跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.124) 您好!臺灣時間:2025/09/19 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹皓仲
研究生(外文):Hao-Zhong Zhan
論文名稱:不同還原條件對氧化石墨烯薄膜半導體特性之影響
論文名稱(外文):The Affect of Different Reducing Conditions on Graphene Oxide Thin Film Semiconductor Characteristics
指導教授:鄭榮偉何正榮
指導教授(外文):J. W. ChengJ. R. Ho
口試委員:鄭榮偉何正榮丁初稷
口試委員(外文):J. W. ChengJ. R. HoC. C. Ting
口試日期:2013-07-29
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程學系暨研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:75
中文關鍵詞:氧化石墨烯還原程度N-typeP-type
外文關鍵詞:graphene oxidereductionO/C ratio
相關次數:
  • 被引用被引用:0
  • 點閱點閱:688
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要論述氧化石墨烯 (Graphene oxide, GO) 不同還原程度之特性與結構上的分析,首先利用氧化石墨烯水溶液的溶液製程,以兩種成膜方式形成不同的膜厚:(1)浸泡塗覆法(Dip-coating),厚度約20 nm以及(2)旋轉塗佈法(Spin-coating),厚度約1~5 nm,製作成下閘極(Bottom gate)的場效電晶體元件(Field-effect transistor),並使用加熱還原的方式在高真空(3-5x10-6 torr)環境中以不同的加熱溫度:27℃、200℃、300℃、400℃以及500℃形成不同還原程度的還原石墨烯膜(Reduced grapheme oxide, rGO),檢測載子遷移率以及特性,觀察其趨勢的變化。
結果顯示以浸泡塗覆法成膜之厚膜,其載子遷移率隨著還原溫度提高至300℃時相較未還原前增加了2 ~ 4個數量級(order),此外氧化石墨烯的型態表現也從P-type轉變成N-type,而以旋轉塗佈法成膜之薄膜,雖然載子遷移率也有隨著溫度提高而增加的相同趨勢,但氧化石墨烯的型態表現卻一直表現P-type。為此,以XPS(X-Ray photoelectron spectroscopy)、Raman等各種量測儀器,檢測rGO薄膜特性與結構,並探討影響載子遷移率提升以及型態上轉換的關鍵因素。發現氧化石墨烯中氧原子比例與碳原子比例之比值O/C會隨著還原溫度的增加而下降,其中厚膜的O/C比值變化曲線較薄膜明顯,從還原前的2.78下降至0.88左右;薄膜O/C比值則是從3.01下降至1.86,顯示出厚膜較薄膜易拔氧還原,推測O/C比值影響型態的表現。進一步的利用Raman分析來觀察D、 G和2D peak的變化,厚膜的G peak與2D peak隨著還原溫度的增加而往低頻率方向移動表現出N-type的行為,此結果與文獻一致,而另外薄膜G peak一直維持在相同的頻率沒有改變,維持在P型。

This thesis aims to analyze the structural characteristics of the graphene oxide (GO) with different degree of reduction by heating with various temperatures (from27℃ to 500℃) in a high vacuum (3 ~ 5 x10-6 torr) and different thickness are investigated.First, the use of graphene oxide aqueous of solution process is formed in two different film thickness by two ways: (1) Dip-coating, about 20 nm and (2) Spin-coating, about 1 ~ 5 nm. The reduced GO thin films were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy and electrical transport measurements, respectively.
  The electrical measurements indicated that the mobility of thick film can improve about 2~4 order after thermal reduction. Moreover, it is observed that GO FET devices show p-type semiconducting behavior before reduction but when the same device is tested after the thermal reduction at 300℃, it shows n-type semiconducting behavior. However, it just only observed at thick films, the thinner films always shows p-type semiconducting even when the reducing temperature rise to 500℃.
  The effect of high-temperature on the functional groups of GO film is evidently examined using X-ray photoelectron spectroscopy and Raman spectroscopy. The results indicated that the thick film can effectively remove the oxygen-containing functional groups by observed the atomic oxygen-to-carbon (O/C) ratio from 2.78 decrease to 0.88 and restore its graphic structure compared to the thinner film from 3.01 decrease to 1.86. The Raman measurements show that the G and 2D peaks have different doping dependence to check the behavior of GO.

誌謝 ................................ ................................ .................. I
中文摘要 ................................ ................................ .............. II
Abstract AbstractAbstract ................................ ............................ III
目錄 ................................ ................................ ................. IV
圖目錄 ................................ ............................... ................ VI
表目錄 ................................ ................................................ X
第一章 緒論 ................................ ............................................ 1
1.1 背景 ................................ ............................ ................. 1
1.2 動機與目的 ................................ .......................................... 2
第二章 文獻回顧 ................................ ............................... ......... 3
2.1 氧化石墨烯還原方法 .................................................................... 3
2.1.1 化學還原 ........................................... .............................. 3
2.1.2 高溫還原 ........................................... .............................. 8
2.2 氧化石墨烯的檢測 ............................................. ....................... 11
2.2.1 不同還原環境 ................................................. .................... 11
2.2.2 還原溫度的影響 ................................ .................... ............... 14
2.2.3 不同氧化程度的特性差異 ................................ ............................. 18
2.3 氧化 石墨烯還原 後之型態轉換 ................................ ...................... ... 21
2.3.1 不同製備、還原方法與摻雜的影響 ................................ ....................... 21
2.3.2 化學還原之熱退火影響 ................................ ............................... 24
2.3.3 石墨烯載子濃度 檢測 ................................ ............................... 26
2.4 傳承與創新 ................................ ...................................... .. 28
第三章 薄膜式場效電晶體元件製作 ................................ ............................ 29
3.1. 實驗用品及相關 儀器 ................................ ................................. 29
3.2 實驗目的與架構 ................................ ................................ ..... 31
3.3 元件製作流程 ................................ ........ ............................... 32
3.3.1 浸泡塗覆成膜 ................................ ...................................... 32
3.3.2 旋轉塗佈成膜 ................................ ................................ ..... 34
第四章 結果討論 ................................ ................................. ....... 35
4.1 元件特性 ................................ .................................... ...... 35
4.1.1 浸泡塗覆法製作薄膜電晶體 ................................ ............................ 35
4.1.2 旋轉塗佈法製作薄膜電晶體 ................................ ............................ 39
4.2 氧化石墨烯還原前後之結構分析 ................................ ........................... 43
4.2.1 XPS XPS 表面化學結構分析 ......................................................... .. 43
A. 浸泡塗覆法製作 薄膜 .................................. .................................. 43
B. 旋轉塗佈法製作薄膜 ................................ ........................... ......... 46
4.2.2 Raman 光譜儀檢測 薄膜結構 ............................................................ 53
A. 浸泡塗覆法製作薄膜 ................................ ........................... ......... 53
B. 旋轉塗佈法製作薄膜 ................................ ........................... ......... 55
第五章 結論 ................................ ............................. ............... 58
口試委員問題與回覆 ................................ ........................................ 59
參考文獻 ................................ ................................................ 61
[1]S. Pang, H. N. Tsao, X. Feng, and K. Mullen, “Patterned Graphene Electrodes from Solution-Processed Graphite Oxide Films for Organic Field-Effect Transistors,” Advanced Materials, 21, 1–4, 2009.
[2]http://www.materialsnet.com.tw/DocView.aspx?id=8109
[3]Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of Graphene Transistors at GHz Frequencies”, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598.
[4]P. Shemella, Y. Zhang, M. Mailman, P. M. Ajayan, S. K. Nayak, “Energy gaps in zero-dimensional graphene nanoribbons”, Applied Physics Letters, 91, 042101, 2007.
[5]S. Stankovich, D.A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, 45, 1558–1565, 2007.
[6]H. J. Shin, K. K. Kim, A. Benayad, S.M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance”, Advanced Functional Materials, 19, 1987–1992, 2009.
[7]H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors”, ACS Nano, 2, NO. 3, 463–470, 2008.
[8]Z. Yin, S. Sun, T. Salim, S. Wu, X. Huang, Q. He, Y. Ming L., and H. Zhang, “Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes”, ACS Nano, 4, NO. 9, 5263–5268, 2010.
[9]Y. Xu, G. Long, L. Huang, Y. Huang, X. Wan, Y. Ma, Y. Chen, “Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting”, Carbon, 48, 3293–3311, 2010.
[10]A. Wei, J. Wang, Q. Long, X. Liu, X. Li, X. Dong, W. Huang, “Synthesis of high-performance graphene nanosheets by thermal reduction of graphene oxide”, Materials Research Bulletin, 46, 2131–2134, 2011
[11]J. Li, H. Lina, Z. Yang, J. Li, “A method for the catalytic reduction of graphene oxide at temperatures below 150 ℃”, Carbon, 49, 3024–3030, 2011.
[12]G. Venugopal, K. Krishnamoorthy, S. J. Kim, "An investigation on high-temperature electrical transport propertiesof graphene-oxide nano-thinfilms", Applied Surface Science, 2013.
[13]G. Venugopal, K. Krishnamoorthy, S. J. Kim, "An investigation on high-temperature electrical transport propertiesof graphene-oxide nano-thinfilms", Journal of Physics D: Applied Physics, 42, 065418, 2009.
[14]M. Jin, H. K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang and Y. H. Lee, "Graphene oxide thin film field effect transistors without reduction", Journal of Physics D: Applied Physics, 42, 135109, 2009.
[15]D. J. Late, A. Ghosh, K.S. Subrahmanyam, L.S. Panchakarla, S.B. Krupanidhi, C.N.R. Rao, "Characteristics of field-effect transistors based on undoped and B- and N-doped few-layer graphenes", Solid State Communications, 150, 734 738, 2010.
[16]D. Joung, A. Chunder, L. Zhai and S. I Khondaker, "High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis", Nanotechnology, 21, 165202, 2010.
[17]A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor”, Nature Nanotechnology, Vol 3, 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top