跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭稚庭
研究生(外文):Peng, Chih-Ting
論文名稱:白花蛇舌草對鏈脲佐菌素結合菸鹼醯胺誘發糖尿病大鼠之降血糖及降血脂作用
論文名稱(外文):Hypoglycemic and hypolipidemic effects of Hedyotis diffusa in streptozotocin-nicotinamide-induced diabetic rats
指導教授:盧義發盧義發引用關係
指導教授(外文):Lu, Yi-Fa
口試委員:王果行劉麗雲郭志宏羅翊禎
口試日期:2015-06-22
學位類別:碩士
校院名稱:輔仁大學
系所名稱:營養科學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:107
中文關鍵詞:白花蛇舌草糖尿病糖質新生血脂大鼠
外文關鍵詞:Hedyotis diffusadiabetes mellitusgluconeogenesislipidsrats
相關次數:
  • 被引用被引用:0
  • 點閱點閱:581
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
白花蛇舌草 (Hedyotis diffusa, HD) 為台灣民間常用之中草藥,具有抗氧化、抗腫瘤及免疫調節等特性。研究顯示白花蛇舌草內含有齊墩果酸 (oleanolic acid) 與熊果酸 (ursolic acid) 兩種主成分,而此兩種多酚在糖尿病的相關實驗中可藉由抑制糖質新生達到降血糖的效果,故本研究欲探討白花蛇舌草對鏈脲佐菌素 (streptozotocin, STZ) 結合菸鹼醯胺所誘發糖尿病大鼠之降血糖作用。將白花蛇舌草以不同溶劑 (水、50%乙醇、95%乙醇) 萃取,測定其抑制肝臟糖質新生之關鍵酵素 (glucose-6-phosphatase (G-6-Pase)、phosphoenolpyruvate carboxykinase (PEPCK) ) 活性,發現95%乙醇萃取物之抑制效果較佳。選擇此萃取方式進行動物實驗,將Wistar大鼠隨機分成五組,分別為控制組、糖尿病組、1%與3%白花蛇舌草組及正控制組(metformin)。除控制組外,其餘以STZ結合菸鹼醯胺合併高脂飼料誘發第二型糖尿病,經過四週後顯示,白花蛇舌草萃取物可顯著降低餐後一小時血糖濃度、在口服葡萄糖耐受測試 (OGTT) 中降低第60分鐘的血糖值,以及抑制糖新生關鍵酵素(G-6-Pase、fructose 1,6-bisphosphatase、PEPCK) 之活性。在血脂方面,給與白花蛇舌草萃取物可顯著降低血清中三酸甘油酯及總膽固醇的濃度,並可降低血清中TBARS含量。綜合上述,白花蛇舌草萃取物在體外可抑制糖新生關鍵酵素之活性,於動物實驗中可藉由降低肝臟糖質新生作用,達到改善第二型糖尿病餐後血糖的效果,並具有降低血脂之作用。
Hedyotis diffusa (HD) is a well-known Chinese folk medicine. Previous research has shown that HD has many potentially beneficial health effects including antioxidant, anti-tumor and immunomodulatory activities. Recent studies found that oleanolic acid and ursolic acid, the main phenolic compounds in HD, can reduce blood glucose by inhibiting gluconeogenesis in diabetic rats. Therefore, the present study investigated the hypoglycemic effects of Hedyotis diffusa in streptozotocin-nicotinamide-induced diabetic rats. The HD extracts derived from various solvents (hot water, 50% ethanol and 95% ethanol) were used to inhibit the enzyme activities (including glucose-6-phosphatase, G-6-pase and phosphoenolpyruvate carboxykinase, PEPCK) in gluconeogenesis were assayed. The results showed that HD extracts of 95% ethanol possessed the best inhibitory capacities of key enzymes in gluconeogenesis and therefore was chosen for the subsequent animal experiment. Wistar rats were randomly divided into control group, diabetic group, low- or high-dosage of HD extracts (1%, 3% extracts in diet, respectively) and positive control group (metformin). In addition to control group, rats were induced to develop type 2 diabetes mellitus by intraperitoneal injection of streptozotocin- nicotinamide in combination with high-fat diet. After four weeks, the results showed that ethanol extracts from HD significantly decreased postprandial blood glucose, blood glucose levels after oral glucose tolerance test (OGTT) at the 60th minute, and inhibited enzyme activities in gluconeogenesis, including G-6-Pase, fructose 1,6-bisphosphatase and PEPCK. In addition, diabetic rats treated with HD extracts displayed significantly decreased triacylglycerol, total cholesterol and thiobarbituric acid reactive substances (TBARS) content in serum. In conclusion, the 95% ethanol extracts of HD significantly inhibit enzyme activities in gluconeogenesis in vitro and improve postprandial blood glucose by inhibiting gluconeogenesis and hypolipidemia in type 2 diabetic rats.
目錄 頁次
中文摘要.........................................................................................................................Ⅰ
英文摘要.........................................................................................................................Ⅱ
致謝.................................................................................................................................Ⅲ
目錄.................................................................................................................................Ⅳ
表目錄.............................................................................................................................Ⅶ
圖目錄.............................................................................................................................Ⅷ
附表及附圖目錄.............................................................................................................Ⅹ
壹、 緒言......................................................................................................................1
貳、 文獻回顧
一、糖尿病 (Diabetes mellitus)
(一) 糖尿病之成因及分類...........................................................................2
(二) 糖尿病之診斷標準...............................................................................3
(三) 餐後高血糖與第二型糖尿病之相關性...............................................5
(四) 肥胖與胰島素阻抗及第二型糖尿病之相關性...................................6
(五) 糖尿病之治療.......................................................................................7
(六) 二甲雙胍藥物 (Metformin) 治療糖尿病之相關機制.......................8
二、 肝臟中葡萄糖轉運與代謝途徑
(一) 己糖激酶...............................................................................................9
(二) 糖質新生作用.....................................................................................10
三、白花蛇舌草 (Hedyotis diffusa)
(一) 白花蛇舌草之簡介.............................................................................11
(二) 白花蛇舌草之生理活性.....................................................................11
(三) 白花蛇舌草成分與糖尿病關係之探討.............................................12
四、鏈脲佐菌素結合菸鹼醯胺誘發糖尿病鼠之動物模式
(一) 鏈脲佐菌素 (STZ) 誘導糖尿病之相關機制....................................16
(二) 以STZ結合菸鹼醯胺(nicotinamide, NA)誘發糖尿病之機制與原
理...........................................................................................................17
參、 實驗材料與方法
一、實驗目的.........................................................................................................19
二、設計架構.........................................................................................................19
三、材料與器材.....................................................................................................21
四、實驗方法.........................................................................................................25
(一)實驗I:不同溶劑之白花蛇舌草萃取物對糖質新生相關酵素活性能力
之比較.......................................................................................25
(二)實驗Ⅱ:白花蛇舌草萃取物對STZ-NA誘導糖尿病大鼠之影響.....26
(三)實驗Ⅲ:白花蛇舌草之機能性成分分析..............................................33
五、統計分析.........................................................................................................33
肆、 結果.....................................................................................................................34
一、 實驗 I:不同溶劑之白花蛇舌草萃取物抑制糖質新生相關酵素活性能力之比較
(一)以不同溶劑萃取白花蛇舌草對葡萄糖六磷酸酶 (G-6-Pase) 活性之影
響.............................................................................................................34
(二)以不同溶劑萃取白花蛇舌草對PEPCK活性之影響............................34
二、實驗Ⅱ:白花蛇舌草萃取物對STZ-NA誘導糖尿病大鼠之糖代謝影響
(一) 體重及攝食量之變化.............................................................................34
(二) 空腹、餐後血糖與胰島素、HOMA-IR值之影響..............................35
(三) 口服葡萄糖耐受試驗 (OGTT) 血糖濃度之變化...............................36
(四) 糖質新生相關酵素之活性.....................................................................36
(五) 血清中果糖胺濃度之影響.....................................................................37
(六) 血清、肝臟中總抗氧化能力及脂質過氧化程度.................................37
(七) 血清總膽固醇與三酸甘油酯之濃度.....................................................38
三、實驗Ⅲ:白花蛇舌草之機能性成分分析........................................................38
伍、 討論.....................................................................................................................39
陸、 結論.....................................................................................................................51
柒、 參考文獻.............................................................................................................73

王若昱 (2013) 香茹草對streptozotocin結合菸鹼醯胺所誘發糖尿病大鼠之降血糖及抗氧化作用。輔仁大學營養科學系研究所碩士論文。
田羽秀 (2012) 香如草對於乙醯胺酚誘發小鼠肝損傷之抗氧化及護肝作用。輔仁
大學營養科學系研究所碩士論文。
李翊寧 (2014) 香如草對倉鼠抗氧化及脂質代謝之影響。輔仁大學營養科學系研究所碩士論文。
吳雅玲 (2007) 糖尿病大鼠葡萄糖代謝酵素變化之探討。靜宜大學食品營養學系碩士論文。
吳寧容 (2007) 番石榴葉萃出物 streptozotocin-nicotinamide誘發第二型糖尿病大白鼠血糖之影響。國立台灣大學生物資源暨農學院食品科技研究所碩士論文。
何菁菁 (2000) 糙薏仁對 STZ 所誘發之糖尿病大白鼠脂質與醣類代謝的影響。國立台灣海洋大學食品科學系碩士學位論文。
林孟儀 (2011) 白花蛇舌草對乙醯胺酚誘發小鼠肝損傷之抗氧化及護肝作用。輔仁大學營養科學系研究所碩士論文。
卓晏瑜 (2011) 愛玉子的瘦果與果托對抗氧化及脂質代謝之影響。輔仁大學營養科學系研究所碩士論文。
孟瑋,劉志強,邱世翠,韓兆東,張海霞 (2005)。中藥白花蛇舌草對小鼠免疫功能影響的初步研究。現代中西醫结合雜誌。
黃啟彰 (2002) 白花蛇舌草之萃取研究。國立成功大學化工系論文。
楊政哲 (1997) Hedyotis diffusa及其相關植物之抗氧化與活性研究。高雄醫學院藥學研究所博士論文。
劉孔煜 (2009) 白花蛇舌草(Hedyotis diffusa willd)細胞懸浮培養生產齊墩果酸、熊果酸之研究。大同大學生物工程研究所碩士論文。
American Diabetes Association. Postprandial blood glucose. Diabetes Care. 2001;24:775-8.
American Diabetes Association. Diagnosing diabetes and learning about prediabetes.
2014. http://www.diabetes.org/diabetes-basics/diagnosis/?loc=db-slabnav
Agius L, Peak M, Newgard CB, Gomez-Foix AM and Guinovart JJ. Evidence for a role of glucose induced translocation of glucokinase in the control of hepatic glycogen synthesis. J Biol Chem. 1996;271:30479-86.
Ahmad SF, Khan B, Bani S, Suri KA, Satti NK and Qazi GN. Amelioration of adjuvant-induced arthritis by ursolic acid through altered Th1/Th2 cytokine production. Pharmacol Res. 2006;53:233-40.
Banno N, Akihisa T, Tokuda H, Yasukawa K, Higashihara H, Ukiya M et al. Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci Biotechnol Biochem. 2004;68:85-90.
Bastyr EJ, Stuart CA, Brodows RG, Schwartz S, Graf CJ, Zagar A et al. Therapy focused on lowering postprandial glucose, not fasting glucose, may be superior for lowering HbA1c. Diabetes Care. 2000;23:1236-41.
Boden G, Chen X and Stein TP. Gluconeogenesis in moderately and severely hyperglycemic patients with type 2 diabetes mellitus. Am J Physiol Endocrinol Metab. 2001;280:23-30.
Bonora E. Postprandial peaks as a risk factor for cardiovascular disease: epidemiological perspectives. Int J Clin Pract Suppl. 2002;129:5-11.
Bourgeois F, Alexiu A and Lemonnier D. Dietary-induced obesity: Effect of dietary fats on adipose tissue cellularity in mice. Br J Nutr. 1983;49:17-26.
Buettner R, Scholmerich J and Bollheimer LC. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity. 2007;15:798-808.
Cai Q, Lin J, Wei L, Zhang L, Wang L, Zhan Y et al. Hedyotis diffusa willd inhibits colorectal cancer growth in vivo via inhibition of stat3 signaling pathway. Int J Mol Sci. 2012;13:6117-28.
Camer D, Yu Y, Szabo A and Huang XF. The molecular mechanisms underpinning the therapeutic properties of oleanolic acid, its isomer and derivatives for type 2 diabetes and associated complications. Mol Nutr Food Res. 2014;58:1750-9.
Cheung HY, Cheung SH, Law ML and Lai WP. Simultaneous determination of key bioactive components in Hedyotis diffusa by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;834:195-8.
Commerford SR, Pagliassotti MJ, Melby CL, Wei Y and Hill JO. Inherent capacity for lipogenesis or dietary fat retention is not increased in obesity-prone rats. Am J Physiol Regulat Integr Compar Physiol. 2001;280:R1680-7.
Cotelle N. Role of flavonoids in oxidative stress. Curr Top Med Chem. 2001;1:569-90.
Dai J and Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15:7313-52.
D’Alessio David. The importance of postprandial plasma glucose control. The caring for diabetes(Educational forum). 2010;1-24.
DeLany JP, Windhauser MM, Champagne CM and Bray GA. Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr. 2000;72:905-11.
de Veciana M, Major CA, Morgan MA, Asrat T, Toohey JS, Lien JM et al. Postprandial versus preprandial blood glucose monitoring in women with gestational diabetes mellitus requiring insulin therapy. N Engl J Med. 1995;333:1237-41.
Diamanti-Kandarakis E, Christakou CD, Kandaraki Eand Economou FN. Metformin: an old medication of new fashion: evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. Eur J Endocrinol. 2010;162:193-212.
Dobrian AD, Davies MJ, Schriver SD, Lauterio TJ and Prewitt RL. Oxidative stress in a rat model of obesity-induced hypertension. Hypertension. 2001;37:554-60.
Ellis J, Lake A and Hoover PJ. Monounsaturated canola oil reduces fat deposition in growing female rats fed a high or low fat diet. Nutr Res. 2002;22:609-21.
Fenton PF and Dowling MT. Studies on obesity. I. Nutritional obesity in mice. J Nutr. 1953;49:319-31.
Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114:1752-61.
Ganbold M, Barker J, Ma R, Jones L and Carew M. Cytotoxicity and bioavailability studies on a decoction of Oldenlandia diffusa and its fractions separated by HPLC. J Ethnopharmacol. 2010;131:396-403.
George V, Tremblay A, Després JP, Leblanc C and Bouchard C. Effect of dietary fat content on total and regional adiposity in men and women. Int J Obes. 1990;14:1085-94.
Galbo T and Shulman GI. Lipid-induced hepatic insulin resistance. Aging (Albany NY). 2013;5:582-3.
Ghasemi A, Khalifi S and Jedi S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes. Acta Physiol Hung. 2014;101:408-20.
Gu G, Barone I, Gelsomino L, Giordano C, Bonofiglio D, Statti G et al. Oldenlandia diffusa extracts exert antiproliferative and apoptotic effects on human breast cancer cells through ERa/Sp1-mediated p53 activation. J Cell Physiol. 2012;227:3363-72.
Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440:944-8.
Jang SM, Kim MJ, Choi MS, Kwon EY and Lee MK. Inhibitory effects of ursolic acid on hepatic polyol pathway and glucose production in streptozotocin-induced diabetic mice. Metabolism. 2010;59:512-9.
Jang SM, Yee ST, Choi J, Choi MS, Do GM, Jeon SM et al. Ursolic acid enhances the cellular immune system and pancreatic beta-cell function in streptozotocin-induced diabetic mice fed a high-fat diet. Int Immunopharmacol. 2009;9:113-9.
Kawai S, Mukai T, Mori S, Mikami B and Murata K. Hypothesis: structures, evolution, and ancestor of glucose kinases in the hexokinase family. J Biosci Bioeng. 2005;99:320-30.
Kopelman PG. Obesity as a medical problem. Nature. 2000;404:635-43.
Kröncke KD, Fehsel K, Sommer A, Rodriguez ML and Kolb-Bachofen V. Nitric oxide generation during cellular metabolization of the diabetogenic N-methyl-N-nitroso-urea streptozotozin contributes to islet cell DNA damage. Biol Chem Hoppe Seyler. 1995;376:179-85.
Laakso M and Lehto S. Epidemiology of macrovascular disease in diabetes. Diabetes Rev. 1997;5:294-315.
Lee J, Yee ST, Kim JJ, Choi MS, Kwon EY, Seo KI et al. Ursolic acid ameliorates thymic atrophy and hyperglycemia in streptozotocin-nicotinamide-induced diabetic mice. Chem Biol Interact. 2010;188:635-42.
Leclercq IA, Da Silva Morais A, Schroyen B, Van Hul N and Geerts A. Insulin resistance in hepatocytes and sinusoidal liver cells: mechanisms and consequences. J. Hepatol. 2007;47:142-56.
Leiter LA, Ceriello A, Davidson JA, Hanefeld M, Monnier L, Owens DR et al. Postprandial glucose regulation: new data and new implications.Clin Ther. 2005;27:S42-56.
Lebovitz HE. Insulin secretagogues: Old and new. Diabetes Rev. 1999;7:139-53.
Lin J, Li Q, Chen H, Lin H and Lai Z, Peng J. Hedyotis diffusa Willd extract suppresses proliferation and induces apoptosis via IL-6-inducible STAT3 pathway inactivation in human colorectal cancer cells. Oncol Lett. 2015;9:1962-70.
Lin CC, Ng LT, Yang JJ, Hsu YF. Anti-inflammatory and hepatoprotective activity of peh-hue-juwa-chi-cao in male rats. Am J Chin Med. 2002;30:225-34.
Liu J. Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol. 1995;49:57-68.
Liu J, Liu Y, Mao Q, Klaassen CD. The effects of 10 triterpenoid compounds on experimental liver injury in mice. Fundam Appl Toxicol. 1994;22;34-40.
Liang ZT, Jiang ZH, Fong WFD and Zhao ZZ. Determination of oleanolic acid and ursolic acid in Oldenlandia diffusa and its substitute using high performance liquid chromatography. Journal of Food and Drug Analysis. 2009;17:69-77.
Ma JQ, Ding J, Zhang L and Liu CM. Protective effects of ursolic acid in an experimental model of liver fibrosis through Nrf2/ARE pathway. Clin Res Hepatol Gastroenterol. 2015;39:188-97.
Marzban L, Rahimian R, Brownsey RW and McNeill JH. Mechanisms by which bis (maltolato) oxovanadium (IV) normalizes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression in streptozotocin-diabetic rats in vivo.
Endocrinology. 2002;143:4636-45.
Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D et al. Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes. 1998;47:224-9.
Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H, et al. Increased oxidative stress precedes the onset of high-fat dietinduced insulin resistance and obesity. Metabolism. 2008;57:1071-7.
Meagher EA and FitzGerald GA. Indices of lipid peroxidation in vivo: strengths and limitations. Free Radic Bio Med. 2000;28:1745-50.
Meglasson MD and Matschinsky FM. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab Rev. 1986;2:163-214.
Monnier L, Lapinski H and Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA(1c). Diabetes Care. 2003;26:881-5.
Monnier L, Colette C, Dunseath GJ and Owens DR. The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care. 2007;30:263-9.
Moussavi N, Gavino V and Receveur O. Could the quality of dietary fat, and not just its quantity, be related to risk of obesity? Obesity (Silver Spring). 2008;16:7-15.
Nagayama F, Ohshima H and Umezawa K. Distribution of glucose-6-phosphate metabolizing enzymes in fish. Bulletin Jap Soc Scient Fish. 1972;386:589-93.
Nuttall FQ, Ngo A and Gannon MC. Regulation of hepatic glucose production and the role of gluconeogenesis in humans: is the rate of gluconeogenesis constant? Diabetes Metab Res Rev. 2008;24:438-58.
Nukatsuka M, Yoshimura Y, Nishida M and Kawada J. Importance of the concentration of ATP in rat pancreatic beta cells in the mechanism of streptozotocin-induced cytotoxicity. J Endocrinol. 1990;127:161-5.
Ovesná Z, Vachálková A, Horváthová K and Tóthová D. Pentacyclic triterpenoic acids: new chemoprotective compounds. Neoplasma. 2004;51:327-33.
Oteiza PI, Olin KL, Fraga CG and Keen CL. Zinc deficiency causes oxidative damage to protein, lipids and DNA in rat tests. J Nutr. 1995;125:823-9.
Pedersen O, Kahn CR, Flier JS and Kahn BB. High fat feeding causes insulin resistance and a marked decrease in the expression of glucose transporters (Glut 4) in fat cells of rats. Endocrinology. 1991;129:771-7.
Prabhakar E and Rao BS. Rapid calorie metering ad lib rats. J. Biosci. 1985;9:41-5.
Raphael TJ and Kuttan G. Effect of naturally occurring triterpenoids glycyrrhizic acid, ursolic acid, oleanolic acid and nomilin on the immune system. Phytomedicine 2003;10:483-9.
Ramírez-Espinosa JJ, Rios MY, López-Martínez S, López-Vallejo F, Medina-Franco JL, Paoli P et al. Antidiabetic activity of some pentacyclic acid triterpenoids, role of PTP-1B: in vitro, in silico, and in vivo approaches. Eur J Med Chem. 2011;46;2243-51.
Ravipati AS, Zhang L, Koyyalamudi SR, Jeong SC, Reddy N, Bartlett J et al. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement Altern Med. 2012;12:173.
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M and Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231-7.
Reimer MK and Ahrén B. Altered beta-cell distribution of pdx-1 and GLUT-2 after a short-term challenge with a high-fat diet in C57BL/6J mice. Diabetes. 2002;51:S138-43.
Richard JS. Targeting plasma glucose: preprandial versus postprandial. Clinical Diabetes. 2004;22:169-72.
Roden M and Bernroider E. Hepatic glucose metabolism in humans--its role in health and disease. Best Pract Res Clin Endocrinol Metab. 2003;17:365-83.
Rosediani M, Azidah AK and Mafauzy M. Correlation between fasting plasma glucose, post prandial glucose and glycated haemoglobin and fructosamine. Med J Malaysia. 2006;61:67-71.
Saraswat B, Visen PKS, Dayal R, Agarwal DP and Patnaik GK. Protective action of ursolic acid against chemical induced hepatotoxicity in rats. Indian J Pharmacol. 1996;28:232-9.
Sandler S and Swenne I. Streptozotocin, but not alloxan, induces DNA repair synthesis in mouse pancreatic islets in vitro. Diabetologia. 1983;25:444-7.
Seghrouchni I, Drai J, Bannier E, Rivière J, Calmard P, Garcia I et al. Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency. Clin Chim Acta. 2002;321:89-96.
Srinivasan K and Ramarao P. Animal models in type 2 diabetes research: an overview. Indian J Med Res. 2007;125:451-72.
Somova LO, Nadar A, Rammanan P and Shode FO. Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine. 2003;10:115-21.
Storlien LH, Huang XF, Lin S, Xin X, Wang HQ, Else PL. Dietary fat subtypes and obesity. World Rev Nutr Diet. 2001;88:148-54.
Sun T, Wang Q, Yu Z, Zhang Y, Guo Y, Chen K et al. Hyrtiosal, a PTP1B inhibitor from the marine sponge Hyrtios erectus, shows extensive cellular effects on PI3K/AKT activation, glucose transport, and TGF beta/Smad2 signaling. Chembiochem. 2007;8;187-93.
Son TG, Camandola S and Mattson MP. Hormetic dietary phytochemicals.
Neuromolecular Med. 2008;10:236-46.
Szkudelski T. Streptozotocin–nicotinamide-induced diabetes in the rat.
Characteristics of the experimental model. Exp Biol Med. 2012;237:481-90.
Szkudelski T. The mechanism of alloxan and streptozotocin action in β cells of the rat pancreas. Physiol Res. 2001;50:537-46.
Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes. 2015;6:456-80.
Terauchi Y, Takamoto I, Kubota N, Matsui J, Suzuki R, Komeda K et al. Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance. J Clin Invest. 2007;117:246-57.
Turk J, Corbett JA, Ramanadham S, Bohrer A and McDaniel ML. Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochem Biophys Res Commun. 1993;197:1458-64.
Vincent HK and Taylor AG. Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int J Obes (Lond). 2006;30:400-18.
Wang X, Hai CX, Liang X, Yu SX, Zhang W and Li YL. The protective effectsof Acanthopanax senticosus Harms aqueous extracts against oxidative stress:role of Nrf2 and antioxidant enzymes. J. Ethnopharmacol. 2010;127:424-432.
Wang X, Li YL, Wu H, Liu JZ, Hu JX, Liao N et al. Antidiabetic effect of oleanolic acid: a promising use of a traditional pharmacological agent. Phytother Res. 2011;25:1031-40.
Wang X, Liu R, Zhang W, Zhang X, Liao N, Wang Z et al. Oleanolic acid improves hepatic insulin resistance via antioxidant, hypolipidemic and anti-inflammatory effects. Mol Cell Endocrinol. 2013;376:70-80.
Xu BJ and Sung CK. Chemical constituents and pharmacological activities of Hedyotis diffusa. Natural Product Sciences. 2005;11:1-9.
Yang R, Le G, Li A, Zheng J and Shi Y. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet. Nutrition. 2006;22:1185-91.
Yang T, Yang YH, Yang JY, Chen BM, Duan JP, Yu SY et al. Fingerprint of Hedyotis diffusa Willd by HPLC-MS. Phytochem Anal. 2008;19:487-92.
Yaqoob P, Sherrington EJ, Jeffery NM, Sanderson P, Harvey DJ, Newsholme EA et al. Comparison of the effects of a range of dietary lipids upon serum and tissue lipid composition in the rat. Int J Biochem Cell Biol. 1995;27:297-310.
Yunoki K, Sasaki G, Tokuji Y, Kinoshita M, Naito A, Aida K et al. Effect of dietary wine pomace extract and oleanolic acid on plasma lipids in rats fed high-fat diet and its DNA microarray analysis. J Agric Food Chem. 2008;56;12052-58.
Zeng XY, Wang YP, Cantley J, Iseli TJ, Molero JC, Hegarty BD et al. Oleanolic acid reduces hyperglycemia beyond treatment period with Akt/FoxO1-induced suppression of hepatic gluconeogenesis in type 2 diabetic mice. PLoS One. 2012;7:e42115.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊