跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.146) 您好!臺灣時間:2025/12/03 08:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈舉茀
研究生(外文):Chu-Fu Shen
論文名稱:不同油脂種類之高脂高果糖飲食對於大鼠認知功能及 staroyl-coA desaturase 之影響
論文名稱(外文):Effects of high-fat-high-fructose diets with different types of oil on the cognitive performance and brain stearoyl-coA desaturase in rats
指導教授:林士祥
指導教授(外文):Shyh-Hsiang Lin
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:保健營養學研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:91
中文關鍵詞:Stearoyl coA desaturase高脂高果糖飲食飽和脂肪酸認知功能障礙
外文關鍵詞:Stearoyl coA desaturasehigh fat high sugar dietssaturated fatty acidcognitive impaired
相關次數:
  • 被引用被引用:0
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
脂質生合成酵素---Stearoyl-CoA desaturase (SCD) 於體內長期高血糖狀況扮演重要角色,其可被體內胰島素直接刺激增加表現。在 AD 過逝病患腦中發現有 SCD 表現顯著增加情形,且與認知功能測試分數呈現顯著負相關,顯示腦中 SCD 對於認知功能退化應扮演重要角色。本次實驗以高脂高果糖飲食誘發大鼠產生胰島素抗性及腦部認知功能障礙,並探討肝臟及腦中 SCD表現。本研究選用32隻6週齡大之 Wistar 大鼠,經分組後分為控制組、大豆油組及椰子油組。大豆油及椰子油組皆給予含大豆油或椰子油 39% 總熱量之脂質及含48% 總熱量之高果糖飲食。經誘發 20 週後以莫氏水迷宮給予認知功能測試並予以犧牲。由20週之血液生化數值顯示椰子油組血糖、果糖胺及胰島素均顯著高於控制組。莫氏水迷宮測試方面,第四天結果顯示椰子油組認知功能結果顯著低於控制組。進一步分析腦部皮質及肝臟中脂肪酸組成,結果顯示椰子油組於肝臟及大腦皮質中油酸含量及腦部皮質、海馬迴 SCD mRNA 表現均顯著高於控制組。故本次實驗結論大鼠肝及腦部 SCD 表現可被高飽和脂肪酸飲食誘發上升,且大鼠具高胰島素、血糖長期調控不良及認知功能障礙情形,而推測大鼠認知功能障礙與腦中 SCD 表現增加有關。

Stearoyl-CoA desaturase (SCD), one of the lipid synthesizing enzymes, plays an important role in hyperglycemia. Previous studies found that SCD expression increased in the brains of Alzheimer’s disease patients, and the expression of SCD was negatively correlated with cognitive score. The purpose of the present study was to investigate the effect of high fat high fructose diet (HFHF) on blood insulin resistance, brain cognitive impairment, SCD expression in rats. Wistar rats were 32 male, 6 weeks old and divided into 3 groups: control group (n=8), soybean oil group (n=12) and coconut oil group (n=12). Soybean oil group and coconut oil group were fed high fat (39% kcal) high fructose (48% kcal) diets with soybean oil or coconut oil separately for 20 weeks to induce blood insulin resistance. After 20 weeks, rats were given cognitive tests and sacrificed. Serum analysis at week 20 showed that compared with control group coconut oil group had higher blood glucose, insulin and fructosamine, which indicated hyperglycemia and insulin resistance. Day-4 Morris water maze result showed coconut oil group had lowest cognitive function compared with control groups. Western results showed that coconut oil group and soybean oil group had higher β-amyloid accumulation in brain cortex. In fatty acid composition, both cortex and liver had higher oleic acid contents in coconut group which indicated that the rats had higher SCD activity. In RT-PCR results, coconut oil groups had higher SCD mRNA expression in brain cortex and hippocampus compare with control group.In conclusion, SCD activity could be activated by a 20-week high saturated fatty acid high fructose diet, SCD metabolism related fatty acid content could also be changed. We also found cognitive impairment in rat brain, which may relevant with brain SCD activity.

目錄
中文摘要: VI
英文摘要 7
縮寫表 9
第一章 緒論 10
第二章、文獻回顧: 12
第一節、失智症 12
一、失智症盛行率: 12
二、阿茲海默症: 13
第二節、代謝症候群 15
一、 代謝症候群與認知功能障礙 16
二、糖尿病與認知功能障礙 16
三、高脂高果糖飲食與糖尿病 18
第三節、高脂高糖飲食與認知功能障礙 20
第四節、 飽和脂肪酸 21
一、高飽和脂肪酸攝取與代謝症候群 21
二、高飽和脂肪酸攝取與認知功能障礙 22
第五節、Stearoyl-coA desaturase (SCD) 23
一、SCD與脂質生合成 24
二、 SCD與飲食影響因子 24
三、周邊血液 SCD表現與胰島素訊息傳遞路徑之關係 26
四、腦部 SCD 與認知功能障礙 27
第三章、實驗假說與目的 28
第一節、實驗假說: 28
第二節、實驗目的: 29
第四章、實驗設計與方法: 30
第一節、實驗動物與實驗設計: 30
第二節、莫氏水迷宮試驗 (Morris Water Maze) 32
一、 水迷宮裝置 32
第三節、樣品採集與前處理 34
第四節、樣品分析方法 36
一、血液檢測方法 36
五、肝臟組織 43
六、SCD 測定 43
第七節、統計分析方法 46
第五章、實驗結果: 47
第一節 第0週時 大鼠血液生化數值 47
第二節 大鼠飲食及能量攝取情形 47
第三節 第 20 週時 大鼠血液生化數值 48
第四節 第 0 至 20 週 大鼠禁食血糖變化情形 48
第五節 第 20 週時 血清果糖胺分析 48
第六節 莫氏水迷宮 49
第七節 類澱粉樣蛋白堆積 49
第八節 肝臟脂質變性情形 50
第九節 大鼠海馬迴、皮質 SCD mRNA 表現 50
第十節 脂肪酸組成 51
第六章、討論 52
第一節 高脂高糖飲食與大鼠血糖調控之影響 52
第二節 高飽和脂肪酸高果糖飲食與大鼠體內脂質生成影響 55
第三節、高脂高果糖飲食與大鼠認知功能表現 57
第四節、高飽和脂肪酸攝取與認知功能表現 58
第五節、高脂高糖飲食對於類澱粉樣蛋白堆積影響 59
第六節、大鼠肝臟及腦部脂肪酸組成與 SCD mRNA 表現情形 60
第六章、結論 62
【參考文獻】 63
附錄一 72
附錄二 86


Larner AJ: What''s new in dementia? Clin Med 2010, 10(4):391-394.
2.Querfurth HW, LaFerla FM: Alzheimer''s disease. N Engl J Med 2010, 362(4):329-344.
3.Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R: How common are the "common" neurologic disorders? Neurology 2007, 68(5):326-337.
4.Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA: Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 2003, 60(8):1119-1122.
5.Haass C, Selkoe DJ: Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer''s amyloid beta-peptide. Nat Rev Mol Cell Biol 2007, 8(2):101-112.
6.Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG: Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003, 300(5618):486-489.
7.Lee VM, Goedert M, Trojanowski JQ: Neurodegenerative tauopathies. Annu Rev Neurosci 2001, 24:1121-1159.
8.Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285(19):2486-2497.
9.Dik MG, Jonker C, Comijs HC, Deeg DJ, Kok A, Yaffe K, Penninx BW: Contribution of metabolic syndrome components to cognition in older individuals. Diabetes Care 2007, 30(10):2655-2660.
10.Yaffe K, Haan M, Blackwell T, Cherkasova E, Whitmer RA, West N: Metabolic syndrome and cognitive decline in elderly Latinos: findings from the Sacramento Area Latino Study of Aging study. J Am Geriatr Soc 2007, 55(5):758-762.
11.Yaffe K, Kanaya A, Lindquist K, Simonsick EM, Harris T, Shorr RI, Tylavsky FA, Newman AB: The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA 2004, 292(18):2237-2242.
12.Solfrizzi V, Scafato E, Capurso C, D''Introno A, Colacicco AM, Frisardi V, Vendemiale G, Baldereschi M, Crepaldi G, Di Carlo A et al: Metabolic syndrome, mild cognitive impairment, and progression to dementia. The Italian Longitudinal Study on Aging. Neurobiol Aging 2011, 32(11):1932-1941.
13.Solfrizzi V, Scafato E, Capurso C, D''Introno A, Colacicco AM, Frisardi V, Vendemiale G, Baldereschi M, Crepaldi G, Di Carlo A et al: Metabolic syndrome and the risk of vascular dementia: the Italian Longitudinal Study on Ageing. J Neurol Neurosurg Psychiatry 2010, 81(4):433-440.
14.Frisardi V, Solfrizzi V, Seripa D, Capurso C, Santamato A, Sancarlo D, Vendemiale G, Pilotto A, Panza F: Metabolic-cognitive syndrome: a cross-talk between metabolic syndrome and Alzheimer''s disease. Ageing Res Rev 2010, 9(4):399-417.
15.Peila R, Rodriguez BL, Launer LJ: Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 2002, 51(4):1256-1262.
16.Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA: Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol 2004, 61(5):661-666.
17.Xu WL, Qiu CX, Wahlin A, Winblad B, Fratiglioni L: Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Neurology 2004, 63(7):1181-1186.
18.Park SA: A common pathogenic mechanism linking type-2 diabetes and Alzheimer''s disease: evidence from animal models. J Clin Neurol 2011, 7(1):10-18.
19.Brownlee M: Advanced protein glycosylation in diabetes and aging. Annu Rev Med 1995, 46:223-234.
20.Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A: Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci U S A 1994, 91(11):4766-4770.
21.Necula M, Kuret J: Pseudophosphorylation and glycation of tau protein enhance but do not trigger fibrillization in vitro. J Biol Chem 2004, 279(48):49694-49703.
22.Esiri MM, Nagy Z, Smith MZ, Barnetson L, Smith AD: Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer''s disease. Lancet 1999, 354(9182):919-920.
23.Zhou YP, Grill VE: Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Invest 1994, 93(2):870-876.
24.Zhou YP, Grill VE: Palmitate-induced beta-cell insensitivity to glucose is coupled to decreased pyruvate dehydrogenase activity and enhanced kinase activity in rat pancreatic islets. Diabetes 1995, 44(4):394-399.
25.Amery CM, Nattrass M: Fatty acids and insulin secretion. Diabetes Obes Metab 2000, 2(4):213-221.
26.Diggle CP, Shires M, Leitch D, Brooke D, Carr IM, Markham AF, Hayward BE, Asipu A, Bonthron DT: Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme. J Histochem Cytochem 2009, 57(8):763-774.
27.Collino M: High dietary fructose intake: Sweet or bitter life? World J Diabetes 2011, 2(6):77-81.
28.Suarez G, Rajaram R, Oronsky AL, Gawinowicz MA: Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose. J Biol Chem 1989, 264(7):3674-3679.
29.Francis H, Stevenson R: The longer-term impacts of Western diet on human cognition and the brain. Appetite 2013, 63:119-128.
30.Winocur G, Greenwood CE: Studies of the effects of high fat diets on cognitive function in a rat model. Neurobiol Aging 2005, 26 Suppl 1:46-49.
31.Winocur G, Greenwood CE, Piroli GG, Grillo CA, Reznikov LR, Reagan LP, McEwen BS: Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behav Neurosci 2005, 119(5):1389-1395.
32.Kochikuzhyil BM, Devi K, Fattepur SR: Effect of saturated fatty acid-rich dietary vegetable oils on lipid profile, antioxidant enzymes and glucose tolerance in diabetic rats. Indian J Pharmacol 2010, 42(3):142-145.
33.Edem DO: Palm oil: biochemical, physiological, nutritional, hematological, and toxicological aspects: a review. Plant Foods Hum Nutr 2002, 57(3-4):319-341.
34.Stein DT, Stevenson BE, Chester MW, Basit M, Daniels MB, Turley SD, McGarry JD: The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J Clin Invest 1997, 100(2):398-403.
35.Warnotte C, Nenquin M, Henquin JC: Unbound rather than total concentration and saturation rather than unsaturation determine the potency of fatty acids on insulin secretion. Mol Cell Endocrinol 1999, 153(1-2):147-153.
36.Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY: Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes 2001, 50(1):69-76.
37.Mathias S, Pena LA, Kolesnick RN: Signal transduction of stress via ceramide. Biochem J 1998, 335 ( Pt 3):465-480.
38.Gordon GB: Saturated free fatty acid toxicity. III. Potentiation by chlorophenoxyisobutyrate (clofibrate) in strain L cells. Res Commun Chem Pathol Pharmacol 1978, 20(1):79-99.
39.Stubbs CD, Smith AD: Essential fatty acids in membrane: physical properties and function. Biochem Soc Trans 1990, 18(5):779-781.
40.Innis SM, Clandinin MT: Dynamic modulation of mitochondrial membrane physical properties and ATPase activity by diet lipid. Biochem J 1981, 198(1):167-175.
41.Eskelinen MH, Ngandu T, Helkala EL, Tuomilehto J, Nissinen A, Soininen H, Kivipelto M: Fat intake at midlife and cognitive impairment later in life: a population-based CAIDE study. Int J Geriatr Psychiatry 2008, 23(7):741-747.
42.Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM et al: Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 2011, 108(7):3017-3022.
43.Akbaraly TN, Singh-Manoux A, Marmot MG, Brunner EJ: Education attenuates the association between dietary patterns and cognition. Dement Geriatr Cogn Disord 2009, 27(2):147-154.
44.Chinen I, Shimabukuro M, Yamakawa K, Higa N, Matsuzaki T, Noguchi K, Ueda S, Sakanashi M, Takasu N: Vascular lipotoxicity: endothelial dysfunction via fatty-acid-induced reactive oxygen species overproduction in obese Zucker diabetic fatty rats. Endocrinology 2007, 148(1):160-165.
45.Giardino I, Edelstein D, Brownlee M: BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. J Clin Invest 1996, 97(6):1422-1428.
46.Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP et al: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000, 404(6779):787-790.
47.Ames BN: Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 1983, 221(4617):1256-1264.
48.Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S et al: Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 2001, 60(8):759-767.
49.Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM: Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 2001, 21(12):4183-4187.
50.Hodson L, Fielding BA: Stearoyl-CoA desaturase: rogue or innocent bystander? Prog Lipid Res 2012, 52(1):15-42.
51.Heinemann FS, Ozols J: Stearoyl-CoA desaturase, a short-lived protein of endoplasmic reticulum with multiple control mechanisms. Prostaglandins Leukot Essent Fatty Acids 2003, 68(2):123-133.
52.Dobrzyn P, Jazurek M, Dobrzyn A: Stearoyl-CoA desaturase and insulin signaling--what is the molecular switch? Biochim Biophys Acta 2010, 1797(6-7):1189-1194.
53.Zhang L, Ge L, Parimoo S, Stenn K, Prouty SM: Human stearoyl-CoA desaturase: alternative transcripts generated from a single gene by usage of tandem polyadenylation sites. Biochem J 1999, 340 ( Pt 1):255-264.
54.Tabor DE, Kim JB, Spiegelman BM, Edwards PA: Transcriptional activation of the stearoyl-CoA desaturase 2 gene by sterol regulatory element-binding protein/adipocyte determination and differentiation factor 1. J Biol Chem 1998, 273(34):22052-22058.
55.Zheng Y, Prouty SM, Harmon A, Sundberg JP, Stenn KS, Parimoo S: Scd3--a novel gene of the stearoyl-CoA desaturase family with restricted expression in skin. Genomics 2001, 71(2):182-191.
56.Miyazaki M, Jacobson MJ, Man WC, Cohen P, Asilmaz E, Friedman JM, Ntambi JM: Identification and characterization of murine SCD4, a novel heart-specific stearoyl-CoA desaturase isoform regulated by leptin and dietary factors. J Biol Chem 2003, 278(36):33904-33911.
57.Mihara K: Structure and regulation of rat liver microsomal stearoyl-CoA desaturase gene. J Biochem 1990, 108(6):1022-1029.
58.Kaestner KH, Ntambi JM, Kelly TJ, Jr., Lane MD: Differentiation-induced gene expression in 3T3-L1 preadipocytes. A second differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem 1989, 264(25):14755-14761.
59.Wang J, Yu L, Schmidt RE, Su C, Huang X, Gould K, Cao G: Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to primates. Biochem Biophys Res Commun 2005, 332(3):735-742.
60.Lengi AJ, Corl BA: Comparison of pig, sheep and chicken SCD5 homologs: Evidence for an early gene duplication event. Comp Biochem Physiol B Biochem Mol Biol 2008, 150(4):440-446.
61.Collins JM, Neville MJ, Hoppa MB, Frayn KN: De novo lipogenesis and stearoyl-CoA desaturase are coordinately regulated in the human adipocyte and protect against palmitate-induced cell injury. J Biol Chem 2010, 285(9):6044-6052.
62.Yee JK, Mao CS, Hummel HS, Lim S, Sugano S, Rehan VK, Xiao G, Lee WN: Compartmentalization of stearoyl-coenzyme A desaturase 1 activity in HepG2 cells. J Lipid Res 2008, 49(10):2124-2134.
63.Horton JD, Bashmakov Y, Shimomura I, Shimano H: Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci U S A 1998, 95(11):5987-5992.
64.Liang G, Yang J, Horton JD, Hammer RE, Goldstein JL, Brown MS: Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J Biol Chem 2002, 277(11):9520-9528.
65.Chong MF, Hodson L, Bickerton AS, Roberts R, Neville M, Karpe F, Frayn KN, Fielding BA: Parallel activation of de novo lipogenesis and stearoyl-CoA desaturase activity after 3 d of high-carbohydrate feeding. Am J Clin Nutr 2008, 87(4):817-823.
66.Aarsland A, Wolfe RR: Hepatic secretion of VLDL fatty acids during stimulated lipogenesis in men. J Lipid Res 1998, 39(6):1280-1286.
67.Chong MF, Fielding BA, Frayn KN: Metabolic interaction of dietary sugars and plasma lipids with a focus on mechanisms and de novo lipogenesis. Proc Nutr Soc 2007, 66(1):52-59.
68.Fried SK, Rao SP: Sugars, hypertriglyceridemia, and cardiovascular disease. Am J Clin Nutr 2003, 78(4):873S-880S.
69.Ntambi JM: Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver. J Biol Chem 1992, 267(15):10925-10930.
70.Thiede MA, Strittmatter P: The induction and characterization of rat liver stearyl-CoA desaturase mRNA. J Biol Chem 1985, 260(27):14459-14463.
71.Strittmatter P, Spatz L, Corcoran D, Rogers MJ, Setlow B, Redline R: Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc Natl Acad Sci U S A 1974, 71(11):4565-4569.
72.Gellhorn A, Benjamin W: THE INTRACELLULAR LOCALIZATION OF AN ENZYMATIC DEFECT OF LIPID METABOLISM IN DIABETIC RATS. Biochim Biophys Acta 1964, 84:167-175.
73.Oshino N, Sato R: The dietary control of the microsomal stearyl CoA desaturation enzyme system in rat liver. Arch Biochem Biophys 1972, 149(2):369-377.
74.Waters KM, Ntambi JM: Insulin and dietary fructose induce stearoyl-CoA desaturase 1 gene expression of diabetic mice. J Biol Chem 1994, 269(44):27773-27777.
75.Kim E, Liu NC, Yu IC, Lin HY, Lee YF, Sparks JD, Chen LM, Chang C: Metformin inhibits nuclear receptor TR4-mediated hepatic stearoyl-CoA desaturase 1 gene expression with altered insulin sensitivity. Diabetes 2011, 60(5):1493-1503.
76.Miyazaki M, Dobrzyn A, Man WC, Chu K, Sampath H, Kim HJ, Ntambi JM: Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. J Biol Chem 2004, 279(24):25164-25171.
77.Miyazaki M, Sampath H, Liu X, Flowers MT, Chu K, Dobrzyn A, Ntambi JM: Stearoyl-CoA desaturase-1 deficiency attenuates obesity and insulin resistance in leptin-resistant obese mice. Biochem Biophys Res Commun 2009, 380(4):818-822.
78.Keelan M, Thomson AB, Garg ML, Wierzbicki E, Wierzbicki AA, Clandinin MT: Dietary omega-3 fatty acids and cholesterol modify desaturase activities and fatty acyl constituents of rat intestinal brush border and microsomal membranes of diabetic rats. Diabetes Res 1994, 26(2):47-66.
79.Warensjo E, Riserus U, Gustafsson IB, Mohsen R, Cederholm T, Vessby B: Effects of saturated and unsaturated fatty acids on estimated desaturase activities during a controlled dietary intervention. Nutr Metab Cardiovasc Dis 2008, 18(10):683-690.
80.Corpeleijn E, Feskens EJ, Jansen EH, Mensink M, Saris WH, de Bruin TW, Blaak EE: Improvements in glucose tolerance and insulin sensitivity after lifestyle intervention are related to changes in serum fatty acid profile and desaturase activities: the SLIM study. Diabetologia 2006, 49(10):2392-2401.
81.Dobrzyn P, Sampath H, Dobrzyn A, Miyazaki M, Ntambi JM: Loss of stearoyl-CoA desaturase 1 inhibits fatty acid oxidation and increases glucose utilization in the heart. Am J Physiol Endocrinol Metab 2008, 294(2):E357-364.
82.Rahman SM, Dobrzyn A, Lee SH, Dobrzyn P, Miyazaki M, Ntambi JM: Stearoyl-CoA desaturase 1 deficiency increases insulin signaling and glycogen accumulation in brown adipose tissue. Am J Physiol Endocrinol Metab 2005, 288(2):E381-387.
83.Astarita G, Jung KM, Vasilevko V, Dipatrizio NV, Martin SK, Cribbs DH, Head E, Cotman CW, Piomelli D: Elevated stearoyl-CoA desaturase in brains of patients with Alzheimer''s disease. PLoS One 2011, 6(10):e24777.
84.McNamara RK, Liu Y, Jandacek R, Rider T, Tso P: The aging human orbitofrontal cortex: decreasing polyunsaturated fatty acid composition and associated increases in lipogenic gene expression and stearoyl-CoA desaturase activity. Prostaglandins Leukot Essent Fatty Acids 2008, 78(4-5):293-304.
85.Ntambi JM: Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 1999, 40(9):1549-1558.
86.Amtul Z, Westaway D, Cechetto DF, Rozmahel RF: Oleic acid ameliorates amyloidosis in cellular and mouse models of Alzheimer''s disease. Brain Pathol 2011, 21(3):321-329.
87.Uryu S, Tokuhiro S, Oda T: beta-Amyloid-specific upregulation of stearoyl coenzyme A desaturase-1 in macrophages. Biochem Biophys Res Commun 2003, 303(1):302-305.
88.Minami I, Nakamura Y, Todoriki S, Murata Y: Effect of gamma irradiation on the fatty acid composition of soybean and soybean oil. Biosci Biotechnol Biochem 2012, 76(5):900-905.
89.Morris R: Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984, 11(1):47-60.
90.Vorhees CV, Williams MT: Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006, 1(2):848-858.
91.Folch J, Lees M, Sloane Stanley GH: A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957, 226(1):497-509.
92.Lee SY, Chen YC, Tsai IC, Yen CJ, Chueh SN, Chuang HF, Wu HY, Chiang CK, Cheng HT, Hung KY et al: Glycosylated hemoglobin and albumin-corrected fructosamine are good indicators for glycemic control in peritoneal dialysis patients. PLoS One 2013, 8(3):e57762.
93.Wong TY, Liew G, Tapp RJ, Schmidt MI, Wang JJ, Mitchell P, Klein R, Klein BE, Zimmet P, Shaw J: Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based cross-sectional studies. Lancet 2008, 371(9614):736-743.
94.Ly J, Marticorena R, Donnelly S: Red blood cell survival in chronic renal failure. Am J Kidney Dis 2004, 44(4):715-719.
95.Wright EM, Hirayama BA, Loo DF: Active sugar transport in health and disease. J Intern Med 2007, 261(1):32-43.
96.Takamura T, Misu H, Ota T, Kaneko S: Fatty liver as a consequence and cause of insulin resistance: lessons from type 2 diabetic liver. Endocr J 2012, 59(9):745-763.
97.Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H, Ota T, Yokoyama M, Honda M, Miyamoto K et al: Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism 2008, 57(8):1071-1077.
98.Nakamura S, Takamura T, Matsuzawa-Nagata N, Takayama H, Misu H, Noda H, Nabemoto S, Kurita S, Ota T, Ando H et al: Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem 2009, 284(22):14809-14818.
99.Flowers MT, Ntambi JM: Stearoyl-CoA desaturase and its relation to high-carbohydrate diets and obesity. Biochim Biophys Acta 2009, 1791(2):85-91.
100.Pratchayasakul W, Kerdphoo S, Petsophonsakul P, Pongchaidecha A, Chattipakorn N, Chattipakorn SC: Effects of high-fat diet on insulin receptor function in rat hippocampus and the level of neuronal corticosterone. Life Sci 2011, 88(13-14):619-627.
101.Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, Mattson MP: Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 2008, 18(11):1085-1088.
102.Pistell PJ, Morrison CD, Gupta S, Knight AG, Keller JN, Ingram DK, Bruce-Keller AJ: Cognitive impairment following high fat diet consumption is associated with brain inflammation. J Neuroimmunol 2010, 219(1-2):25-32.
103.Solfrizzi V, Panza F, Frisardi V, Seripa D, Logroscino G, Imbimbo BP, Pilotto A: Diet and Alzheimer''s disease risk factors or prevention: the current evidence. Expert Rev Neurother 2011, 11(5):677-708.
104.McNeilly AD, Williamson R, Sutherland C, Balfour DJ, Stewart CA: High fat feeding promotes simultaneous decline in insulin sensitivity and cognitive performance in a delayed matching and non-matching to position task. Behav Brain Res 2011, 217(1):134-141.
105.Takechi R, Galloway S, Pallebage-Gamarallage MM, Lam V, Mamo JC: Dietary fats, cerebrovasculature integrity and Alzheimer''s disease risk. Prog Lipid Res 2010, 49(2):159-170.
106.Takechi R, Galloway S, Pallebage-Gamarallage MM, Lam V, Dhaliwal SS, Mamo JC: Probucol prevents blood-brain barrier dysfunction in wild-type mice induced by saturated fat or cholesterol feeding. Clin Exp Pharmacol Physiol 2013, 40(1):45-52.
107.Hudgins LC, Hellerstein M, Seidman C, Neese R, Diakun J, Hirsch J: Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J Clin Invest 1996, 97(9):2081-2091.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top