跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/28 05:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉柏璋
研究生(外文):Po-chang Liu
論文名稱:氮摻雜氧化鋅薄膜的製備與分析
論文名稱(外文):Preparation and analysis of the nitrogen-doped zinc oxide thin film
指導教授:林烱暐
指導教授(外文):Chiung-wei Lin
口試委員:林烱暐
口試委員(外文):Chiung-wei Lin
口試日期:2015-07-22
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:117
中文關鍵詞:氧化鋅氮化鋅
外文關鍵詞:Zinc OxideZinc Nitride
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究的主要目的為開發具長效維持P型傳導之氧化鋅半導體薄膜。利用直流濺鍍系統沉積氮化鋅薄膜,在進行RTA快速熱退火氧化,以前驅物氧化的方式做摻雜,文中探討了在不同壓力製程下,氮化鋅薄膜結構受環境影響情形及藉由不同的溫度及時間退火再利用拉曼及XPS分析薄膜中的含氮情況。
結果發現過高溫度及過長持溫的退火皆會導致薄膜含氮量的下降,以及在少量含氧環境中退火氧化可得P型傳導氧化鋅,並維持長達半年期間不退化。
The main purpose of this paper is to develop a long-term to maintain the zinc oxide semiconductor thin films of P-type conductivity. Using DC sputtering system to depositing zinc nitride film, and rapid thermal annealing during oxidation, in the manner of doing precursor oxide doped. This paper discusses the process at different pressures, zinc nitride film structures influenced by the environment and by circumstances different annealing temperature and time again by Raman and XPS analysis of the film in the case of nitrogen. The results showed that high temperature and long annealing time will lead to decreased degradation of the nitrogen content of the film, as well as a small amount of oxygen atmosphere during annealing can be obtained P-type conductivity oxide, zinc oxide, and last up to six months.
Acknowledgements I
Abstract II
中文摘要 III
Contents IV
Table of contents VIII
Figure of contents IX
Chapter One - Introduction 1
1.1 Introduction 1
1.1.1 Zinc oxide (ZnO) 2
1.1.2 Zinc Nitride (Zn3N2) 4
1.2 Motivation 5
1.3 Architecture of papers 5
Chapter Two - Basic theory 8
2.1 Zinc oxide defect mechanism 8
2.2 Defect mechanism of zinc nitride 14
2.3 Doping mode of zinc oxide converted by zinc nitride precursor 16
2.4 Role of nitrogen in the zinc oxide 17
2.5 Significance of each peak in the Raman analysis (ZnO/Zn3N2/ZnO:N) 18
2.6 PN device 19
2.6.1 PN device theory 19
2.6.2 Positive and negative bias voltage 20
Chapter Three - Experiment 24
3.1 Experimental apparatus 24
3.1.1 DC Magnetron Sputtering system 24
3.1.2 Rapid Thermal Annealing System 25
3.1.3 Hall Effect 25
3.1.4 Seebeck Effect 25
3.1.5 Raman Scattering Spectrometer 27
3.1.6 X-ray Photoelectron Spectroscopy 28
3.1.7 Scanning Electron Microscope 29
3.2 Experimental Process 30
3.2.1 The test piece clean 30
3.2.2 Zinc nitride thin films production 31
3.2.3 Zinc oxide oxidation by RTA 32
3.2.4 Production of zinc oxide PN diode 32
Chapter Four - Results and discussion 33
4.1 The first stage: Using RTA to find the temperature conversion of zinc oxide nitride 33
4.1.1 Process parameters of zinc nitride test sample 33
4.1.2 Hall measurement of Zn3N2 films after RTA annealing 34
4.1.3 Conductive patterns analysis of Zn3N2 films after RTA annealing 39
4.2 The second stage: the process change the environment to find the right process parameters zinc nitride 43
4.2.1 Preparation and Analysis of nitride precursor of zinc 43
4.2.2 Hall measurement of Zn3N2 with different processes environment 43
4.2.3 Raman analysis of Zn3N2 with different processes environment 46
4.2.4 XPS analysis of Zn3N2 with different processes environment 47
4.2.5 Effect of the pressure to Zn3N2 films 51
4.2.6 Effect of the gas flow to Zn3N2 films 55
4.2.7 Effect of the plasma power to Zn3N2 films 59
4.3 The third stage: the use of a variety of analytical instruments and components measuring thin film analysis 63
4.3.1 Comparison of different substrates in the process of ZnO:N electrical 63
4.3.2 RTA temperature effect of the PN device 67
4.3.3 ZnO:N films process analysis of different RTA oxidation temperature and oxidation time 72
4.3.4 Zinc nitride stable after annealing metric measurements 87
Chapter Five - Conclusion 94
References 96
[1] Zhong Lin Wang, “Zinc oxide nanostructures: growth, properties and
applications,” Journal of Physics: Condensed Matter, 16 R829–R858, 2004.
[2] Wiberg, E., and Holleman, A. F., Inorganic Chemistry, Elsevier, ISBN 0-12-352651-5, 2001.
[3] Javad Karamdel, C.F. Dee, and Burhanuddin Yeop Majlis, “Characterization and aging effect study of nitrogen-doped ZnO nanofilm,” Applied Surface Science, 256 6164–6167 , 2010.
[4] J.G. Zhao, L.X. Yang, S.J. You, F.Y. Li, C.Q. Jin, and J. Liu, “Structural stability of Zn3N2under high pressure,” Physica B , 405 1836–1838, 2010.
[5] Masanobu Futsuhara, Katsuaki Yoshioka, Osamu Takaia, “Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering,” Thin Solid Films, 322 274–281, 1998.
[6] E. Aperathitis, V. Kambilafka, M. Modreanu, “Properties of n-type ZnN thin films as channel for transparent thin film transistors,” Thin Solid Films, 518 1036–1039, 2009.
[7] Daniel G. Georgiev, Joseph P. Moening, Sandeepkumar Naleshwar, Ahalapitiya H. Jayatissa, “Microstructure and Electronic Properties of Zinc Nitride Thin Films,” 2009 IEEE Nanotechnology Materials and Devices Conference, June 2-5, 2009.
[8] R. Ayouchi, C. Casteleiro, S. R. Bhattacharyya, R. Schwarz, “Interface Quality of Zn3N2Thin Films Grown by RF-Plasma Assisted PLD,” Ibersensor 2010, 9-11 November 2010.
[9] Anderson Janotti and Chris G. Van de Walle , “Native point defects in ZnO,” PHYSICAL REVIEW B, 76 165202, 2007.
[10] Run Long, Ying Dai, Lin Yu, Meng Guo, and Baibiao Huang, “Structural, Electronic, and Optical Properties of Oxygen Defects in Zn3N2,” J. Phys. Chem. B, 111, 3379-3383, 2007.
[11] C. H. Park, S. B. Zhang, and Su-Huai Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective,” PHYSICAL REVIEW B, 66 073202, 2002.
[12] N. H. Erdogan, K. Kara, H. Ozdamar, R. Esen, H. Kavak, “Effect of the oxidation temperature on microstructure and conductivity of ZnxNy thin films and their conversion into p-type ZnO:N films,” Applied Surface Science, 271 70–76, 2013.
[13] C. W. Zou, X. D. Yan, J. Han, R. Q. Chen, W. Gao, and J. Metson, “Study of a nitrogen-doped ZnO film with synchrotron radiation,” APPLIED PHYSICS LETTERS, 94, 171903, 2009.
[14] A. Kaschner, U. Haboeck, Martin Strassburg, Matthias Strassburg, G. Kaczmarczyk, A. Hoffmann, and C. Thomsen , “Nitrogen-related local vibrational modes in ZnO:N,” APPLIED PHYSICS LETTERS, Vol. 80, No. 11, 18 MARCH 2002.
[15] Kyung-Chul Ok, Hyun-Jun Jeong, Hyun-Suk Kim, and Jin-Seong Park, “Highly Stable ZnON Thin-Film Transistors With High Field-Effect Mobility Exceeding 50 cm2/Vs,” IEEE ELECTRON DEVICE LETTERS, VOL. 36, NO. 1, JANUARY 2015.
[16] A. E. RAKHSHANI, A. BUMAJDAD, J. KOKAJ, and S. THOMAS, “Preparation and characterization of nitrogen doped ZnO films and homojunction diodes,” Kuwait J. Sci., 41(1) pp. 107-127, 2014.
[17] Yanfa Yan, and S. B. Zhang, “Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO,” PHYSICAL REVIEW LETTERS, Vol. 86, No. 25, 18 JUNE 2001.
[18] Natalie P. Herring, Leela S. Panchakarla, and M. Samy El-Shall, “P‑Type Nitrogen-Doped ZnO Nanostructures with Controlled Shape and Doping Level by Facile Microwave Synthesis,” Langmuir, 30, 2230−2240, 2014.
[19] Run Long, Ying Dai, Lin Yu, Baibiao Huang, Shenghao Han, “Atomic geometry and electronic structure of defects in Zn3N2,” Thin Solid Films, 516 1297–130, 2008.
[20] Yoshitaka Nakano, Takeshi Morikawa, Takeshi Ohwaki, and Yasunori Taga, “Electrical characterization of p -type N-doped ZnO films prepared by thermal oxidation of sputtered Zn3N2 films,” APPLIED PHYSICS LETTERS, 88, 172103, 2006.
[21] Su-Hyun Yoo, Aron Walsh, David O. Scanlon and Aloysius Soon, “Electronic structure and band alignment of zinc nitride, Zn3N2,” RSC Adv., 4, 3306–3311, 2014.
[22] R Long, Y Dai, M Guo, Z K Zhang and K S Yang, “Native defects and impurities in Zn3N2: first-principle studies using gradient-correction approximation,” Phys. Scr., T129 340–344, 2007.
[23] ZHANG Bin, LI Min, WANG Jian-Zhong, SHI Li-Qun, “P-type ZnO:N Films Prepared by Thermal Oxidation of Zn3N2,” CHIN. PHYS. LETT., Vol. 30, No. 2, 027303, 2013.
[24] Chao Wang, Zhenguo Ji*, Kun Liu, Yin Xiang, Zhizhen Ye, “p-Type ZnO thin films prepared by oxidation of Zn3N2 thin films deposited by DC magnetron sputtering,” Journal of Crystal Growth, 259 279–281, 2003.
[25] V. Kambilafka, P. Voulgaropoulou, S. Dounis, E. Iliopoulos, M. Androulidaki,K. Tsagaraki,V.Šály,M.Ružinský,P. Prokein, E. Aperathitis, “The effect of nitrogen on the properties of zinc nitride thin films and their conversion into p-ZnO:N films,” Thin Solid Films, 515 8573–8576, 2007.
[26] COLE W. LITTON, DONALD C. REYNOLDS, THOMAS C. COLLINS, “Zinc Oxide Materials for Electronic and Optoelectronic Device Applications,” John Wiley and Sons, Ltd, 2011.
[27] J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, K. V. Rao, “p-Type ZnO materials: Theory, growth, properties and devices,” Progress in Materials Science, 58 874–985, 2013.
[28] Zhiyan Xiao, Yichun Liu, Jiying Zhang, Dongxu Zhao, Youming Lu, Dezhen Shen, and Xiwu Fan, “Electrical and structural properties of p-type ZnO:N thin films prepared by plasma enhanced chemical vapour deposition,” Semicond. Sci. Technol., 20 796–800, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top