跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/30 05:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游鑫福
研究生(外文):Hsin-Fu Yu
論文名稱:交流阻抗動態模型之測試推導對全釩氧化還原液流儲能電池之應用
論文名稱(外文):Derivation and Testing of Impedance Dynamic Model for All-Vanadium Redox Flow Energy Storage Battery Applications
指導教授:黃淑玲黃淑玲引用關係
指導教授(外文):Shu-Ling Huang
口試委員:謝錦隆陳美玲
口試委員(外文):Chin-Lung HsiehMei-Ling Chen
口試日期:2014-06-24
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:化學工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:109
中文關鍵詞:釩氧化還原液流電池關鍵材料電量狀態健康狀態交流阻抗
外文關鍵詞:All-VRFBKey materialsSOCSOHAC impedance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:534
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
釩氧化還原液流電池(Vanadium Redox Flow Battery, VRFB)之主要關鍵組件為離子交換膜、電極、電解質與流道模型之元件。各關鍵材料之性質決定電池的能量密度,彼此間層層相連亦環環相扣。因此,這些關鍵材料在不同充-放電電量狀態 (State of charge, SOC)之健康狀態(State of health, SOH)監測是研究電池最需要且最欠缺的技術。本論文開發一新的動態交流阻抗數學分析模型加以分析改變關鍵材料類型於不同SOC下,監測VRFB系統之交流阻抗變化。實驗上分別對離子交換膜、電極、電解質與流道模型進行改質,以提升電池之能量效率為目標,進行電池充放電測試。同時,進行交流阻抗動態分析測試,並將動態偵測到的阻抗值代入開發之VRFB系統動態方程式,探討改變關鍵材料對VRFB系統之影響。

The key materials of all vanadium redox flow battery (All-VRFB) system include ion exchange membrane, electrodes, electrolyte, and flow channel. The battery’s energy density not only is decided by the characteristics of these key materials, but also there are intimate relationship between each other. Therefore, these key materials of VRFB influence different charge-discharge power status (State of charge, SOC) and the state of cell’s health (SOH) is urgent to be resolved. In this study, a new performance evaluating for redox flow battery with electrochemical impedance spectroscopy (EIS) was developed. This model can be used a test tool for the SOH of VRFB with various key materials, different SOC, and charge–discharge properties. In our experiment, we also improve the performance of cell by modified key materials, and to verify the model. Simultaneously, the AC impedance changes of All-VRFB will be verified under different SOC. Using the cell impedance dynamic mathematical analysis model evaluate and analyze the SOH of the cell. From these results investigate the effect of key materials for All-VRFB system.

摘要 I
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
第二章 文獻回顧 3
2-1 簡介全釩氧化-還原液流電池 (All-VRFB) 3
2-1-1 全釩氧化-還原液流電池之發展歷史 3
2-1-2 全釩氧化-還原液流電池之操作原理 3
2-1-3全釩氧化-還原液流電池之關鍵組件 5
2-2 簡介交流阻抗動態模型 10
2-2-1 交流阻抗分析(AC Impedance)之原理 10
2-2-2等效電路模型(Equivalent Circuit Models) 11
2-3 All-VRFB關鍵材料之改質製備方法 17
2-4 循環伏安法原理 20
2-4-1基本原理 20
2-4-2循環伏安法之相關係數 21
第三章 實驗與研究方法 23
3-1 前言 23
3-2 實驗架構 24
3-3 實驗藥品及耗材 25
3-4 實驗儀器 28
3-5 All-VRFB系統等效電路設計之實驗步驟 30
3-5-1 等效電路設計及數學模擬方程式推導 30
3-5-2 交流阻抗動態分析實驗 30
3-6 All-VRFB系統關鍵材料之製備與檢測分析 30
3-6-1 利用溶膠-凝膠法進行離子交換膜改質 30
3-6-2 利用無電電鍍法進行電極改質 31
3-6-3 添加有機物進行電解質改質 32
3-6-4 化學結構分析實驗 32
3-6-5 水吸收率實驗 33
3-6-6 離子交換容量實驗 33
3-7 All-VRFB系統關鍵材料之電化學性質測定 34
3-7-1 循環伏安測試 34
3-7-2 電化學係數測試 34
3-8 All-VRFB系統關鍵材料之充放電測試 35
3-8-1 All-VRFB之單電池組件結構說明 35
3-8-2 釩單電池充放電測試 37
3-8-3 釩離子動態滲透率測試 39
3-9 All-VRFB系統關鍵材料之交流阻抗分析測試 40
3-9-1 不同離子交換膜材下之交流阻抗分析測試 40
3-9-2 不同電極材料下之交流阻抗分析測試 40
3-9-3 不同電解質條件下之交流阻抗分析測試 41
3-9-4 不同流道下之交流阻抗分析測試 41
第四章 交流阻抗動態模型之測試推導對全釩液流儲能電池系統之應用 42
4-1前言 42
4-2等效電路設計及數學模擬方程式推導 43
4-2-1 All-VRFB系統之等效電路模型之建立緣起 43
4-2-2 All-VRFB系統之動態方程式的推導原理 44
4-2-3 All-VRFB系統之動態數學參數推衍 47
4-3交流阻抗動態測試結果對動態數學參數模型推導之驗證 50
4-4 結論 57
第五章 以交流阻抗動態模型實務評估分析All-VRFB關鍵材料之特性 59
5-1 前言 59
5-2 離子交換膜 60
5-2-1 Nafion離子交換膜之改質 60
5-2-2 離子交換膜之充放電測試 63
5-2-3 離子交換膜之交流阻抗分析 65
5-3 電極 68
5-3-1電極之電化學性質測試 68
5-3-2電極之充放電測試 69
5-3-3電極之交流阻抗分析 70
5-3-4 電極(C/TiO2/Pd)應用於半釩氧化還原液流電池(semi-VRFB) 72
5-4 電解質 76
5-4-1電解質之電化學性質測試 76
5-4-2電解質之充放電測試 78
5-4-3電解質之交流阻抗分析 80
5-5 流道模型 82
5-5-1蛇行型流道(Serpentine channel)之流速測試 82
5-5-2蛇行型流道(Serpentine channel)不同流速之交流阻抗分析 84
5-5-3指叉型流道(Interdigitated channel)之流速測試 85
5-5-4指叉型流道(interdigitated channel)不同流速之交流阻抗分析 87
5-6 結論 88
第六章 總結與未來展望 90
6-1交流阻抗動態模型之測試推導與VRFB之特性研究 90
6-2以交流阻抗動態模型實務評估分析對VRFB關鍵材料之特性影響 90
6-3 未來展望 91
參考文獻 92

【1】M. Skyllas-Kazacos, “Vanadium Redox Flow Batteries”, Encyclopedia of Electrochemical Power Sources, first edition, Elsevier B.V. (2009) 444-453
【2】N. Hagedorn, M.A. Hoberecht, L.H. Thaller, “NASA redox cell stack shunt current, pumping power, and cell performance tradeoffs”, NASA TM-82686, DOE/NASA/12726-11, (1982)
【3】C. Ponce de Le´on, A. Fr´ıas-Ferrer, J. Gonz´alez-Garc´ıa, D.A. Sz´anto, F.C. Walsh, “Redox flow cells for energy conversion”, Journal of Power Sources 160 (2006) 716–732
【4】K.L. Huang, X.G. Li, S.Q. Liu, N. Tan, L.Q. Chen, “Research progress of vanadium redox flow battery for energy storage in China”, Renewable Energy 33 (2008) 186–192
【5】C. Blanc, A. Rufer, “Understanding the Vanadium Redox Flow Batteries”, http://www.intechopen.com (2010)
【6】G. Kear, A.A. Shah, F.C. Walsh, “Development of the all‐vanadium redox flow battery for energy storage : a review of technological, financial and policy aspects”, International Journal of Enegy Research (2011) 1105-1120
【7】“Element 23:Vanaduim Adds Color”, EL POLLO REAL, http://acrazychicken.blogspot.tw/2011/05/element-23-vanadium-adds-color.html (2011)
【8】 H. Prifti, A. Parasuraman, S. Winardi, T.M. Lim, M. Skyllas-Kazacos, “Membranes for Redox Flow Battery Applications”, Membranes 2 (2012) 275-306
【9】K.A. Mauritz, R.B. Moore, “State of Understanding of Nafion”, American Chemical Reviews 104 (2004) 4535-4585
【10】C.X. Sun, J. Chen, H.M. Zhang, X. Han, Q.T. Luo, “Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery”, Journal of Power Sources 195 (2010) 890-897
【11】A. Tang, J. Bao, M. Skyllas-Kazacos, “Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery”, Journal of Power Sources 196 (2011) 10737- 10747
【12】M. Vijayakumar, L.Y. Li, G. Graff, J. Liu, H.M. Zhang, Z.G. Yang, J.Z. Hu, “ Towards understanding the poor thermal stability of V5+ electrolyte solution in Vanadium Redox Flow Batteriers”, Journal of Power Sources 196 (2011) 3669-3672
【13】朱順泉、陳金慶、汪錢、陳保國, “流道結構與電解液流動狀態對VRFB性能的影響”, 電池 Vol.38, NO.5, 文章編號:1001-1579 (2008)
【14】Q. Xu, T.S. Zhao, P.K. Leung, “Numerical investigations of flow field designs for vanadium redox flow batteries”, Applied Energy 105 (2013) 47-56
【15】A. Lasia, “Electrochemical Impedance Spectroscopy and Its Applications”, Modern Aspects of Electrochemistry, edited by B.E. Conway, J. Bockris, R.E. White, Kluwer Academic/Plenum Publishers, New York 32 (1999) 143-248.
【16】Li Wang, J.S. Zhao, X.M. He, J. Gao, J.J. Li, C.R. Wan, C.Y. Jiang, “Electrochemical Impedance Spectroscopy (EIS) Study of LiNi1/3Co1/3Mn1/3O2 for Li-ion Batteries”, Journal of Electrochemical Science, 7 (2012) 345 - 353
【17】Hong Shih, ” Electrochemical Impedance Spectroscopy for Battery Research and Development”, Solartron Analytical, Technical Report 31 (1996) 1-61
【18】Y.Y. Shaoa, X.Q. Wang, M. Engelharda, C.M. Wanga, S. Daib, J. Liua, Z.G. Yanga, Y.H. Lin, “Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries”, Journal of Power Sources 195 (2010) 4375–4379
【19】L. Yue, W.S. Li, F.Q. Sun, L.Z. Zhao, L.D. Xing, “Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery”, Carbon 48 (2010) 3079 - 3090
【20】C. Yao, H.M. Zhang, T. Liu, X.F. Li, Z.H. Liu, “Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery”, Journal of Power Sources 218 (2012) 455-461
【21】J.G. Xi, Z.H. Wu, X.P. Qiu, L.Q. Chen, “Nafion/SiO2 hybrid membrane for vanadium redox flow battery”, Journal of Power Sources 166 (2007) 531-536
【22】X.G. Teng, Y.T. Zhao, J.Y. Xi, Z.H. Wu, X.P. Qiu, L.Q. Chen, “Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery”, Journal of Power Sources 189 (2009) 1240-1246
【23】Y.F. Lin, C.Y. Yen, C.C. M. Ma, S.H. Liao, C.H. Lee, Y.H. Hsiao, H.P. Lin, “High proton-conducting Nafion®/–SO3H functionalized mesoporous silica composite membranes”, Journal of Power Sources 171 (2007) 388-395
【24】 陳國袖, “Ni-P/TiO2/C合金觸媒製備及對質子交換膜燃料電池之應用研究”, 國立聯合大學碩士論文 (2011)
【25】薛銘偉, “有機添加物對釩氧化還原液流電池之電解質影響”, 國立聯合大學碩士論文 (2013)
【26】F. Rahman, M. Skyllas-Kazacos, “Solubility of vanadyl sulfate in concentrated sulfuric acid solution”, Journal of Power Sources 72 (1998) 105-110
【27】C. Madic, G.M. Begun, R.L. Hahn, J.P. Launay, W.E. Thiessen, Inorg. Chem. 23 (1984) 469
【28】X.J. Wu, S.Q Liu, N.F. Wang, S. Peng, Z.G. He, “Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery”, Electrochimica Acta 78 (2012) 475- 482
【29】J. Pan ets, “Research progress in modeling and simulation for all vanadium redox flow battery ” CIESC Journal Vol.62, No. S2, (2011)7-15
【30】L. Barote, C. Marinescu, M. Georgescu, “VRB modeling for storage in stand-alone wind energy systems”, Proceeding Power Tech IEEE conference Bucharest 5 (2009) 1-6
【31】C. Blanc, A. Rufer, “Multiphysics and energetic modeling of a vanadium redox flow battery ”, ICSET (2008) 696-671
【32】M. Li, T. Hikihara, “ A coupled dynamical model of redox flow battery based on chemical reaction, fluid flow, and electrical circuit”, TEICE trans fundamenta, E91-A (2008) 1741-1747
【33】蔡年生, “雙極堆式電池中的漏電電流”, 電池 23(5) (1993) 234-237
【34】J.Chahwan, C. Abbey, G. Joos, “VRB Modeling for the study of output terminal voltages, internal losses and performance” IEEE Canada electrical power conference (2007) 387-392
【35】Ch.Fabjan, et al., “The vanadium redox-battery: an efficient storge unit for photovoltaic systems” Electrochimica Acta 47 (2001) 825-831
【36】B. Li, J. Guo, et al., “Modeling and simulating of shunt current in redox flow battery” proceedings of the CSEE, 31 (2011) 1-7
【37】S. Pang, J. Farrell, et al., “Battery state-of-charge estimation” Proceedings of the American control conference, Arlington, VA June (2001) 1644-1649
【38】A.J. Bard, L.R. Faulkner, “Electrochemical Methods:Fundamentals and Applications”, second edition, Wiley (2001)
【39】黃怡菁, “以溶膠-凝膠法製備陰離子型交換膜及對全釩液流儲能電池之應用”, 國立聯合大學碩士論文 (2012)
【40】S. Sato, A. Kawamura, “A new estimation method of state of charge using terminal voltage and internal resistance for lead acid battery, IEEE Power Conversion Conference, 2 (2002) 565-570
【41】J. D. Kozlowski, “A novel online measurement technique for AC impedance of batteries and other electrochemical systems”, IEEE Battery Conversion Conference, 2 (2001) 257-262
【42】F. Huet, “A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries”, Journal of Power Sources, 70 (1998) 59-69
【43】A. Tenno, R. Tenno, T. Suntio, “Battery impedance and its relationship to battery characteristics”, IEEE Telecommunications Energy Conference, 3 (2002) 176-183
【44】Metronm company, “Electrochemical Impedance Spectroscopy (EIS) Part 3- Data Analysis”, Autolab Application Note EIS03 (2011) 1-3
【45】H.F. Xu, X.X. Wu, P.C. Xu, Y. Shen, L. Lu, J.C. Shi, J. Fu, H. Zhao, “Microwave-treated graphite felt as the positive electrode for all vanadium redox flow battery”, Journal of Power Sources 263 (2014) 104-109

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊