跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳毅謙
研究生(外文):Chen, Yi-Chian
論文名稱:快速啟動 SNAD 程序及鋅對於系統之影響於連續批次式反應槽
論文名稱(外文):Simultaneous partial Nitrification, Anammox and Denitrification (SNAD) Process in Sequencing Batch Reactor: Fast Start-up and Effects of Zinc
指導教授:林志高林志高引用關係
指導教授(外文):Lin, Jih-Gaw
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:68
中文關鍵詞:快速啟動厭氧氨氧化結合部分消化、厭氧氨氧化和脫硝連續批次式反應槽生物除氮
外文關鍵詞:Fast start-upAnammoxSNADZincSBRBNR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
近年來,厭氧氨氧化 (ANAMMOX) 被視為最具成本效益與高效率的生物除氮技術。然而,此程序啟動時間的長短為未來實廠化重要的限制因素。此外,存在於廢水中之重金屬常見的如鋅,可能會影響厭氧氨氧化之過程。因此,本研究旨在,應用新穎的生物載體於連續批次式反應槽 (SBR),快速啟動同時部分硝化、厭氧氨氧化和脫硝程序 (SNAD) 與探討鋅對於系統之影響。
研究結果顯示,SNAD程序的啟動時間僅需51天,而懸浮污泥在一個月後成功的附著於載體上並形成生物膜。在氮負荷率和有機負荷率分別為360和180 g/m3-d時,氨氮及化學需氧量 (COD) 去除率可達到90%以上。利用批次試驗進行鋅對 ANAMMOX 活性的短期影響,在24小時的暴露時間下,鋅的IC50 值為6.9 mg/L。由SBR進行鋅對SNAD程序長期的影響,鋅濃度為100 mg/L時,氨氮、總氮及COD的去除率分別為98%、97%及86%。因此,根據研究結果,加入載體有助於污泥附著並停留於反應槽內,並縮短啟動的時間。而 SNAD 程序具處理含鋅且高氮廢水的潛力。

Anammox has been regarded as the most cost effective and efficient nitrogen removal process. However, its real world applications are limited due to long start-up time. Moreover, heavy metals such as zinc are common in several wastewater streams and can affect the anammox process. Therefore, in this study novel carriers were used to retain biomass for fast start-up of the simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequencing batch reactor (SBR) and the short- and long-term effects of the zinc on the SNAD process were investigated. The SNAD process was started up in 51 days and within one month the biomass attached to the carriers in the form of biofilm. Nitrogen and COD removal efficiencies were over 90% when the NLR and OLR increased to 360 and 180 g/m3-d, respectively. The short-term effect of zinc on the anammox activity was evaluated using batch tests. The IC50 of zinc at 24 h exposure time was 6.9 mg/L. The long-term effect of zinc on the SNAD process was examined in SBR. The NH4+-N, TN and COD removal efficiencies at 100 mg/L zinc concentration were 98, 97, and 86%, respectively. These results suggested that carrier used are efficent in biomass retention inside the reactor and it is feasible to treat zinc containing nitrogen rich wastewater by SNAD process.
中文摘要i
ABSTRACT ii
誌謝 iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
ACRONYMS AND SYMBOLS ix
CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Research Motivation 2
1.3 Objectives of the study 4
CHAPTER 2 LITERATURE REVIEW 5
2.1 Biological nitrogen removal techniques 5
2.1.1 Conventional technique-Nitrification/denitrification 6
2.1.2 ANaerobic AMMonium OXidation (ANAMMOX) 7
2.2 Integration of ANAMMOX with other processes 9
2.2.1 SHARON/ANAMMOX process 9
2.2.2 CANON process 10
2.2.3 SNAD process 11
2.2.4 Comparison of Anammox-related process with conventional nitrogen
removal 11
2.3 Heavy metals in nitrogen rich wastewaters 13
2.4 Effect/Toxicity of zinc on microbial species involved in BNR 15
CHAPTER 3 MATERIALS AND METHODS 17
3.1 Fast start-up of SNAD process in SBR 18
3.1.1 Sequencing Batch Reactor (SBR) 18
3.1.2 Carriers 19
3.1.3 Inoculum sludge 20
3.1.4 Composition of feed 20
3.1.5. Operational strategy and parameters for fast start-up of SNAD process 21
3.1.5.1 Operational strategy 21
3.1.5.2 Operating parameters 23
3.2 Effects of zinc on Anammox activity and performance of SNAD process 23
3.2.1 Long-term effect of zinc on the performance of SNAD process 23
3.2.2 Short-term effect of zinc on Anammox activity 24
3.3 Measurements and analytical methods 28
3.4 Polymerase chain reaction (PCR) 31
CHAPTER 4 RESULTS AND DISSCUSSION 33
4.1 Part I: Fast start-up of SNAD process 33
4.1.1 Profiles of DO and oxygen supply 33
4.1.2 Profiles of pH and alkalinity 35
4.1.3 Nitrogen and COD removals under varying loading rates 37
4.1.4 Biomass characteristics 44
4.1.4.1 Biomass and solids concentration 44
4.1.4.2 Microbial community analysis 47
4.2 Part II: Effects of zinc on anammox activity and performance of SNAD process 49
4.2.1 Short-term effect of zinc on anammox activity 49
4.2.2 Long-term effect of zinc on SNAD process 52
CHAPTER 5 CONCLUSION AND SUGGESTION 55
REFERENCES 57
Appendix A: 口試審查意見表 64
Appendix B: Mass balance-N (Theoretic SNAD process) 65
Appendix C: Mass balance-N (SNAD process in SBR) 66
Appendix D: Contribution of TN removal in SNAD system 67
Appendix E: SEM observation of the biomass 68

Ahn, Y.H. (2006) Sustainable nitrogen elimination biotechnologies: A review. Process Biochemistry. Vol. 41, pp. 1709-1721.

APHA, "Standard Methods for the Examination of Water and Wastewater," ed. USA: United Book Press, 1998.

Avezzu, F., Bissolotti, G., Collivignarelli, C. and Ghirardini, A.V. (1995) Behaviour of heavy metals in activated sludge biological treatment of landfill leachate. Waste Management &; Research. Vol. 13, pp.103-121.

Braker, G., Fesefeldt, A. and Witzel, K.P. (1998) Development of PCR primer systems for amplification of nitrite reductase genes (nirKnirK and nirSnirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. Vol. 64, pp. 3769–3775.

Braker, G. and Tiedje, J.M. (2003) Nitric Oxide Reductase (norB) genes from pure cultures and environmental samples. Appl. Environ. Microbiol. Vol. 69, pp. 3476–3483.

Beyenal, N.Y., Ozbelge, T.A. and Ozbelge, H.O. (1997) Combined effects of Cu2+ and Zn2+ on activated sludge process. Water Research. Vol. 31, pp. 699–704.

Çeçen, F., Semerci, N. and Geyik, A.G. (2010) Inhibitory effects of Cu, Zn, Ni and Co on nitrification and relevance of speciation. Journal of Chemical Technology and Biotechnology. Vol. 85, pp. 520–528.

Chen, H.H., Liu, S.T., Yang, F.L., Xue, Y. and Wang, T. (2009) The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresource Technology. Vol. 100, pp. 1548-1554.

Chipasa, K.B. (2003) Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Management. Vol. 23, pp. 135–143.

Daverey, A., Su, S.H., Huang Y.T., Chen. S.S., Sung, S.S. and Lin, J.G. (2013a) Partial nitrification and anammox process: A method for high strength optoelectronic industrial wastewater treatment. Water Research. Vol. 47, pp. 2929-29372.

Daverey, A., Hung, N.T., Dutta, K., Lin, J.G. (2013b) Ambient temperature SNAD process treating anaerobic digester liquor of swine wastewater. Bioresource Technology. Vol. 141, pp. 191-198.

Davis, A.P., Shokouhian, M. and Ni, S. (2001) Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere. Vol. 44, pp. 997-1009.

Dapena-Mora, A., Fernandez, I., Campos, J.L. and Mosquera-Corral, A. (2007) Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology. Vol. 40, pp. 859-865.

Fux, C., Boehler, M., Huber, P., Brunner, I. and Siegrist, H. (2002) Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. Journal of Biotechnology. Vol. 99, pp. 295-306.

Fernandez, I., J. R. Vazquez-Padin, Mosquera-Corral, A., Campos, J.L. and Mendez, R. (2008) Biofilm and granular systems to improve Anammox biomass retention. Biochemical Engineering Journal. Vol. 42, pp. 308-313.

Hellinga, C., Schellen, A.A.J.C., Mulder, J.W., van Loosdrecht, M.C.M. and Heijnen, J.J. (1998) The SHARON process: an innovative method for nitrogen removal from ammonium-rich wastewater. Water Science and Technology. Vol. 37, pp. 135-142.

Hu, Z., Chandran, K., Grasso, D. and Smets, B.F. (2002) Effect of nickel and cadmium speciation on nitrification inhibition. Environmental Science and Technology. Vol. 36, pp. 3074–3078.

Jetten, M.S.M., Horn, S.J. and van Loosdrecht, M.C.M. (1997) Towards a more sustainable municipal wastewater treatment system. Water Science and Technology. Vol. 35, pp. 171-180.

Jetten, M.S.M., Strous, M., Pas-Schoonen, K.T., Schalk, J., Dongen, U.G.J.M., Graaf, A.A., Logemann, S., Muyzer, G., Loosdrecht, M.C.M. and Kuenen, J.G. (1999) The anaerobic oxidation of ammonium. Fems Microbiology Reviews. Vol. 22, pp. 421-437.

Khin, T. and Annachhatre P.A. (2004) Novel microbial nitrogen removal processes Biotechnology Advances. Vol. 22, pp. 519–532.

Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A. and Christensen, T.H. (2002) Present and Long-Term Composition of MSW Landfill Leachate: A Review Critical Reviews in Environmental Science and Technology. Vol. 32, pp. 297–336.

Lan, C. J., Kumar, M., Wang, C.C. and Lin, J.G. (2010) Development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequential batch reactor. Bioresource Technoloy. Vol. 102, pp. 5514-5519.

Lee, S., Cho, K., Lim, J., Kim, W. and Hwang, S. (2011) Acclimation and activity of ammonia-oxidizing bacteria with respect to variations in zinc concentration, temperature, and microbial population. Bioresource Technology. Vol. 102, pp. 4196-4203.

Li, C. and Fang, H.H.P. (2007) Inhibition of heavy metals on fermentative hydrogen production by granular sludge. Chemosphere. Vol. 67, pp. 668-673.

Li, M., Ford, T., Li, X. and Gu, J.D. (2011) Cytochrome cd1-Containing Nitrite Reductase Encoding Gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (Anammox) bacteria. Environ. Sci. Technol. Vol. 45, pp. 3547-3553.

Lotti, T., Cordola, M., Kleerebezem, R., Caffaz, Z., Lubello, C. and van Loosdrecht, M.C.M. (2012) Inhibition effect of swine wastewater heavy metals and antibiotics on anammox activity. Water Science and Technology. Vol. 66, pp. 1519-1526.

Marcato, C. E., Pinelli, E., Pouech, P., Winterton, P. and Guiresse, M. (2008) Particle size and metal distributions in anaerobically digested pig slurry. Bioresource Technology. Vol. 99, pp. 2340–2348.

Madoni, P., Davoli, D. and Guglielmi, L. (1999) Response of OUR and AUR to heavy metal contamination in activated sludge. Water Research. Vol. 33, pp. 2459–2464.

Mulder, A., van de Graaf, A.A., Robertson, L.A. and Kuenen, J.G. (1995) anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. Fems Microbiology Ecology. Vol. 16, pp. 177-183.

Nicholson, F.A., Chambers, B.J., Williams, J.R. and Unwin, R.J. (1999) Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresource Technology. Vol. 70, pp. 23-31.

Penton, C.R., Devol, A.H. and Tiedje, J.M. (2006) Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl. Environ. Microbiol. Vol. 72, pp. 6829–6832.

Renou, S., Givaudan, J.G., Poulain, S., Dirassouyan, F. and Moulin, P. (2008) Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials. Vol. 150, pp. 468–493.

Rittmann, B.E. and McCarty, P.L. (2001) Environmental biotechnology: principles and applications. International Edition ed. Singapore: McGraw-Hill Book Co.

Rotthauwe, J.H., Witzel, K.P. and Liesack, W. (1997) The ammonia monooxygenase structural gene amoA as a functional maker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. Vol. 63, pp. 4704-4712.

Schmidt, I., Sliekers, O., Schmid, M., Bock, E., Fuerst, J., Kuene, J.G., Jetten, M.S.M. and Strous, M. (2003) New concepts of microbial treatment processes for the nitrogen removal in wastewater. Fems Microbiology Reviews. Vol. 27, pp. 481-492.

Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M., Metzger, J.W., Schleifer, K.H. and Wagner, M. (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst.
Appl. Microbiol. Vol. 23, pp. 93–106.

Scullion, J., Winson, M. and Matthews, R. (2007) Inhibition and recovery in a fixed microbial film leachate treatment system subject to shock loading of copper and zinc. Water Research. Vol. 41, pp. 4129-4138.

Sliekers, A.O., Derwort, N., Campos Gomez, J.L., Strous, M., Kuenen, J.G. and Jetten, M.S.M. (2002) Completely autotrophic ammonia removal over nitrite in one reactor. Water Research. Vol. 36, pp. 2475-2482.

Stankovic,V., Bozic, D., Gorgievski, M., Bogdanovic, G. (2009) Heavy metal ions adsorption from mine waters by sawdust. Chemical Industrial and Chemical Engineering Quarterly. Vol. 15, pp. 237–249.

Santos, A., Barton, B., Cartmell, E., Coulon, F., Crane, R.S., Hillis, P., Lester J.N., Stephenson, T. and Judd, S.J. (2010) Fate and behaviour of copper and zinc in secondary biological wastewater treatment processes: II Removal at varying sludge age. Environmental Technology. Vol. 31, pp. 725–743.

Strous, M., Heijnen, J.J., Kuenen, J.G. and Jetten, M.S.M. (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology. Vol. 50, pp. 589-596.

Strous, M., Fuerst, J.A., Kramer, E.H.M., Logemann, S., Muyzer, G., van de Pas-Schoonen, K.T., Webb, R., Kuenen, J.G. and Jetten, M.S.M. (1999) Missing lithotroph identified as new planctomycete. Nature. Vol. 400, pp. 446-449.

Subbiah, R.M., Sastry, C.A. and Agamuthu, P. (2000) Removal of zinc from rubber thread manufacturing industrial wastewater using chemical precipitant/flocculant. Environmental Progress. Vol. 19, pp. 299-304.

Third, K.A., Sliekers, A.O., Kuenen, J.G. and Jetten, M.S.M. (2001) The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: Interaction and competition between three groups of bacteria. Systematic and Applied Microbiology. Vol. 24, pp. 588-596.

Third, K.A., Paxman, J., Schmid, M., Strous, M., Jetten, M.S.M. and Cord-Ruwisch, R. (2005) Enrichment of anammox from activated sludge and its application in the CANON process. Microbial Ecology. Vol. 49, pp. 236-244.

Trigo, C., Campos, J.L., Garrido, J.M. and Mendez, R. (2006) Start-up of the Anammox process in a membrane bioreactor. Journal of Biotechnology. Vol. 126, pp. 475–487.

Van de Graaf, A.A., deBruijn, P., Robertson, L.A., Jetten, M.S.M. and Kuenen, J.G. (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology-Uk. Vol. 142, pp. 2187-2196.

Van der Star, W.R.L., Abma, W.R., Blommers, D., Mulder, J.W., Tokutomi, T., Strous, M., Picioreanu, C. and Van Loosdrecht, M.C.M. (2007) Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam. Water Research. Vol. 41, pp. 4149-4163.

Van Dongen, U., Jetten, M.S.M. and Van Loosdrecht, M.C.M. (2001) The SHARON((R))-Anammox((R)) process for treatment of ammonium rich wastewater. Water Science and Technology. Vol. 44, pp. 153-160.

Vanotti, M.B., Szogi, A.A., Hunt, P.G., Millner, P.D. and Humenik, F.J. (2007) Development of environmentally superior treatment system to replace anaerobic swine lagoons in the USA. Bioresource Technology. Vol. 98, pp. 3184–3194.

Wang, C.C., Lee, P.H., Kumar, M., Huang, Y.T., Sung, S.W. and Lin, J.G. (2010) Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant. Journal of Hazardous Materials. Vol. 175, pp. 622-628.

Wang, X.H., Gai, L.H., Sun, X.F., Xie, H.J., Gao, M.M. and Wang, S.G. (2010) Effects of long-term addition of Cu(II) and Ni(II) on the biochemical properties of aerobic granules in sequencing batch reactors. Applied Microbiology Biotechnology. Vol. 86, pp. 1967-1975.

Wong, P. and Chang, L. (1991) Effects of copper, chromium and nickel ions on inorganic nitrogen and phosphorus uptake in chlorella species. Microbios. Vol. 67, pp. 107–115.

Yamagata, H., Yoshizawa, M. and Minamiyama, M. (2010) Assessment of current status of zinc in wastewater treatment plants to set effluent standards for protecting aquatic organisms in Japan. Environmental Monit Assess. Vol. 169, pp. 67–73.

Yang, G.F., Ni, W.M., Wu, K., Wang, H., Wang, B.E., Jia, X.Y. and Jin, R.C. (2013) The effect of Cu (II) stress on the activity, performance and recovery on the Anaerobic Ammonium-Oxidizing (Anammox) process Chemical Engineering Journal. Vol. 226, pp. 39–45.

Yu, Y.C., Gao, D.W. and Tao, Y. (2012) Anammox start-up in sequencing batch biofilm reactors using different inoculating sludge. Appl Microbiol Biotechnol. Vol. xx, pp.

Zhang, Z., Chen, S., Wu, P., Lin, L. and Luo, H. (2010) Start-up of the Canon process from activated sludge under salt stress in a sequencing batch biofilm reactor (SBBR). Bioresource Technoloy. Vol. 101, pp. 6309–6314.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊