|
1.Ford, J.C., et al., A method for in vivo high resolution MRI of rat spinal cord injury. Magnetic resonance in medicine, 1994. 31(2): p. 218-223. 2.Falconer, J.C., et al., Quantitative MRI of spinal cord injury in a rat model. Magnetic resonance in medicine, 1994. 32(4): p. 484-491. 3.Zhao, F., et al., BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation. Neuroimage, 2008. 40(1): p. 133-47. 4.Zhao, F., et al., Pain fMRI in rat cervical spinal cord: an echo planar imaging evaluation of sensitivity of BOLD and blood volume-weighted fMRI. Neuroimage, 2009. 44(2): p. 349-62. 5.Basser, et al., MR diffusion tensor spectroscopy and imaging. Biophysical journal, 1994. 66(1): p. 259. 6.Kim, J.H., et al., Noninvasive diffusion tensor imaging of evolving white matter pathology in a mouse model of acute spinal cord injury. Magn Reson Med, 2007. 58(2): p. 253-60. 7.Nevo, U., et al., Diffusion anisotropy MRI for quantitative assessment of recovery in injured rat spinal cord. Magnetic resonance in medicine, 2001. 45(1): p. 1-9. 8.Biswal, B., et al., Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic resonance in medicine, 1995. 34(4): p. 537-541. 9.Gareis, D., et al., Mouse MRI using phased-array coils. NMR Biomed, 2007. 20(3): p. 326-34. 10.Yung, A.C. and P. Kozlowski, Signal-to-noise ratio comparison of phased-array vs. implantable coil for rat spinal cord MRI. Magn Reson Imaging, 2007. 25(8): p. 1215-21. 11.Sandner, B., et al., In vivo high-resolution imaging of the injured rat spinal cord using a 3.0T clinical MR scanner. J Magn Reson Imaging, 2009. 29(3): p. 725-30. 12.Mogatadakala, K.V., J.A. Bankson, and P.A. Narayana, Three-element phased-array coil for imaging of rat spinal cord at 7T. Magn Reson Med, 2008. 60(6): p. 1498-505. 13.Woytasik, M., et al., Characterization of flexible RF microcoils dedicated to local MRI. Microsystem Technologies, 2006. 13(11-12): p. 1575-1580. 14.Misic, G.J. and E.D. Reid, Anatomically conformal quadrature mri surface coil, in U.S. Patent and Trademark Office. 1993: Washington, DC, USA. 15.Lu, D., Flexible RF coils for MRI system, in U.S. Patent and Trademark Office. 1996: Washington, DC. 16.Nordmeyer-Massner, J.A., N. De Zanche, and K.P. Pruessmann, Mechanically adjustable coil array for wrist MRI. Magn Reson Med, 2009. 61(2): p. 429-38. 17.Nordmeyer-Massner, J.A., N. De Zanche, and K.P. Pruessmann, Stretchable coil arrays: application to knee imaging under varying flexion angles. Magn Reson Med, 2012. 67(3): p. 872-9. 18.Brown, R., et al., A flexible nested sodium and proton coil array with wideband matching for knee cartilage MRI at 3T. Magn Reson Med, 2015. 19.Deppe, M.H., et al., A flexible 32-channel receive array combined with a homogeneous transmit coil for human lung imaging with hyperpolarized 3He at 1.5 T. Magn Reson Med, 2011. 66(6): p. 1788-97. 20.Hardy, C.J., et al., 128-channel body MRI with a flexible high-density receiver-coil array. J Magn Reson Imaging, 2008. 28(5): p. 1219-25. 21.Zhang, T., et al., A semiflexible 64-channel receive-only phased array for pediatric body MRI at 3T. Magn Reson Med, 2015. 22.Wu, B., et al., Flexible transceiver array for ultrahigh field human MR imaging. Magn Reson Med, 2012. 68(4): p. 1332-8. 23.Hashemi, R.H., W.G. Bradley, and C.J. Lisanti, MRI: the basics. 2012: Lippincott Williams & Wilkins. 24.Vaughan, J.T. and J.R. Griffiths, RF coils for MRI. 2012: John Wiley & Sons. 25.Magnetic Field of a Current Loop using Ampère''s Law. Available from: http://physics.stackexchange.com/questions/160513/magnetic-field-of-a-current-loop-using-amp%C3%A8res-law. 26.Roemer, P.B., et al., The NMR phased array. Magn Reson Med, 1990. 16(2): p. 192-225. 27.Pozar, D.M., Microwave enigneering. 2009: John Wiley & Sons. 28.Mispelter, J., M. Lupu, and A. Briguet, NMR probeheads for biophysical and biomedical experiments: theoretical principles & practical guidelines. 2006: Imperial College Press. 29.Neamen, D., Semiconductor physics and devices. 2002: McGraw-Hill, Inc. 30.Lee, T.H., The design of CMOS radio-frequency integrated circuits. 2003. 31.Hoult, D.I. and R.E. Richards., The signal-to-noise ratio of the nuclear magnetic resonance experiment. Journal of Magnetic Resonance, 1976. 24(1): p. 71-85. 32.劉彥良, 以高溫超導射頻線圈平台於7T磁場進行大鼠腦部功能性磁振造影之研究. 2012, 國立臺灣大學電機工程學研究所學位論文. p. 1-78. 33.Wosik, J., Xie, et al., Superconducting single and phased-array probes for clinical and research MRI. Applied Superconductivity, IEEE Transactions on,, 2003. 13(2): p. 1050-1055. 34.林漢庭, 磁共振陣列線圈之去耦合設計及生醫影像應用之研究. 2007, 國立臺灣大學電機工程學研究所學位論文. p. 1-84. 35.Gonzalez, G., Microwave transistor amplifiers: analysis and design. Vol. 61. 1984, Englewood Cliffs: NJ: Prentice-Hall. 36.Dodd, S.J., et al., Modular Preamplifier Design and Application to Animal Imaging at 7 and 11.7T, in Proc. Intl. Soc. Mag. Reson. Med. 2009. 37.Fukui, H., Design of microwave GaAs MESFET''s for broad-band low-noise amplifiers. IEEE Transactions on Microwave Thoery and Techniques, 1979. 27(7): p. 643-650. 38.Keysight Technologies, A.N., Noise Figure Measurement Accuracy-The Y-factor method. 2014. 39.Possanzini, C. and M. Boutelje. Influence of magnetic field on preamplifiers using GaAs FET technology. in In Proceedings of the 16th Annual Meeting of ISMRM. 2008. Toronto, Canada. 40.Reykowski, A., S.M. Wright, and J.R. Porter, Design of matching networks for low noise preamplifiers. Magn Reson Med, 1995. 33(6): p. 848-852. 41.Tobgay, S., Novel concepts for RF surface coils with integrated receivers. 2004, Worchester Polytechnic Institute. 42.SKELETAL SYSTEM. Available from: http://biology.kenyon.edu/courses/biol10/110pdfs/8skeleton.pdf. 43.Hayes, C.E. and P.B. Roemer, Noise correlations in data simultaneously acquired from multiple surface coil arrays. Magnetic resonance in medicine, 1990. 16(2): p. 181-191. 44.Ji, J.X., J.B. Son, and S.D. Rane, PULSAR: A Matlab toolbox for parallel magnetic resonance imaging using array coils and multiple channel receivers. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 2007. 31B(1): p. 24-36. 45.Tuch, D.S., et al., High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med, 2002. 48(4): p. 577-82. 46.Wedeen, V.J., et al., Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med, 2005. 54(6): p. 1377-86. 47.Anderson, A.W., Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magn Reson Med, 2005. 54(5): p. 1194-206. 48.Mori, S. and P.C. van Zijl, Fiber tracking: principles and strategies - a technical review. NMR Biomed, 2002. 15(7-8): p. 468-80. 49.Lazar, M., et al., White matter tractography using diffusion tensor deflection. Hum Brain Mapp, 2003. 18(4): p. 306-21. 50.Parker, G.J., C.A. Wheeler-Kingshott, and G.J. Barker, Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. Medical Imaging, IEEE Transactions on, 2002. 21(5): p. 505-512. 51.DSI Studio. Available from: http://dsi-studio.labsolver.org. 52.Lin, C.-P., et al., Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms. NeuroImage, 2003. 19(3): p. 482-495. 53.Wu, E.L., J.H. Chen, and T.D. Chiueh, Wideband MRI Theoretical analysis and its applications, in In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. 2010. p. 5681-5684. 54.Huang, Y.A., et al. W= 2 Acceleration Single carrier Wideband MRI Technique and Blur Mitigation Method. in Mag. Reson. Med. 2013. 55.Ogawa, S., et al., Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 1990. 87(24): p. 9868-9872. 56.Stroman, P.W., Magnetic Resonance Imaging of Neuronal Function in the Spinal Cord Spinal fMRI. Clinical medicine & research, 2005. 3(3): p. 146-156. 57.Zhao, F., et al., fMRI investigation of the effect of local and systemic lidocaine on noxious electrical stimulation-induced activation in spinal cord. Pain, 2009. 145(1-2): p. 110-9. 58.Malisza, K.L., et al., Functional MRI of the rat lumbar spinal cord involving painful stimulation and the effect of peripheral joint mobilization. J Magn Reson Imaging, 2003. 18(2): p. 152-9. 59.Lawrence, J., et al., Correlation of functional activation in the rat spinal cord with neuronal activation detected by immunohistochemistry. Neuroimage, 2004. 22(4): p. 1802-7. 60.Malisza, K.L. and P.W. Stroman, Functional imaging of the rat cervical spinal cord. J Magn Reson Imaging, 2002. 16(5): p. 553-8. 61.Majcher, K., et al., Simultaneous functional magnetic resonance imaging in the rat spinal cord and brain. Exp Neurol, 2006. 197(2): p. 458-64.
|