【1】M. Skyllas-Kazacos, “Vanadium Redox Flow Batteries”, Encyclopedia of Electrochemical Power Sources, first edition, Elsevier B.V. (2009) 444-453
【2】N. Hagedorn, M.A. Hoberecht, L.H. Thaller, “NASA redox cell stack shunt current, pumping power, and cell performance tradeoffs”, NASA TM-82686, DOE/NASA/12726-11, (1982)
【3】C. Ponce de Le´on, A. Fr´ıas-Ferrer, J. Gonz´alez-Garc´ıa, D.A. Sz´anto, F.C. Walsh, “Redox flow cells for energy conversion”, Journal of Power Sources 160 (2006) 716–732
【4】K.L. Huang, X.G. Li, S.Q. Liu, N. Tan, L.Q. Chen, “Research progress of vanadium redox flow battery for energy storage in China”, Renewable Energy 33 (2008) 186–192
【5】C. Blanc, A. Rufer, “Understanding the Vanadium Redox Flow Batteries”, http://www.intechopen.com (2010)
【6】G. Kear, A.A. Shah, F.C. Walsh, “Development of the all‐vanadium redox flow battery for energy storage : a review of technological, financial and policy aspects”, International Journal of Enegy Research (2011) 1105-1120
【7】“Element 23:Vanaduim Adds Color”, EL POLLO REAL, http://acrazychicken.blogspot.tw/2011/05/element-23-vanadium-adds-color.html (2011)
【8】 H. Prifti, A. Parasuraman, S. Winardi, T.M. Lim, M. Skyllas-Kazacos, “Membranes for Redox Flow Battery Applications”, Membranes 2 (2012) 275-306
【9】K.A. Mauritz, R.B. Moore, “State of Understanding of Nafion”, American Chemical Reviews 104 (2004) 4535-4585
【10】C.X. Sun, J. Chen, H.M. Zhang, X. Han, Q.T. Luo, “Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery”, Journal of Power Sources 195 (2010) 890-897
【11】A. Tang, J. Bao, M. Skyllas-Kazacos, “Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery”, Journal of Power Sources 196 (2011) 10737- 10747
【12】M. Vijayakumar, L.Y. Li, G. Graff, J. Liu, H.M. Zhang, Z.G. Yang, J.Z. Hu, “ Towards understanding the poor thermal stability of V5+ electrolyte solution in Vanadium Redox Flow Batteriers”, Journal of Power Sources 196 (2011) 3669-3672
【13】朱順泉、陳金慶、汪錢、陳保國, “流道結構與電解液流動狀態對VRFB性能的影響”, 電池 Vol.38, NO.5, 文章編號:1001-1579 (2008)
【14】Q. Xu, T.S. Zhao, P.K. Leung, “Numerical investigations of flow field designs for vanadium redox flow batteries”, Applied Energy 105 (2013) 47-56
【15】A. Lasia, “Electrochemical Impedance Spectroscopy and Its Applications”, Modern Aspects of Electrochemistry, edited by B.E. Conway, J. Bockris, R.E. White, Kluwer Academic/Plenum Publishers, New York 32 (1999) 143-248.
【16】Li Wang, J.S. Zhao, X.M. He, J. Gao, J.J. Li, C.R. Wan, C.Y. Jiang, “Electrochemical Impedance Spectroscopy (EIS) Study of LiNi1/3Co1/3Mn1/3O2 for Li-ion Batteries”, Journal of Electrochemical Science, 7 (2012) 345 - 353
【17】Hong Shih, ” Electrochemical Impedance Spectroscopy for Battery Research and Development”, Solartron Analytical, Technical Report 31 (1996) 1-61
【18】Y.Y. Shaoa, X.Q. Wang, M. Engelharda, C.M. Wanga, S. Daib, J. Liua, Z.G. Yanga, Y.H. Lin, “Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries”, Journal of Power Sources 195 (2010) 4375–4379
【19】L. Yue, W.S. Li, F.Q. Sun, L.Z. Zhao, L.D. Xing, “Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery”, Carbon 48 (2010) 3079 - 3090
【20】C. Yao, H.M. Zhang, T. Liu, X.F. Li, Z.H. Liu, “Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery”, Journal of Power Sources 218 (2012) 455-461
【21】J.G. Xi, Z.H. Wu, X.P. Qiu, L.Q. Chen, “Nafion/SiO2 hybrid membrane for vanadium redox flow battery”, Journal of Power Sources 166 (2007) 531-536
【22】X.G. Teng, Y.T. Zhao, J.Y. Xi, Z.H. Wu, X.P. Qiu, L.Q. Chen, “Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery”, Journal of Power Sources 189 (2009) 1240-1246
【23】Y.F. Lin, C.Y. Yen, C.C. M. Ma, S.H. Liao, C.H. Lee, Y.H. Hsiao, H.P. Lin, “High proton-conducting Nafion®/–SO3H functionalized mesoporous silica composite membranes”, Journal of Power Sources 171 (2007) 388-395
【24】 陳國袖, “Ni-P/TiO2/C合金觸媒製備及對質子交換膜燃料電池之應用研究”, 國立聯合大學碩士論文 (2011)【25】薛銘偉, “有機添加物對釩氧化還原液流電池之電解質影響”, 國立聯合大學碩士論文 (2013)【26】F. Rahman, M. Skyllas-Kazacos, “Solubility of vanadyl sulfate in concentrated sulfuric acid solution”, Journal of Power Sources 72 (1998) 105-110
【27】C. Madic, G.M. Begun, R.L. Hahn, J.P. Launay, W.E. Thiessen, Inorg. Chem. 23 (1984) 469
【28】X.J. Wu, S.Q Liu, N.F. Wang, S. Peng, Z.G. He, “Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery”, Electrochimica Acta 78 (2012) 475- 482
【29】J. Pan ets, “Research progress in modeling and simulation for all vanadium redox flow battery ” CIESC Journal Vol.62, No. S2, (2011)7-15
【30】L. Barote, C. Marinescu, M. Georgescu, “VRB modeling for storage in stand-alone wind energy systems”, Proceeding Power Tech IEEE conference Bucharest 5 (2009) 1-6
【31】C. Blanc, A. Rufer, “Multiphysics and energetic modeling of a vanadium redox flow battery ”, ICSET (2008) 696-671
【32】M. Li, T. Hikihara, “ A coupled dynamical model of redox flow battery based on chemical reaction, fluid flow, and electrical circuit”, TEICE trans fundamenta, E91-A (2008) 1741-1747
【33】蔡年生, “雙極堆式電池中的漏電電流”, 電池 23(5) (1993) 234-237
【34】J.Chahwan, C. Abbey, G. Joos, “VRB Modeling for the study of output terminal voltages, internal losses and performance” IEEE Canada electrical power conference (2007) 387-392
【35】Ch.Fabjan, et al., “The vanadium redox-battery: an efficient storge unit for photovoltaic systems” Electrochimica Acta 47 (2001) 825-831
【36】B. Li, J. Guo, et al., “Modeling and simulating of shunt current in redox flow battery” proceedings of the CSEE, 31 (2011) 1-7
【37】S. Pang, J. Farrell, et al., “Battery state-of-charge estimation” Proceedings of the American control conference, Arlington, VA June (2001) 1644-1649
【38】A.J. Bard, L.R. Faulkner, “Electrochemical Methods:Fundamentals and Applications”, second edition, Wiley (2001)
【39】黃怡菁, “以溶膠-凝膠法製備陰離子型交換膜及對全釩液流儲能電池之應用”, 國立聯合大學碩士論文 (2012)【40】S. Sato, A. Kawamura, “A new estimation method of state of charge using terminal voltage and internal resistance for lead acid battery, IEEE Power Conversion Conference, 2 (2002) 565-570
【41】J. D. Kozlowski, “A novel online measurement technique for AC impedance of batteries and other electrochemical systems”, IEEE Battery Conversion Conference, 2 (2001) 257-262
【42】F. Huet, “A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries”, Journal of Power Sources, 70 (1998) 59-69
【43】A. Tenno, R. Tenno, T. Suntio, “Battery impedance and its relationship to battery characteristics”, IEEE Telecommunications Energy Conference, 3 (2002) 176-183
【44】Metronm company, “Electrochemical Impedance Spectroscopy (EIS) Part 3- Data Analysis”, Autolab Application Note EIS03 (2011) 1-3
【45】H.F. Xu, X.X. Wu, P.C. Xu, Y. Shen, L. Lu, J.C. Shi, J. Fu, H. Zhao, “Microwave-treated graphite felt as the positive electrode for all vanadium redox flow battery”, Journal of Power Sources 263 (2014) 104-109