跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 15:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李崑源
研究生(外文):Kuan-yuan Lee
論文名稱:含三甲基矽共聚合物化學增幅型光阻劑之合成及其性質探討
論文名稱(外文):Synthesis and Characterization of Novel Copolymers with Trimethylsilyl Group for Deep-UV Chemical Amplified Resists
指導教授:江文彥
指導教授(外文):Wen-Yen Chiang
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:83
中文關鍵詞:深紫外光化學增幅正型光阻
外文關鍵詞:Deep-UV、chemically amplified、positive photores
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要目的合成一新型耐熱性且含化學增幅型機制之單體tert-butyl 4-(2,5-dioxo-2H-pyrrol-1-yl)benzoate(TBDPB),分別由p-aminobenzic acid、tert-butyl alcohol、maleic anhydride來進行酯化反應合成新型之單體,並將此單體分別與Allyltrimethylsilane、Allyloxytrimethylsilane、Trimethylsilyl methacrylate,三種含矽單體在60~700C下以AIBN為起始劑行自由基共聚合反應合成一系列含矽共聚合物,藉以證明含TBDPB之共聚合物具備較佳的耐熱性質、感度與對比足以應用於光蝕刻製程。
將三種含矽單體分別以15%、20%、25%三種組成加入相對於單體15wt%的光酸產生劑,利用不同轉速塗佈以得到適當的膜厚,此三種光阻劑以Deep-UV曝光,以0.01wt%的TMAH水溶液加以顯影可得到線幅14~1.75μm之正型影像,由曝光時間-殘餘膜厚圖型可發現化學增幅型之光阻劑所需的曝光劑量比未導入三甲基基團之光阻劑明顯減少許多,且此系列含矽光阻劑對矽晶圓具良好的附著性。
In this studying, the primary of this research was synthesis a new monomer with acid catalyzed chemical amplification cycle, tert-butyl4-(2,5-dioxo-2H-pyrrol -1-yl)benzoate (TBDPB), the new monomer with high thermal stability and high sensitivity, was synthesized by esterification through process from the 4-nitrobenzoic acid、tert-butyl alcohol and maleic anhydride. Free radical copolymerization of this monomer and three monmers with silicon-containing, Allyltrimethylsilane、Allyloxytrimethylsilane and Trimethylsilyl methacrylate, respectively were performed at 60~70 0C in the presence of azobisisobutyromitrile(AIBN) as an initiator in 1,4-dioxane.
After that, this process wsas adopted to synthesize the resists. The first one was mix the difference composition of the chemical amplified photoresists and their prepared conditions with photo acid generator relative to copolymer 15% to find the appropriate film thickness. Finally preformed the deep-UV photoresists PRI~PRIII. After irradiation under a deep-ultraviolet (UV) light source and developed by TMAH aqueous (0.01 wt%), the developed patterns showed positive images and exhibited good
adhesion to the silicon wafer without using any adhesion promoter. The resolution of the resists was at 1.75μ.
TABLE OF CONTENTS
ABSTRACT(in English) i
ABSTRACT(in Chinese) iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x
LIST OF SCHEMES xi

CHAPTER 1 1
INTRODUCTION 1
CHAPTER 2 16
EXPERMENTAL 16
2.1 Materials 16
2.2 Monomer Preparation 18
2.2.1 Synthesis of Tert-butyl 4-nitrobenzoate 18
2.2.2 Synthesis of Tert-butyl 4-(2,5-dioxo-2H-pyrrol-1-yl)benzoate 20
2.3 Copolymer Prepartion 22
2.3.1 Synthesis of Poly(allyltrimethylsilane-co- Tert-butyl 4-(2,5-dioxo-2H-pyrrol-1-yl)benzoate (ⅠP) 22
2.3.2 Synthesis of Poly(allyloxytrimethylsilane-co- Tert-butyl 4-(2,5-dioxo-2H-pyrrol-1-yl)benzoate (ⅡP) 24
2.3.3 Synthesis of Poly(trimethylsilyl methacrylate -co- Tert-butyl 4-(2,5-dioxo-2H-pyrrol-1-yl)benzoate (ⅢP) 26
2.4 Resist Preparation 28
2.4.1 Resist Solution Preparation 28
2.4.2 Spin Coating 28
2.4.3 Soft Baked 28
2.4.4 Exposure 28
2.4.5 Developing 29
2.4.6 Post Exposure Baked 29
2.5 Imaging Evaluation 29
2.6 Characteristics Methods 29
2.6.1 Infrared Spectroscopy Measurements 29
2.6.2 Elemental Analyzer 29
2.6.3 Thermal Analysis 30
2.6.4 1H-NMR Spectroscopy Measurement 30
2.6.5 Gel Permeation Chromatography 30
CHAPTER 3 31
RESULTS AND DISCUSSION 31
3.1 Chemical Structure Identifications 31
3.2 Monomer Preparation 31
3.2.1 Tert-butyl 4-nitrobenzoate 31
3.3 Copolymer Preparation 34
3.5 Copolymer Characteriziation 37
3.6 Photoinduced Inter Oxidation-Reduction Reaction of the Photoresist 51
3.7 Resist Characteristic 51
CHAPTER 4 65
CONCLUSIONS 65
REFERENCES 67
1. R. Sezi, M. Sebald, and R. Leuschner, Polym. Eng. Sci., 29, 891 (1989).
2. A.Hidetoshi, T. Takashi, N. Yukio, K. Masao, J. Polym Sci Part A Polym Chem., 35, 2827 (1997).
3. S. A. MacDonald, H. Ito, C. G. Willson, Microelectron Eng., 1, 269 (1983).
4. K. Sugita, N. Ueno, Prog Polym Sci., 17, 319 (1992)
5. B. C. Ho, J. H. Chen, W. C. Perng, C. L. Lin, L. M. Chen, J Appl Polym Sci, 67, 1313 (1998).
6. W. L. Brown, T. Venkatesan and A. Wagner, Solid State Technol., 24, 60 (1981).
7. L. F. Thompson, C. G. Willson, and M. J. Bowden Eds., Introduction to Microlithography, ACS Series No. 219, Washington, DC, (1983).
8. L. F. Thompson, C. G. Willson, and M. J. Bowden Eds., Materials for Microlithography, ACS Series No. 226, Washington, DC, (1984).
9. E. Reichmanis, S. A. MacDonlod, and T. Iwayanagi, Polymers in Microlithography, ACS Series No. 412, Washington, DC, (1989).
10. W. Y. Chiang and J. Y. Lu, J. Appl. Polym. Sci., 50, 1007 (1990).
11. C. W. Wilkins, Jr., E. Reichmanis, and E. A. Chandross, J. Electrochem. Soc., 129, 2552 (1982).
12. L. A. Pederson, J. Electrochem. Soc., 129, 205 (1982).
13. S. R. Tuner, R. A. Arcus, C. G. Houle, and W. R. Schleigh, Poly. Eng. Sci., 26, 1096 (1986).
14. B. J. Lin, J. Vac. Sci. Technol., 12, 1317 (1975).
15. C. W. Wilkins, Jr., E. Reichmanis, and E. A. Chandross, J. Electrochem. Soc., 127, 2510 (1980).
16. E. Reichmanis, C. W. Wilkins, Jr., and E. A. Chandross, J. Electrochem. Soc., 127, 2514 (1982).
17. R. L. Hartless and E. A. Chandross, J. Vac. Sci. Technol., 19, 1333 (1981).
18. Y. Yamashita, K. Ogura, M. Kunishi, R. Kowazu, and Y. Mizolami, J. Vac. Sci. Technol., 16, 2026 (1979).
19. E. Reichmanis, C. W. Wilkins, Jr., and E. A. Chandross, J. Vac. Sci. Technol., 19, 1338 (1981).
20. M. Endo, Y. Tani, M. Sasago, and N. Nomura, Polym. J., 21, 603 (1989).
21. E. Reichmanis, R. Gooden, C. W. Wilkins, and H. Schonhorn, J. Polym. Sci. Polym. Chem. ED., 21, 1075 (1983).
22. J. M. Morarr and D. Maydan, J. Vac. Sci. Technol., 16, 1620 (1989).
23. C. G. Willson and M. J. Bowden, CHEMTEC, Feb., 102 (1989).
24. S. Hayase, Y. Onishi, and R. Horiguchi, J. Electrochem. Soc., 134, 2275 (1987).
25. H. Ito and M. Ueda, Macromolecules, 21, 1475 (1988).
26. C. G. Willson, H. Ito, J. M. J. Frechet, T. G. Tessier, and F. M. Houliham, J. Electrochem. Soc., 133, 181 (1986).
27. S. Kubota, Y. Yamawaki, T. Moriwaki, and S. Eto, Polym. Eng. Sci., 29, 950 (1989).
28. E. Reichamnis, B. C. Smith, G. Smolinsky, and C. W. Wilkins, Jr., J. Electrochem. Soc., 134, 652 (1987).
29. T. Iizawa, H. Kudou, and T. Nishikubo, J. Polym. Sci. Polym. Chem. Ed., 29, 1875 (1991).
30. W. Y. Chiang, J. Y. Lu, J Polym Sci Part A: Polym Chem, 29, 399 (1991).
31. W. Y. Chiang, J. Y. Lu, Angew Makromol Chem 209, 25 (1993).
32. W. Y. Chiang, J. Y. Lu, J Appl Polym Sci 49, 893 (1993).
33. W. Y. Chiang, J. Y. Lu, Eur Polym J 29, 837 (1993).
34. W. Y. Chiang, J. Y. Lu, Macromol Chem Phys 195,591 (1994).
35. W. Y. Chiang, H. D. Shann, J Vac Sci Technol B 15, 299 (1997).
36. E. Reichmains, C. W. Wikins, Jr., E. A. Chandross, J Vac Sci Technol 19, 1338 (1981).
37. E. Reichmains, R. Gooden, C. W. Wikins, Jr.; H. J. Schonhorn, Polym Chem Ed 21, 1075 (1983).
38. W. Y. Chiang.;Y. C. Lin, J. Appl. Polym. Sci., 83, 2791 (2002).
39. W. Y. Chiang.;M. L. Lee, J. Appl. Polym. Sci., 90, 1032 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top