬頻電漿子奈米天線陣列之設計與製作
論文名稱(外文):Broadband Plasmonic Nanoantennas Arrays with Transverse Dimension Effects
指導教授:陳國平陳國平引用關係
指導教授(外文):Chen, Kuo-Ping
口試委員:陳國平李偉陳玉彬
口試委員(外文):Chen, Kuo-PingLee, WeiChen, Yu-Bin
口試日期:2015-07-14
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電系統研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:69
中文關鍵詞:電漿子奈米天線局域性表面電漿共振超穎材料光電子
外文關鍵詞:PlasmonicNanoantennasLSPRMetamaterialsOptoelectronics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,主要是在研究改變電漿子奈米天線中非偏振方向的橫向尺寸時,會使得電漿共振產生寬頻的響應,並分析當局域表面電漿發生時的遠場穿透頻譜以及近場局域電磁場的分佈。當增加橫向尺寸時,會使得頻譜上的共振波長位置產生明顯的藍移現象,且由於在奈米天線陣列之間發生磁場耦合的抵消效應,使得其電漿共振的頻寬會有上升的趨勢。此外,延伸奈米天線的非偏振方向尺寸時的各種響應與表現,也能藉由外加電磁場所驅動的等效電路模型來進行驗證與分析。其中成對式電漿子光柵的頻寬為成對式棒狀奈米天線2.04倍,以及能提供2.18倍的等效模態面積。
Plasmonic broadband resonance in gold paired-rods nanoantennas and paired-strips gratings is investigated when the nanostructure’s transverse (non-polarization) dimension is changed from paired-rods to paired-strips. Transmittance spectra and localized electromagnetic fields are analyzed when localized surface plasmon resonance occurs. Increasing the transverse dimension blue shifts the resonance wavelength and widens its bandwidth due to cancellation of the magnetic field between nanoantennas. A derived resistor-inductor-capacitor (RLC) equivalent circuit model verifies the nanostructures’ resonance when elongating the transverse dimensions. Paired-strips gratings have a bandwidth 2.04 times and mode area 2.18 times that of paired-rods nanoantennas.
Chinese Abstract i
English Abstract ii
Acknowledgements iii
Contents iv
List of Figures vi
List of Tables ix

Chapter 1 Introduction 1
1.1 Theory 1
1.1.1 Electromagnetic Wave Propagation 1
1.1.2 Surface Plasmon Resonance 5
1.1.3 Localized Surface Plasmon Resonance 9
1.2 RF Dipole Antenna 12
1.3 Optical Nanoantennas 16
1.4 Nanocircuit 17
1.5 Motivation 20
Chapter 2 Research Method 22
2.1 Design of Nanoantennas 22
2.1.1 Structure 22
2.1.2 Finite Element Method (FEM) 23
2.1.3 Optimized Dimensions 27
2.1.4 Fabrication 29
2.1.5 Scanning Electron Microscopy (SEM) 30
2.2 Experiment Results and Numerical Solutions 32
2.2.1 Far-Field Analysis 32
2.2.2 Near-Field Analysis 35
2.3 Analytical Solutions 37
2.3.1 Equivalent Circuit Model 37
2.3.2 Coupling Effect 39
2.3.3 R-L-C Parameters 41
Chapter 3 Results and Discussion 45
3.1 Comparison of RF Dipole Antenna and Optical Nanoantennas 45
3.1.1 Broadband RF Dipole Antenna 45
3.1.2 Spectral Response 48
3.2 Characteristics of Nanoantennas 50
3.2.1 Resonant Properties 50
3.2.2 Gauss Fitting of Resonance Peaks 53
3.2.3 Electric Field Enhancement and Mode Area 55
Chapter 4 Conclusion 58
Chapter 5 Future Work 59
5.1 Electric Field Tuning of Plasmonic Nanoantennas with Liquid Crystal 59
5.2 Fitting Simulations to Experimental Data 63
References 65

[1] T. Yang and K. B. Crozier, "Dispersion and extinction of surface plasmons in an array of gold nanoparticle chains: influence of the air/glass interface," Optics express, vol. 16, pp. 8570-8580, 2008.
[2] Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, "Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays," Applied Physics Letters, vol. 93, p. 181108, 2008.
[3] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, 2003.
[4] J. Zhang, L. Zhang, and W. Xu, "Surface plasmon polaritons: physics and applications," Journal of Physics D: Applied Physics, vol. 45, p. 113001, 2012.
[5] S. A. Maier, Plasmonics: fundamentals and applications: Springer Science &; Business Media, 2007.
[6] H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. Yang, "Nanoplasmonics: classical down to the nanometer scale," Nano letters, vol. 12, pp. 1683-1689, 2012.
[7] P. Biagioni, J.-S. Huang, and B. Hecht, "Nanoantennas for visible and infrared radiation," Reports on Progress in Physics, vol. 75, p. 024402, 2012.
[8] Z.-Y. Yang and K.-P. Chen, "Effective absorption enhancement in dielectric thin-films with embedded paired-strips gold nanoantennas," Optics Express, vol. 22, pp. 12737-12749, 2014.
[9] R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, et al., "Near-field excitation of nanoantenna resonance," Optics Express, vol. 15, pp. 13682-13688, 2007.
[10] M. Gu, P. Bai, and E.-P. Li, "Enhancing the reception of propagating surface plasmons using a nanoantenna," Photonics Technology Letters, IEEE, vol. 22, pp. 245-247, 2010.
[11] J. Li, D. Fattal, and Z. Li, "Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy," Applied Physics Letters, vol. 94, p. 263114, 2009.
[12] V. Rivera, E. Marega Jr, and F. Ferri, Localized Surface Plasmon Resonances: Noble Metal Nanoparticle Interaction with Rare-Earth Ions: INTECH Open Access Publisher, 2012.
[13] N. Engheta, "From RF Circuits to Optical Nanocircuits," Microwave Magazine, IEEE, vol. 13, pp. 100-113, 2012.
[14] N. Engheta, "Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials," Science, vol. 317, pp. 1698-1702, 2007.
[15] E. S. Ünlü, R. U. Tok, and K. Şendur, "Broadband plasmonic nanoantenna with an adjustable spectral response," Optics express, vol. 19, pp. 1000-1006, 2011.
[16] R. U. Tok and K. Şendur, "Engineering the broadband spectrum of close-packed plasmonic honeycomb array surfaces," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 120, pp. 70-80, 2013.
[17] R. Penciu, K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. Economou, et al., "Multi-gap individual and coupled split-ring resonator structures," Optics express, vol. 16, pp. 18131-18144, 2008.
[18] S. V. Boriskina and L. Dal Negro, "Multiple-wavelength plasmonic nanoantennas," Optics letters, vol. 35, pp. 538-540, 2010.
[19] M. Navarro-Cia and S. A. Maier, "Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation," ACS nano, vol. 6, pp. 3537-3544, 2012.
[20] K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature communications, vol. 2, p. 517, 2011.
[21] R. U. Tok and K. Şendur, "Plasmonic spiderweb nanoantenna surface for broadband hotspot generation," Optics letters, vol. 39, pp. 6977-6980, 2014.
[22] B. B. Tsema, Y. B. Tsema, M. R. Shcherbakov, Y.-H. Lin, D.-R. Liu, V. V. Klimov, et al., "Handedness-sensitive emission of surface plasmon polaritons by elliptical nanohole ensembles," Optics express, vol. 20, pp. 10538-10544, 2012.
[23] D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, "Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible," Nano Letters, vol. 4, pp. 957-961, 2004.
[24] N. A. Cinel, S. Bütün, and E. Özbay, "Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance," Optics express, vol. 20, pp. 2587-2597, 2012.
[25] M. D. Wissert, C. Moosmann, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Gold nanoantenna resonance diagnostics via transversal particle plasmon luminescence," Optics Express, vol. 19, pp. 3686-3693, 2011.
[26] K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, "Drude relaxation rate in grained gold nanoantennas," Nano letters, vol. 10, pp. 916-922, 2010.
[27] M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, et al., "Aluminum plasmonic nanoantennas," Nano letters, vol. 12, pp. 6000-6004, 2012.
[28] Y. Sun, B. Edwards, A. Alù, and N. Engheta, "Experimental realization of optical lumped nanocircuits at infrared wavelengths," Nature materials, vol. 11, pp. 208-212, 2012.
[29] H. Caglayan, S.-H. Hong, B. Edwards, C. R. Kagan, and N. Engheta, "Near-infrared metatronic nanocircuits by design," Physical review letters, vol. 111, p. 073904, 2013.
[30] H. Shen, N. Guillot, J. Rouxel, M. Lamy de la Chapelle, and T. Toury, "Optimized plasmonic nanostructures for improved sensing activities," Optics express, vol. 20, pp. 21278-21290, 2012.
[31] H. Fischer and O. J. Martin, "Engineering the optical response of plasmonic nanoantennas," Optics Express, vol. 16, pp. 9144-9154, 2008.
[32] G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, "Mapping the plasmon resonances of metallic nanoantennas," Nano letters, vol. 8, pp. 631-636, 2008.
[33] D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, et al., "Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes," Optics express, vol. 19, pp. 15047-15061, 2011.
[34] Y.-H. Chen, K.-P. Chen, M.-H. Shih, and C.-Y. Chang, "Observation of the high-sensitivity plasmonic dipolar antibonding mode of gold nanoantennas in evanescent waves," Applied Physics Letters, vol. 105, p. 031117, 2014.
[35] M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, "Optical antenna enhanced spontaneous emission," Proceedings of the National Academy of Sciences, p. 201423294, 2015.
[36] B. Lee, L. Wang, and Z. Zhang, "Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film," Optics Express, vol. 16, pp. 11328-11336, 2008.
[37] L. Wang and Z. M. Zhang, "Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays," JOSA B, vol. 27, pp. 2595-2604, 2010.
[38] C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, et al., "Magnetic metamaterials at telecommunication and visible frequencies," Physical review letters, vol. 95, p. 203901, 2005.
[39] T. Corrigan, P. Kolb, A. Sushkov, H. Drew, D. Schmadel, and R. Phaneuf, "Optical plasmonic resonances in split-ring resonator structures: an improved LC model," Optics express, vol. 16, pp. 19850-19864, 2008.
[40] L. Wang and Z. Zhang, "Resonance transmission or absorption in deep gratings explained by magnetic polaritons," Applied Physics Letters, vol. 95, p. 111904, 2009.
[41] P. B. Johnson and R.-W. Christy, "Optical constants of the noble metals," Physical Review B, vol. 6, p. 4370, 1972.
[42] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, "Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films," Thin Solid Films, vol. 326, pp. 72-77, 1998.
[43] I. Wang and Y.-p. Du, "Optical input impedance of nanostrip antennas," Optical Engineering, vol. 51, pp. 054002-1-054002-5, 2012.
[44] A. Alù and N. Engheta, "Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas," Physical review letters, vol. 101, p. 043901, 2008.
[45] A. Alu and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nature Photonics, vol. 2, pp. 307-310, 2008.
[46] N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, et al., "Individual nanoantennas loaded with three-dimensional optical nanocircuits," Nano letters, vol. 13, pp. 142-147, 2012.
[47] N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Physical Review Letters, vol. 95, p. 095504, 2005.
[48] R. L. Olmon and M. B. Raschke, "Corrigendum: Antenna–load interactions at optical frequencies: impedance matching to quantum systems," Nanotechnology, vol. 24, pp. 229501-229501, 2013.
[49] D. Zhu, M. Bosman, and J. K. Yang, "A circuit model for plasmonic resonators," Optics express, vol. 22, pp. 9809-9819, 2014.
[50] X. Li, L. Yang, C. Hu, X. Luo, and M. Hong, "Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency," Optics express, vol. 19, pp. 5283-5289, 2011.
[51] M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, "Circuit analysis in metal-optics," Photonics and Nanostructures-Fundamentals and Applications, vol. 10, pp. 166-176, 2012.
[52] Y. R. Padooru, A. B. Yakovlev, P.-Y. Chen, and A. Alù, "Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays," Journal of Applied Physics, vol. 112, p. 034907, 2012.
[53] C.-p. Huang, X.-g. Yin, H. Huang, and Y.-y. Zhu, "Study of plasmon resonance in a gold nanorod with an LC circuit model," Optics express, vol. 17, pp. 6407-6413, 2009.
[54] L. Wang and Z. Zhang, "Phonon-mediated magnetic polaritons in the infrared region," Optics express, vol. 19, pp. A126-A135, 2011.
[55] H. Shen, P. Bienstman, and B. Maes, "Plasmonic absorption enhancement in organic solar cells with thin active layers," Journal of Applied Physics, vol. 106, p. 073109, 2009.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top