跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/21 06:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾怡嘉
研究生(外文):Yi-chia Tseng
論文名稱:合金化對於碳或石墨烯擔載鉑基奈米棒其氧氣還原反應之影響
論文名稱(外文):The effect of alloying on the oxygen reduction reaction activity of carbon or graphene-supported PtM (M = Cu or Pd) nanorods
指導教授:王冠文王冠文引用關係
指導教授(外文):Kuan-wen Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:88
中文關鍵詞:奈米棒PtM (M=Cu or Pd) 觸媒石墨烯氧氣還原反應未填滿之d 軌域數目(HTs)
外文關鍵詞:nanorods (NRs)PtM catalysts (M=Cu or Pd)grapheneoxygen reduction reaction (ORR)number of unfilled d-states (HTs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
開發鉑基一維奈米材料及使用石墨烯為擔載可有效增益觸媒之活性與穩定度,本研究利用甲酸還原法(formic acid method, FAM),製備碳或石墨烯擔載鉑
基合金(PtM, M= Cu or Pd)奈米棒(nanorods, NRs)觸媒以應用於氧氣還原反應(oxygen reduction reaction, ORR)。所製備觸媒之合金相、表面組成、化學組成、形貌、電催化活性以及未填滿 d 軌域(number of unoccupied d-states, HTs)分析分別使用X光繞射儀(X-ray diffraction, XRD), 光電子能譜儀(X-ray photoelectron spectroscopy, XPS), 感應耦合電漿原子發射光譜分析儀 (inductively coupled plasma-atomic emission spectrometer, ICP-AES), 高解析度穿透式電子顯微鏡(high resolution transmission electron microscopy, HRTEM), 旋轉盤電極(rotating disk electrode,RDE)以及 X 光吸收光譜(X-ray absorption spectroscopy, XAS)等儀器鑑定。
本研究分為兩部分,第一部分成功地以 FAM 製備不同比例之碳擔載Pt及PtM NRs觸媒,自X光近源吸收光譜(X-ray absorption near edge spectroscopy, XANES)所計算出之 H Ts 值,可用來鑑定與 ORR 活性有強烈關聯之 Pt 未填滿d軌域數目,其中,自 Pt 奈米顆粒(nanoparticles, NPs)至 Pt NRs,由於一維形貌的形成,使得HTs值下降,又因與不同金屬形成合金使HTs值達更低。Pt3Pd NRs具有最低之HTs值(0.3056),表示其具有較少之 Pt未填滿d軌域,有更多電子自Pd傳至Pt,使得其ORR活性優於商用材Pt/C。同時,由於一維結構及Pd之電子修飾作用之共同效應,使得 Pt3Pd 於加速穩定度測試(accelerated durability test, ADT)後之比活性(specific activity, SA 085-1000 )優於商用材 Pt/C。
第二部分同樣使用 FAM 製備石墨烯擔載 Pt 和 PtM NRs 觸媒。XRD 分析顯示,對於石墨烯擔載之 PtPd NRs (G-PtPd NRs)而言,由於使用石墨烯擔載及與Pd 之合金作用下,將有效促進(111)及(220)面之成長,使得 ORR 活性有效提升。XAS 分析中,HTs 值因使用石墨烯擔載及第二金屬合金效應而低至 0.295,同時G-PtPd 具有最佳之 ORR 活性,其於 ADT 後之 SA 及質量活性(mass activity, MA)分別為商用材 Pt/C 之 6.5 及 2.7 倍,證實其因 Pd 之電子修飾效應及石墨烯和金屬間作用力之共同作用下,有效增益該觸媒之 ORR 活性及穩定性。
Developing the one-dimensional (1-D) Pt-based nanomaterials with graphene support can provide a great opportunity to improve their catalytic activity and durability. In this study, carbon or graphene supported Pt and PtM (M= Cu or Pd) nanorods (NRs) are prepared by the formic acid method (FAM). The structures, surface compositions, chemical compositions, morphologies, electrochemical properties and the number of unfilled d-state (H Ts ) of prepared catalysts are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-atomic emission spectrometer (ICP-AES), high resolution transmission electron microscopy (HRTEM), rotating disk electrode (RDE) technique and X-ray absorption spectroscopy (XAS), respectively. The study is divided into two parts. In the first part,
carbon-supported Pt and PtM NRs with different ratios are successfully prepared by FAM. The H Ts value extracted from X-ray absorption near edge spectroscopy (XANES) can be used to measure the d-band vacancies of Pt, which is strongly related to their ORR performance. The HTs value of Pt nanoparticles (NPs) is decreased due to the formation of
NRs, and further decreased due to the alloying with different metals. For Pt3Pd NRs, the H Ts value is as low as 0.3056, suggesting that they have lower unfilled Pt d-states, and more d-band electrons transfer from Pd to Pt, leading to higher ORR activities than Pt/C. Moreover, the specific activity (SA 085-1000 ) value of the Pt3Pd after accelerated durability test(ADT) is higher than that of the Pt/C. These results may be owing to the electronic modification e ff ect from Pd and 1-D structures synergistically.
In the second part, the graphene-supported Pt and PtPd NRs catalysts are prepared by FAM. XRD analysis has shown that through alloying with Pd and using graphene support for the Pt NRs (G-PtPd), the growth of (111) and (220) planes is promoted. H Ts of Pt NRs is further
decreased due to the use of graphene support and alloying. Among all catalysts, G-PtPd shows the lowest H Ts value, which is 0.295. Moreover, G-PtPd has the highest activity and durability among all catalysts in which their specific and mass activities after ADT is about 6.5 and 2.7 times higher than those of carbon-supported Pt NPs, confirming that the electronic modification effect from Pd
and graphene-metal interaction can be promoted synergistically for Pt NRs.
Table of contents
摘要 ....................................... I
Abstract.................................... III
Table of contents........................... VII
List of Figure.............................. X
List of Tables ............................. XIII
Chapter 1 Introduction ..................... 1
1.1 Mechanism of the ORR .................. 2
1.2 Cathode catalysts in the PEMFCs ....... 4
1.3 Advantages of 1-D nanomaterials........ 6
1.4 The application of graphene support ... 8
1.5 Effect of alloying and support on the ORR
of catalysts................................11
1.6 Motivation and approach .............. 14
Chapter 2 Experimental section .............15
2.1 Preparation of PtM/C NRs ............. 15
2.2 Preparation of PtM/graphene NRs........17
2.3 Characterization of catalysts ........ 19
2.3.1 Thermal gravimetric analysis(TGA)... 19
2.3.2 Inductively coupled plasma – atomic
emission spectroscopy (ICP-AES) .......... 19
2.3.3 X-ray diffraction (XRD) ............ 19
2.3.4 X-ray photoelectron spectroscopy (XPS)...................................... 21
2.3.5 Linear sweep voltammetry (LSV) and
the calculation of electron transfer number (n)
........................................... 21
2.3.6 Accelerated durability tests (ADT).. 22
2.3.7 High resolution transmission electron microscopy
(HRTEM) ....................................23
2.3.8 Cyclic voltammograms (CV) .......... 23
2.3.9 X-ray absorption spectroscopy (XAS) .................. .........................23
Chapter 3 Results and Discussion .......... 26
3.1 The structural and electrochemical characterizations of carbon-supported Pt and
PtM NRs ................................... 26
3.1.1 XRD characterization ............... 26
3.1.2 XPS characterization................ 29
3.1.3 LSV characterization and the calculation
of electron transfer number (n)........ 29
3.1.4 ADT characterization ............... 35
3.1.5 HRTEM characterization ............. 38
3.1.6 CV characterization ................ 40
3.1.7 XAS characterization ............... 40
3.1.8 Summary ............................ 46
3.2 The structural and electrochemical characterizations of PtM/graphene NRs .... 47
3.2.1 XRD characterization ............... 47
3.2.2 XPS characterization................ 50
3.2.3 LSV characterization and the calculation
of electron transfer number (n)............ 50
3.2.4 ADT characterization ............... 53
3.2.5 HRTEM characterization ............. 57
3.2.6 XAS characterization ............... 60
3.2.7 Summary ............................ 64
Chapter 4 Conclusions ..................... 65
References ................................ 67
[1] J. H. Wee, K. Y. Lee and S. H. Kim, J. Power Sources 165 (2007) 667.
[2] H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang and D. Wilkinson, J. Power Sources 155 (2006) 95.
[3] P. Costamagna and S. Srinivasan, J. Power Sources 102 (2001) 242.
[4] P. Costamagna and S. Srinivasan, J. Power Sources 102 (2001) 253.
[5] K. Sopian and W. R. W. Daud, Renewable Energy 31 (2006)719.
[6] Y. H. Lu, Y. Y. Jiang and W. Chen, Nano Energy 2 (2013) 836.
[7] C. X. Ji and P. C. Searson, Appl. Phys. Lett. 81 (2002) 4437.
[8] S. M. Prokes and K. L. Wang, MRS Bull. 24 (1999) 13.
[9] R. Wang, D. C. Higgins, M. A. Hoque, D. U. Lee, F. Hassan and Z. Chen, Sci. Rep. 3 (2013) 2431.
[10] J. O. M. Bockris and S. U. Khan, Surface electrochemistry: a molecular level approach, Springer 1993.
[11] F. D. R. Jaouen and J. P. Dodelet, J. Phys. Chem. C 113 (2009) 15422.
[12] V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross and N. M. Markovic, Nat. Mater. 6 (2007) 241.
[13] V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas and N. M. Markovic, Science 315 (2007) 493.
[14] C. He, S. Desai, G. Brown and S. Bollepalli, Electrochem. Soc. Interface 14 (2005) 41.
[15] Y. Shao, G. Yin and Y. Gao, J. Power Sources 171 (2007) 558.
[16] Z. Chen, M. Waje, W. Li and Y. Yan, Angew. Chem. Int. Ed. 46 (2007) 4060.
[17] B. Segar and P. V. Kamat, J. Phys. Chem. C 113 (2009) 7990.
[18] P. V. Shanahan, L. B. Xu, C. D. Liang, M. Waje, S. Dai and Y. S. Yan, J. Power Sources 185 (2008) 423.
[19] J. Lu, I. Do, L. T. Drzal, R. M. Worden and I. Lee, ACS Nano 2 (2008) 1825.
[20] S. Maass, F. Finsterwalder, G. Frank, R. Hartmann and C. Merten, J. Power Sources 176 (2008) 444.
[21] T. H. Yeh, C. W. Liu, H. S. Chen and K. W. Wang, Electrochem. Commun. 31 (2013) 125.
[22] C. V. Rao, A. L. M. Reddy, Y. Ishikawa and P. M. Ajayan, Carbon 49 (2011) 931.
[23] S. A. Ang and D. A. Walsh, Appl. Catal. B 98 (2010) 49.
[24] D. Chu and S. Gilman, J. Electrochem. Soc. 141 (1994) 1770.
[25] A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini and L. Giorgi, J. Power Sources 105 (2002) 13.
[26] E. Ticianelli, J. Beery and S. Srinivasn, J. Appl. Electrochem. 21 (1991) 597.
[27] E. Antolini, L. Giorgi, A. Pozio and E. Passalacqua, J. Power Sources 77 (1999) 136.
[28] M. S. Mukerjee, S. Srinivasan, M. P. Soriaga and J. McBreen, J. Electrochem. Soc. 142 (1995) 1409.
[29] H. Li, G. Sun, L. Cao, L. Jiang and Q. Xin, Electrochim. Acta 52 (2007) 6622.
[30] C. Xu, Y. Liu, J. Wang, H. Geng and H. Qiu, J. Power Sources 199(2012) 124.
[31] B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu and Y. Xia, Science 324 (2009) 1302.
[32] J. Luo, P. N. Njoki, Y. Lin, L. Wang and C. J. Zhong, Electrochem. Commun. 8 (2006) 581.
[33] Y. C. Wei, C. W. Liu, Y. W. Chang, C. M. Lai, P. Y. Lim, L. D. Tasi and K. W. Wang, Int. J. Hydrogen Energy 35 (2010) 1864.
[34] K. J. J. Mayrhofer, D. Strmcnik, B. B. Blizanac, V. Stamenkovic, M. Arenz and N. M. Markovic, Electrochim. Acta 53 (2008) 3181.
[35] C. H. Cui, H. H. Li, X. J. Liu, M. R. Gao and S. H. Yu, ACS Catal. 2 (2012) 916.
[36] C. W. Liu, Y. C. Wei, C. C. Liu and K. W. Wang, J. Mater. Chem.
22 (2012) 4641.
[37] M. Bron, S. Fiechter, M. Hilgendorff and P. Bogdanoff, J. Appl. Electrochem. 32 (2002) 211.
[38] S. Sun, F. Jaouen and J. P. Dodelet, Adv. Mater. 20 (2008) 3900.
[39] X. Yu and S. Ye, J. Power Sources 172 (2007) 145.
[40] M. Oezalan, F. Hasche and P. Strasser, J. Electrochem. Soc. 159 (2012) 444.
[41] D. C. Papageorgopoulos, M. Keijzer, J. B. J. Veldhuis and F. A. de Bruijn, J. Electrochem. Soc. 149 (2002) A1400.
[42] V. S. Murthi, R. C. Urian and S. Mukerjee, J. Phys. Chem. B 108(2004) 11011.
[43] F. J. Lai, L. S. Sarma, H. L. Chou, D. G. Liu, C. A. Hsieh, J. F. Lee and B. J. Hwang, J. Phys. Chem. C 113 (2009) 12674.
[44] C. T. Hsieh, J. M. Wei, H. T. Hsiao and W. Y. Chen, Electrochim. Acta 64 (2012) 177.
[45] Y. S. Kim, S. H. Jeon, A. Bostwick, E. Rotenberg, P. N. Ross, V. R. Stamenkovic, N. M. Markovic, T. W. Noh, S. Han and B. S. Mun, Adv. Energy Mater. 3 (2013) 1257.
[46] E. Antolini, J. R. C. Salgado, M. J. Giz and E. R. Gonzalez, Int. J. Hydrogen Energy 30 (2005) 1213.
[47] C. W. Liu, H. S. Chen, C. M. Lai, J. N. Lin, L. D. Tsai and K. W. Wang, ACS Appl. Mater. Interfaces 6 (2014) 1589.
[48] Y. C. Tseng, H. S. Chen, C. W. Liu, T. H. Yeh and K. W. Wang, J. Mater. Chem. A 2 (2014) 4270.
[49] S. Mukerjee, S. Srinivasan and M. P. Soriaga, J. Phys. Chem. 99 (1995) 4577.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊