|
[1]S. Pang, H. N. Tsao, X. Feng, and K. Mullen, “Patterned Graphene Electrodes from Solution-Processed Graphite Oxide Films for Organic Field-Effect Transistors,” Advanced Materials, 21, 1–4, 2009. [2]http://www.materialsnet.com.tw/DocView.aspx?id=8109 [3]Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of Graphene Transistors at GHz Frequencies”, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598. [4]P. Shemella, Y. Zhang, M. Mailman, P. M. Ajayan, S. K. Nayak, “Energy gaps in zero-dimensional graphene nanoribbons”, Applied Physics Letters, 91, 042101, 2007. [5]S. Stankovich, D.A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, 45, 1558–1565, 2007. [6]H. J. Shin, K. K. Kim, A. Benayad, S.M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance”, Advanced Functional Materials, 19, 1987–1992, 2009. [7]H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors”, ACS Nano, 2, NO. 3, 463–470, 2008. [8]Z. Yin, S. Sun, T. Salim, S. Wu, X. Huang, Q. He, Y. Ming L., and H. Zhang, “Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes”, ACS Nano, 4, NO. 9, 5263–5268, 2010. [9]Y. Xu, G. Long, L. Huang, Y. Huang, X. Wan, Y. Ma, Y. Chen, “Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting”, Carbon, 48, 3293–3311, 2010. [10]A. Wei, J. Wang, Q. Long, X. Liu, X. Li, X. Dong, W. Huang, “Synthesis of high-performance graphene nanosheets by thermal reduction of graphene oxide”, Materials Research Bulletin, 46, 2131–2134, 2011 [11]J. Li, H. Lina, Z. Yang, J. Li, “A method for the catalytic reduction of graphene oxide at temperatures below 150 ℃”, Carbon, 49, 3024–3030, 2011. [12]G. Venugopal, K. Krishnamoorthy, S. J. Kim, "An investigation on high-temperature electrical transport propertiesof graphene-oxide nano-thinfilms", Applied Surface Science, 2013. [13]G. Venugopal, K. Krishnamoorthy, S. J. Kim, "An investigation on high-temperature electrical transport propertiesof graphene-oxide nano-thinfilms", Journal of Physics D: Applied Physics, 42, 065418, 2009. [14]M. Jin, H. K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang and Y. H. Lee, "Graphene oxide thin film field effect transistors without reduction", Journal of Physics D: Applied Physics, 42, 135109, 2009. [15]D. J. Late, A. Ghosh, K.S. Subrahmanyam, L.S. Panchakarla, S.B. Krupanidhi, C.N.R. Rao, "Characteristics of field-effect transistors based on undoped and B- and N-doped few-layer graphenes", Solid State Communications, 150, 734 738, 2010. [16]D. Joung, A. Chunder, L. Zhai and S. I Khondaker, "High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis", Nanotechnology, 21, 165202, 2010. [17]A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor”, Nature Nanotechnology, Vol 3, 2008.
|