跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王詩韻
研究生(外文):Shin-Yun Wang
論文名稱:不確定環境下之選擇權評價模型
論文名稱(外文):The option pricing model under uncertainty environment
指導教授:李正福李正福引用關係曾國雄曾國雄引用關係
指導教授(外文):Cheng-Few LeeGwo-Hshiung Tzeng
學位類別:博士
校院名稱:國立交通大學
系所名稱:管理科學系所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:95
中文關鍵詞:模糊決策空間模糊集合理論CRR模型Black-Scholes模型模糊二項式模型三角模糊數
外文關鍵詞:fuzzy decision spacefuzzy set theorygeneralized CRR modelBlack–Scholes modelfuzzy binomial OPMtriangular fuzzy number
相關次數:
  • 被引用被引用:3
  • 點閱點閱:690
  • 評分評分:
  • 下載下載:129
  • 收藏至我的研究室書目清單書目收藏:2
選擇權評價模型(option pricing model)係由Black及Scholes於1973年聯合提出,而過去在處理選擇權之定價問題時都是假設變數是明確的(crisp),所以大多數之研究集中在如何放鬆B-S 模型之假設,因為無風險利率和股價波動性被認為是隨機過程而非常數,在放鬆這些假設後,就能建立一個新的模型。本文即應用模糊理論(Fuzzy Theory)的觀念,針對Black-Scholes (1973)選擇權評價模式,採用模糊決策理論的主張,在實際選擇權評價分析中,輔以模糊狀態、模糊樣本訊息、模糊行動及評價函數之四項維度所構成的決策空間,來描述投資者於模糊環境下之決策,推論出若不考慮模糊因素則: (1)將高估風險利率之期望值,造成買權價格偏離的現象; (2)將高估股價變動性之期望值,高估投資人之獲利空間,易造成市場之不穩定性; (3)除非投資者已掌握完全訊息或客觀環境已確定情況下,否則投資者估計B-S選擇權評價模式中相關變數時,在價內 及價平 時,將高估買權價格期望值,而在價外 時,將低估買權價格期望值,此舉將導致訂價決策之錯誤,造成投資人之損失。
為了驗證以上模型之推導,本研究更進一步地應用模糊集合理論於二項式選擇權評價模型中,亦即CRR (Cox, Ross and Rubinstein, 1979)模型,據以建立模糊二項式選擇權評價模型。此模型能提供合理之選擇權歸屬函數和價格區間,使許多投資者可藉此套利或避險,故我們若能預測合理之選擇權價格區間,不同風險偏好之投資者就能從中獲利。然CRR模型或Black-Scholes模型亦僅能提供一個理論之參考值,在以上模型假設中,不論是無風險利率或股價報酬波動性皆為估計值,亦即隱含不確定性,故我們可以將模糊集合理論應用於CRR模型中,求算出三角模糊數,則投資者就可根據三角模糊數中極左值或極右值之選擇權價格區間來修正其投資組合策略,就不同風險偏好之投資者而言,亦能據此作出正確之投資判斷。
針對B-S模型、CRR模型及模糊二項式模型之比較,茲以S&P500股價指數選擇權為例,於價外 時,其市價皆比B-S模型與CRR模型所求算之理論價還高,權證之價值有被低估之現象。大致而言,B-S模型所求出之理論價格比CRR模型及模糊二項式模型所求算之理論價格還低,且誤差較大。而模糊二項式模型所求算之理論價格在敏感度較高之情況下,比一般CRR模型更接近實際值,且也較其收斂,同時又可創造出一個買權價格區間,提供不同風險偏好者做投資選擇。
The Black-Scholes Option Pricing Model (OPM) developed in 1973 has always been taken as the cornerstone of option pricing model. The generic applications of such a model are always restricted by its nature of not being suitable for fuzzy environment since the decision-making problems occurring in the area of option pricing are always with a feature of uncertainty. When an investor faces an option-pricing problem, the outcomes of the primary variables depend on the investor’s estimation. It means that a person's deduction and thinking process uses a non-binary logic with fuzziness. Unfortunately, the traditional probabilistic B-S model does not consider fuzziness to deal with the aforementioned problems. The purpose of this study is to adopt the fuzzy decision theory and Bayes' rule as a base for measuring fuzziness in the practice of option analysis. This study also employs “Fuzzy Decision Space” consisting of four dimensions, i.e. fuzzy state, fuzzy sample information, fuzzy action, and evaluation function, to describe the decision of investors, which is used to derive a fuzzy B-S OPM and to determine an optimal pricing for option under fuzzy environment. Finally, this study finds that the over-estimation exists in the expected value of risk interest rate, the expected value of variation stock price, and the expected value of the call price of in the money and at the money, but under-estimation exists in the expected value of the call price of out of the money without a consideration of the fuzziness.
To prove above conclusions, we apply fuzzy set theory to the Cox, Ross and Rubinstein (CRR) model to set up the fuzzy binomial OPM. The model can provide reasonable ranges of option prices, which many investors can use it for arbitrage or hedge. Because of the CRR model can provide only theoretical reference values, it is expected that the fuzzy volatility and riskless interest rate replace the crisp values, which were used in generalized CRR model. In the fuzzy binomial OPM, investors can correct their portfolio strategy according to the right and left value of triangular fuzzy number and they can interpret the optimal difference, according to their individual risk preferences.
Finally, this study compares with B-S model, CRR model and fuzzy binomial OPM. We use an empirical analysis of S&P 500 index options to find that the call prices of three models are lower than the market price, the call price of B-S model is lower than that of CRR model and fuzzy binomial model, and that of the fuzzy binomial OPM is much closer to the reality and more convergent than that of the generalized CRR model when the sensentivity is large.
1.Amilon, Henrik (2003), “A Neural Network versus Black-Scholes: A Comparison of Pricing and Hedging Performances,” Journal of Forecasting, 22(4): 317-335.
2.Amin, K.and Jarrow, R. A. (1992), “Pricing Options on Risky Assets in a Stochastic Interest rate Economy,” Mathematical Finance, 2(4): 217-237.
3.Amin, K. (1993), “Jump Diffusion Option Valuation in Discrete Time,” Journal of Finance, 48(5): 1833-1863.
4.Amin, K. and Ng, V. (1993), “ARCH Processes and Option Valuation,” Working Paper, University of Michigan.
5.Amin, K. and Ng, V. (1993), “Option Valuation with Systematic Stochastic Volatility,” Journal of Finance, 48(3): 881-910.
6.Asai, K., Tanaka, H. and Okuda, T. (1975), “Decision Making and Goal programming in a Fuzzy Environment,” In Zadeh et al. (eds), Fuzzy sets and Their Applications to Cognitive and Decision Process, pp.257-277, Academic, New York.
7.Ball, C. A., and Torous, W. N. (1985), “On Jumps in Common Stock Prices and Their Impact on Call Option Pricing,” Journal of Finance, 40(1): 155-173.
8.Bakshi, G., Cao, C. and Chen, Z. (1997), “Empirical Performance of Alternative Option Pricing Models,” Journal of Finance, 52(5): 2003-2049.
9.Barone-Adesi, G. and Whaley, R. E. (1986), “The Valuation of American Call Options and the Expected Ex-dividend Stock Price Decline,” Journal of Financial Economics, 17(1): 91-111.
10.Barone-Adesi, G. and Whaley, R. E. (1987), “Efficient Analytic Approximation of American Option Values,” Journal of Finance, 42(2): 301-320.
11.Barucci, E., Cherubini U. and Landi L. (1995), “Neural Networks for Contingent Claim Pricing via the Galerkin Method,” paper presented at the First International Conference of the Society for Computational Economics, IC2 Institute, Austin, Texas, May 21-24, 1995.
12.Bates, D. S. (1996), “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options,” Review of Financial Studies, 9(1): 69-107.
13.Bauwens, Luc and Lubrano, Michel (2002), “Bayesian Option Pricing Using Asymmetric GARCH Models,” Journal of Empirical Finance, 9(3): 321-342.
14.Bellman, R. E. and Zadeh, L. A. (1970), “Decision-Making in a Fuzzy Environment,” Management Science, 17(4): 141-164.
15.Bjork, Tomas and Christensen, Bent Jesper (1999), “Interest Rate Dynamics and Consistent Forward Rate Curves” Mathematical Finance, 9(4): 323-348.
16.Black, F. (1975), “Fact and Fantasy in the Use of Option,” Financial Analysts Journal, 31(1): 36-41 and 61-72.
17.Black, F. and Scholes, M. (1972), “The Valuation of Option Contracts and A Test of Market Efficiency,” Journal of Finance, 27(2): 399-417.
18.Black, F. and Scholes, M. (1973), “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, 81(3): 637-654.
19.Black, Fischer, Derman, Emanuel, Toy, William. (1990), “A One-Factor Model of Interest Rates and Its Application to Treasury Bond Options,” Financial Analysts Journal. Charlottesville, 46(1): 33-39.
20.Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedastic- ity,” Journal of Econometrics,” 31(2): 307-327.
21.Bortolan, G. and Degani, R. (1985), “A Review of Some Methods for Ranking Fuzzy Subsets,” Fuzzy Sets and Systems, 15(1):1-19.
22.Breeden, D. T. (1979), “An Intertemporal Asset Pricing Model with Stochastic Consumption and Investment Opportunities,” Journal of Financial Economics Amsterdam, 7(3): 265.
23.Brennan, M. J. and Schwartz, E. S. (1977), “The Valuation of American Put Options,” Journal of Finance, 32(2): 449-462.
24.Brennan, M. J. and Schwartz, E. S. (1978), “Finite Difference Methods and Jump Process Arising in the Pricing of Contingent Claims: a Synthesis,” Journal of Finance & Quantitative Analysis, 13(3): 461-474.
25.Brennan, M. (1979), “The Pricing of Contingent Claims in Discrete Time Models,” Journal of Finance, 34(1): 53-68.
26.Brown, Christine A. and Robinson, David M. (2002), “Skewness and Kurtosis Implied by Option Prices: A Correction,” Journal of Financ Research, 25(2): 279-282.
27.Carlsson, C. Fuller, R. (2003), “A fuzzy Approach to Real Option Valuation,” Fuzzy Sets and Systems, 139(2): 297-312.
28.Charles, J. C., Su, Tie (1997), “Implied Volatility Skews and Stock Index Skewness and Kurtosis Implied by S&P 500 Index Option Prices,” Journal of Derivatives, 4(4): 8-19.
29.Chen, L. (1997), “Interest Rate Dynamics and Derivatives Pricing,” paper presented at the Third International Conference on Computing in Economics and Finance, Stanford, June30-July2, 1997, 92.
30.Chen, S.H. (1985), Ranking Fuzzy Numbers with Maximizing Set and Minimizing Set. Fuzzy Sets and Systems, 17(2), 113-130.
31.Chen, S.-H. and Lee, W.C. (1997a), “Option Pricing with Genetic Algorithms: A First Report,” Proceedings of The Second World Congress on Intelligent Control and Intelligent Automation, Xian Jiaotong University, China, 1683-1688.
32.Chen, S.-H., Lee, W.-C. and Yeh, C.H. (1998b), “Hedging Derivative Securities with Genetic Programming,” Paper Presented on The International Workshop on Advanced Black-Box Techniques for Nonlinear Modeling: Theory and Applications, July 8-10, 1998.
33.Choi, S. and Wohar, M. E. (1994), “S&P 500 Index Option Prices and the Black-Scholes Option Pricing Model,” Applied Financial Economics, 4(4): 249-263.
34.Corrado, Charles J, and Su, Tie (1996), “Skewness and Kurtosis in S&P 500 Index Returns Implied by Option Prices,” The Journal of Financial Research Columbia: 19(2): 175-192.
35.Courtadon, G. (1982), “A More Accurate Finite Difference Approximation for the Valuation of Options,” Journal of Financial and Quantitative Analysis, 17(5): 697-703.
36.Cox, J. C. and Ross, S. A. (1975), “Notes on Option Pricing I: Constant Elasticity of Variance Diffusion,” Working paper, Stanford University.
37.Cox, J. C. and Ross, S. A. (1976), “A Survey of Some New Results In Financial Option Pricing Theory,” Journal of Finance, 31(2): 145-166.
38.Cox, J. C. and Ross, S. A. (1976), “The Valuation of Options for Alternative Stochastic Processes,” Journal of Financial Economics, 3(4): 145-166.
39.Cox, J. C., Ross, S. A. and Rubinstein, M. (1979), “Option Pricing: A Simplified Approach,” Journal of Financial Economics, 7(3): 229-263.
40.Cox, J. C., Ingersoll, J. E. and Ross, S. A. (1985a), “An Intertemporal General Equilibrium Model of Asset Prices,” Econometrica, 53(2): 363-384.
41.Dothan, L. U. (1978), “On the Term Structure of Interest Rates,” Journal of Financial Economics Amsterdam, 6(1): 59.
42.Duan, J. C. (1995), “The GARCH Option Pricing Model,” Mathematical Finance, 5(1): 13-32.
43.Duan, J. C. (1997), “Augmented GARCH (p, q) Process and Its Diffusion Limit,” Journal of Econometrics, 79(1): 97-127.
44.Dubois D. and Prade H. (1978), “Operations on Fuzzy Numbers,” International Journal of Systems Science, 9(3): 613-626.
45.Dubois D. and Prade H. (1980), Fuzzy Sets and Systems. Academic Press, New York.
46.Engle, R. F., and Mustafa, C. (1992), “Implied ARCH Models from Option Prices,” Journal of Econometrics, 52(1-2): 289-311.
47.Engle, R. F., and Granger, C.W.J. (2003), “Time-Series Econometrics: Cointegration and Austoregressive Conditional Heteroskedasticity,” The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel.
48.Finnerty, J. E. (1978), “The Chicago Boards Options Exchange and Market Efficiency,” Journal of Financial and Quantitative Analysis, 13(1): 29-38.
49.Freedman, R.S. and R.D. Giorgio (1996), “New Computational Architecture for Pricing Derivatives,” Proceedings of the IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering, 14-19.
50.Garman, M. B. and Klass, M. J. (1980), “On the Estimation of Security Price Volatilities from Historical Data,” Journal of Business, 53(1): 67-78.
51.Geske, R. (1979), “The Valuation of Compound Options,” Journal of Financial Econometrics, 7(1): 63-81.
52.Geske, R. and Johnson, H. E. (1984), “The American Put Valued Analytically,” Journal of Finance, 39(5):1511-1524.
53.Gultekin, N.B., Rogalski, R.J. and Tinic, S.M. (1982), “Option Pricing Model Estimates: Some Empirical Results,” Financial Management, 11(1): 58-70.
54.Heath, D., Jarrow, R. and Morton, A. (1992), “Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation. Econometrica,” 60(1): 77-105.
55.Heston, S. L. (1993), “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Option,” Review of Financial Studies, 6(2): 327-343.
56.Hilliard, J. E., Schwartz, A. L. and Tucker, A. L. (1996), “Bivariate Binomial Options Pricing with Generalized Interest rate Processes,” The Journal of Financial Research Columbia, 19(4): 585-602.
57.Ho, Thomas S. Y. and Lee, Sang-Bin (1986), “Term Structure Movements and Pricing Interest Rate Contingent Claims,” The Journal of Finance Cambridge, 41(5): 1011-1029.
58.Hull, J. (1998), Introduction to Futures and Options Markets, Prentice Hall International Inc.
59.Hull, J. and White, A. (1987), “The Pricing of Options on Assets with Stochastic Volatilities,” Journal of Finance, 42(2): 281-300.
60.Hull, J. and White, A. (1990), “Pricing Interest-Rate-Derivative Securities,” Review of Financial Studies, 3(4): 573-592.
61.Hull, J. and White, A. (1993), “One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities,” Journal of Financial & Quantitative Analysis, 28(2): 235-54.
62.Hull, J. C. (1993), Options, Futures and Other Derivative Securities, 2nd ed., Prentice-Hall.
63.Hutchinson, James M., Lo, Andrew, W. and Poggio, Tomaso (1994), “A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks,” The Journal of Finance, Cambridge, 49(3): 851-889.
64.Kaufmann, A. and Gupta, M. M. (1991), “Introduction to Fuzzy Arithmetic Theory and Application,” Van Nostrand Reinhold, New York.
65.Kenneth, K. F. (1996), “Creating and Using Volatility Forecasts,” Journal of Derivatives Quarterly, l3(2): 39-53.
66.Kremer, J. W., and Roenfeldt, R. L. (1992), “Warrant Pricing: Jump-Diffusion vs. Black-Scholes,” Journal of Financial and Quantitative Analysis, 28(3): 255-271.
67.Lajbcygier, P.R. and Connor J.T. (1997), “Improved Option Pricing Using Bootstrap Methods,” IEEE ICNN97, 2193-2197.
68.Langetieg, T. C. (1980), “A Multivariate Model of the Term Structure,” The Journal of Finance Cambridge, 35(1): 71.
69.Lauterbach, B. and Schultz, P. (1990), “Warrants: An Empirical Study of the Black-Scholes Model and Its Alternatives,” Journal of Finance, 45(4): 1181-1209.
70.Lee, J.C., Lee, C. F. and Wei, K.C.J. (1991), “Binomial Option Pricing with Stochastic Parameters: A Beta Distribution Approach” Review of Quantitative Finance and Accounting, 1(3): 435-448.
71.Lee, W.-C. (1997a), “Pricing Derivative Securities via Glalerkin Method,” working paper.
72.Lee, W.-C. (1997b), “Option Pricing with Neural Networks-A Survey,” working paper.
73.Liang, Gin-Shuh, Wang, Mao-Jiun J. (1994), Personnel selection using fuzzy MCDM algorithm, European Journal of Operational Research. Amsterdam, 78(1): 22-33.
74.Longstaff, F. A. and Schwartz, E. S. (1992), “Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model.,” Journal of Finance, 47 (4): 1259-1282.
75.Jordan, J. V., Seale, W. E., McCabe, N. C., and Kenyon, D. E. (1987), “Transactions Data Tests of the Black-Scholes Model for Soybean Future Options, ” Journal of Futures Markets, 7(5): 535-554.
76.Jorion, P. (1988), “On Jump Processes in the Foreign Exchange and Stock Markets,” Review of Financial Studies, 1(4): 427-445.
77.Johnson, H. and Shanno, D. (1987), “Option Pricing When the Variance Is Changing,” Journal of Financial and Quantitative Analysis, 22(2): 143-153.
78.Macmillan, L.W. (1986), “Analytic Approximation for the American Put Option,” Advances in Futures and Options Research, 1(2):119-139.
79.Merton, R.C. (1973), “Theory of Rational Option Pricing,” The Bell Journal of Economics, 4(1): 141-183.
80.MacBeth, J. D. and Merville, L. J. (1979), “An Empirical Examination of the Black-Scholes Call Option Pricing Model,” Journal of Finance, 34(5): 1173-1186.
81.Merton, R.C. (1976), “Option Pricing when Underlying Stock Returns Are Discontinuous,” Journal of Financial Economics, 3(2): 125-144.
82.Molle, J.D. and Fernando, Z. (1996), “Problems with Monte Carlo Simulation in the Pricing of Contingent Claims,” Proceedings of the IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering, 114-119.
83.Noe, T.H. and J. Wang (1997), “The Self-Evolving Logic of Financial Claim Prices,” Paper Presented in the Third International Conference on Computing in Economics and Finance, Stanford, California, U.S.A. June30-July2, 1997.
84.Opricovic, S. and Tzeng, G.H. (2003), “Defuzzification within a Multicriteria Decision Model,” International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 11(5): 635-652.
85.Orlovsky, S. A. (1980), “On Formalization of a General Fuzzy Mathematical Problem,” Fuzzy sets and Systems, 3(3): 311-321.
86.Parkinson, M. (1980), “The Extreme Value Method for Estimating the Variance of the Rate of Return,” Journal of Business, 53(1): 61-65.
87.Paulson, A., Scacchia, J.H. and Goldenberg, D.H. (1997), “Skewness and Kurtosis in Pricing European and American Options,” Proceeding of the IEEE/IAFE 1997 Conference on Computational Intelligence for Financial Engineering, IEEE Press, 171-181.
88.Raymar, S. B. and Zwecher, M. J. (1997), “Monte Carlo Estimation of American Call Options on the Maximum of Several Stocks,” Journal of Derivatives New York, 5(1): 7-23.
89.Rendleman, R. J. and Bartter, B. J. (1980), “The Pricing of Options on Debt Securities,” Journal of Financial & Quantitative Analysis, 15(1): 11-24.
90.Richard, T. and Robert, R. (1978), “Common Stock Volatility Expectations Implied by Option Premia, Schmalensee,” Journal of Finance, 33(1): 129-147.
91.Ritchken, P. and Trevor, R. (1999), “Pricing Options under Generalized GARCH and Stochastic Volatility Processes,” Journal of Finance, 54(1): 377-402.
92.Romano, M. and Touzi, N. (1997), “Contingent Claims and Market Completeness in a Stochastic Volatility Model,” Mathematical Finance, 7(4): 399-412.
93.Rubinstein, M. (1983), “Displaced Diffusion Option Pricing,” Journal of Finance, 38(1): 213-217.
94.Rubinstein, M. (1985), “Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 Through August 31, 1978,” Journal of Finance, 40(2): 455-480.
95.Rabinovitch, R. (1989), “Pricing Stock and Bond Options When the Default-Free Rate is Stochastic,” Journal of Financial and Quantitative Analysis, 24(4): 447-457.
96.Sabbatini, M. and Linton, O. (1998), “A GARCH Model of the Implied Volatility of the Swiss Market Index from Option Prices,” International Journal of Forecasting, 14(2): 199-213.
97.Schaefer, S. M. and Schwartz, E. S. (1984), “A Two-Factor Model of the Term Structure: An Approximate Analytical Solution,” Journal of Financial and Quantitative Analysis Seattle, 19(4): 413-424.
98.Scott, L. (1987), “Option Pricing When Variance Changes Randomly: Theory, Estimation and An Application,” Journal of Financial and Quantitative Analysis. 22(4): 419-438.
99.Scott, L. O. (1997), “Pricing Stock Options in a Jump-Diffusion Model with Stochastic Volatility and Interest Rates: Applications of Fourier Inversion Methods,” Mathematical Finance, 7(4): 413-426.
100.Simonelli, M. R. (1991), “Fuzziness in Valuing Financial Instruments by Certainty Equivalents,” European Journal of Operational Research, 135(2): 296-302.
101.Stein, E. M. and Stein, J. C. (1991), “Stock Price Distributions with Stochastic Volatility: An Analytic Approach,” Review of Financial Studies, 4(4): 727-752.
102.Tanaka, H. and Asai, K. (1984), “Fuzzy Linear Programming Problems with Fuzzy Numbers,” Fuzzy Sets and Systems, 13(1): 1-10.
103.Trigueros, J. (1997), “A Nonparametric Approach to Pricing and Hedging Derivative Securities via Genetic Regression,” Proceedings of the IEEE/IAFE 1997 Conference on Computational Intelligence for Financial Engineering, IEEE Press, 1-7.
104.Gifford, F. and Oldrich A. V. (1997), “A multidimensional Framework for Risk Analysis,” Financial Analysts Journal Charlottesville, 53(4): 51-57.
105.Von Neumann, J. and Morgenstern, O., (1994) “Theory of Games and Economic Behavior,” Princeton University Press, Chichester, West Sussex.
106.Watson, S. R., Weiss, J. J. and Donnelly, J. L. (1979), “Fuzzy Decision Analysis,” IEEE Transactions on Systems, Man, and Cybernelics, 9(1): 1-9.
107.Wiggins, J.B. (1987), “Option Values under Stochastic Volatility: Theory and Empirical Evidence,” Journal of Financial Economics, 19(2): 351-372.
108.Whaley, R. E. (1982), “Valution of American Call Options on Dividend Paying Stocks: Empirical Tests,” Journal of Financial Economics, 10(1): 29-58.
109.Yoshida, Y. (2003), “The valuation of European options in uncertain environment,” European Journal of Operational Research, 145(1): 221-229.
110.Yu, P. L. (1990), Forming winning strategies: an integrated theory of habitual domains, Springer-Verlag, Berlin, Heidelberg, New York.
111.Zadeh, L. A. (1965), “Fuzzy Sets,” Information and Control, 8(3): 338-353.
112.Zadeh, L. A. (1968), “Probability Measure of Fuzzy Events, J. Math.” Anal. Appl. 23(3): 421-427.
113.Zadeh, L. A. (1972), “A Fuzzy Set Theoretical Interpretation of Linguistic Hedges,” Journal of Cybernetics, 2(1): 4-34.
114.Yung, Haynes H.M. and Zhang, Hua (2003), “An Empirical Investigation of the GARCH Option Pricing Model: Hedging Performance,” J. Futures Mark, 23(12): 1191-1207.
115.Zapart, Christopher (2002), “Stochastic Volatility Options Pricing with Wavelets and Artificial Nerual Networks,” Quantitative Finance, 2(6): 487-495.
116.Zapart, Christopher A. (2003), “Beyond Black-Scholes: A Neural Networks-Based Approach to Options Pricing,” International Journal of Theoretical & Applied Finance, 6(5): 469-489.
117.Zhang, X. L. (1997), “Numerical analysis of American option pricing in a jump-diffusion model,” Mathematics of Operations Research Linthicum, 22(3): 668-690.
118.Zimmermann, H.J. (1991), Fuzzy Set Theory and Its Applications, 2nd ed., Kluwer Academic Publishers.
119.Zmeskal, Z. (2001), “Application of the Fuzzy-stochastic Methodology to Appraising the Firm Value as a European Call Option,” European Journal of Operational Research, 135(2): 303-310.
120.Zmeskal, Z. (2005), “Value at Risk Methodology under Soft Conditions (Fuzzy-Stochastic Approach),” European Journal of Operational Research, 161(2): 337-347.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳志瑋,2004,〈三二○公投與台灣政治發展分析〉,《臺灣民主季刊》,第一卷,第二期。
2. 荊知仁,1996,〈憲法修改與憲政改革建言〉,《政策月刊》,第十二期。
3. 徐永明,2004,〈公投民主與代議民主的關係:以台灣經驗為例〉,《全國律師》,1月號。
4. 隋杜卿,2003,〈當前國內公民投票的爭議與辯證〉,《國家政策論壇》,冬季號。
5. 黃錦堂,2004,〈我國中央政府體制的現狀與展望〉,《月旦法學雜誌》,第一○八期。
6. 周繼祥,2005,〈中國制定《反分裂國家法》的挑戰與影響〉,《立法院院聞》,第三十三卷,第四期。
7. 徐正戎,2000,〈「左右共治」─「雙首長制」之宿命?〉,《政策月刊》,第五十九期。
8. 胡全威,2003,〈民粹主義與兩岸關係〉,《國家政策論壇》,冬季號。
9. 童振源,2005,〈乘勝追擊、積極前進的戰略〉,《新新聞週刊》,2005/3/24。
10. 陳朝政,2003,〈維護選舉公平,鞏固台灣民主發展〉,刊於《國家政策論壇》季刊,春季號。
11. 周育仁,1996,〈總統直選對我國憲政體制之影響〉,《問題與研究》,第三十五卷,第八期。
12. 游清鑫,1996,〈台灣政治民主化之鞏固:前景與隱憂〉,刊於《政治學報》,第二十七卷,台北:中國政治學會。
13. 周志宏,2004,〈公民投票法與憲法的相關問題〉,《全國律師》,1月號。
14. 周介山,2004,〈淺談置入式行銷問題〉,《審計季刊》,第二十四卷,第四期。
15. 林濁水,2003,〈談「公務人員行政中立法」--兼論行政中立在憲法中的地位〉,《考銓季刊》,第三十六期。