跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃文賢
研究生(外文):Huang, Wen-Hsien
論文名稱:低熱預算非晶矽應用於光伏元件及非揮發性記憶體之製作
論文名稱(外文):Low Thermal Budget Amorphous Silicon for Fabrication of Photovoltaic and Non-volatile Memory Devices
指導教授:潘扶民謝嘉民
指導教授(外文):Pan, Fu-MingShieh, Jia-Min
口試委員:許鉦宗吳耀銓葉文冠張廖貴術
口試委員(外文):Sheu, Jeng-TzongWu, Yew-ChungYeh, Wen-KuanChang-Liao, Kuei-Shu
口試日期:2015-0831
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:143
中文關鍵詞:系統面板三維垂直堆疊晶片低熱預算技術感應耦合電漿遠紅外光雷射活化光補捉非晶矽太陽能電池薄多晶矽通道電晶體能隙工程電荷儲存型非揮發性記憶體物聯網
外文關鍵詞:System on panelonolithic 3D integrationlow thermal budgetinductively coupled plasma chemical vapor depositiongreen nanosecond spike annealingfar-infrared laser activationlight-trappinga-Si thin-film solar cellsfield-effect transistorthin poly-Si channelband-gap engineeringcharge-trap non-volatile memoriesInternet of Things
相關次數:
  • 被引用被引用:0
  • 點閱點閱:574
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著具高密度、高操作速度、低功耗及多功能異質晶片整合的需求成長,系統面板(System on Panel, SoP)及三維垂直整合(Monolithic 3D integration)將是未來晶片整合發展的趨勢。由於傳統的高熱預算製程技術,無法應用於玻璃系統面板整合及矽基板三維垂直堆疊,因此具低熱預算製程技術與元件的開發,將成為主要的核心發展技術。在本研究中,將深入探討應用於太陽能電池及電晶體的低熱預算非晶矽材料特性,同時開發及整合光補捉、電漿薄膜沈積、雷射結晶及雷射活化等低熱預算製程,用於氫化非晶矽薄膜太陽能電池及多晶矽場效電晶體/非揮發性記憶體之製作。
在低熱預算薄膜太陽能電池方面,利用感應耦合電漿(140-200 oC)製作高效率n-i-p及p-i-n氫化非晶矽薄膜太陽能電池,於n-i-p薄膜太陽能電池上電極,引入次微米(0.4 μm)二氧化矽粒子自組裝層(65 % 填充密度)作為光捕捉層,增加紫外-可見光(UV-visible)波段的光捕捉效率及光電轉換效率達8.5 %,此外,二氧化矽粒子自組裝層也同時發揮了高角度抗反射特性;在p-i-n薄膜太陽能電池中則是採用FTO/Au-NPs/AZO疊層式電極,降低介面與吸收層缺陷,改善紫外-藍光波段的光退化特性,以及利用表面電漿效應於綠光-紅光波段增強光捕捉特性;進而提升光電轉換效率達10.1 %及降低長時間光照退化率僅7 %。
在低熱預算場效電晶體及電荷儲存非揮發性記憶體方面,以綠光尖峰退火雷射結晶,將感應耦合電漿沈積的非晶矽薄膜(375oC)轉變為多晶矽薄膜,並將多晶矽薄膜通道層減薄至14奈米, 結合high-κ/metal gate (Al2O3/TiN)及遠紅外光雷射(CO2, 10.6 μm)退火,製作具50奈米金屬閘極的P型及N型多晶矽場效電晶體,可展現出高驅動電流(121 and 62 A/m)、低次臨界擺幅(88 and 121 mV/dec.)與低臨界電壓(0.7 and -0.3 V)。除此之外,更進一步結合低溫能隙調變介電層至低熱預算場效電晶體中,製作具可後段相容的metal/SiO2/Si-rich SiNx/AlOxNy/SiO2/Si (MONAOS)電荷儲存式非揮發性記憶體,展現較低的操作電壓(9 V)、低電荷損失(16 %)及穩定的耐久性。
透過本研究所開發的低熱預算材料、製程與元件,未來將可有廣泛應用於二維系統面板整合、三維垂直堆疊晶片與物聯網。

The demand for system on panel (SoP) and monolithic 3D integration is increasing for realizing devices with high density and operation speed and low power consumption to fabricate future chip integration. However, the conventional high thermal processes constrain this realization; thus developing low thermal budget processes is essential.
In this thesis, we investigated the material characteristics of low thermal budget amorphous Si (a-Si) thin-film for fabrication of low thermal budget photovoltaics and field effect transistors. Furthermore, we developed and integrated low thermal budget processes, such as light-trapping structures, plasma-deposited thin film, laser crystallization, and laser activation, to fabricate hydrogenated a-Si (a-Si:H) thin-film solar cells, poly-Si field-effect transistors (FETs), and charge-trap non-volatile memories (CTNVMs).
For low thermal budget thin-film solar cells, highly efficient n-i-p and p-i-n a-Si:H thin-film solar cells were fabricated through inductively coupled plasma chemical vapor deposition at 140-200oC. The light-trapping capability of the n-i-p solar cells increased in the ultraviolet (UV)-visible region and a conversion efficiency of 8.5% was achieved, when the cells were incorporated with sub-micron (0.4 μm in diameter) self-assembly loosely-packed silica spheres (LPSS) monolayers (65% fill density). The LPSS monolayer behaves like a nearly omnidirectional antireflector and increases the solar efficiency at high incident angle of illumination. Incorporating the FTO/Au-NPs/AZO electrode in p-i-n thin-film solar cells imparted the light-trapping capability in the green-red band because of the plasmonic effect and resistance to photodegradation in the UV-blue band, which was due to the low defect of the p-/i-layer interface and intrinsic layer. This phenomenon substantially increased the conversion efficiency to 10.1% and reduced the photodegradation to 7%.
For low thermal budget field effect transistor and non-volatile memories, green nanosecond laser spike annealing was used to transform a-Si to poly-Si, the thickness of which was reduced to 14 nm. Low temperature n- and p-FETs were fabricated by integrating a thin poly-Si channel, high-κ/metal gate (Al2O3/TiN) and far-infrared laser activation to obtain a high on-current (121 and 62 A/m, respectively), low subthreshold swing (88 and 121 mV/dec., respectively), and low threshold voltage (0.7 and 0.3 V, respectively). In addition, a metal/SiO2/Si-rich SiNx/AlOxNy/SiO2/Si CTNVM with a low thermal budget was implemented by combining low thermal budget field effect transistor with nano-scale to obtain a low operation voltage, low charge loss, and reliable endurance.
These low thermal budget materials, processes and devices can be widely used in SoP, 3D integration, and Internet of Things.

Contents
Abstract (in Chinese) I
Abstract (in English) III
Acknowledgement V
Contents VI
Table Captions IX
Figure Captions X

Chapter 1 Introduction 1
1.1 Low Thermal Budget Processes for SoP and
3D Integration 1
1.2 Research Motivation 4
1.3 Objective and Organization of Thesis 5
Chapter 2 Literature Review 7
2.1 Amorphous Silicon 7
2.1.1 Atomic Structure of a-Si:H 7
2.1.2 Electronic Density of States of a-Si:H 8
2.1.3 Intrinsic and Extrinsic Defects of a-Si:H 9
2.1.4 Optical Properties of a-Si:H 12
2.2 Reviews of a-Si:H Thin Film Solar Cells 14
2.2.1 Operation Principle of Si Solar Cells 14
2.2.2 Challenges of Si Thin-film Solar Cells 18
2.3 Development of Light-trapping Structures 19
2.3.1 Nano-/Micron-Scale Light-scattering Structures 19
2.3.2 Plasmonic Metal Nanoparticles Structures 24
2.4 Reviews of Charge-trap NVMs 30
2.4.1 Operation Principle of Charge-trap NVMs 30
2.4.2 Challenges of Charge-trap NVMs 34
2.5 Development of Charge-trap NVMs 36
2.6 Low Thermal Budget Processes for fabrication of
a-Si:H Thin-Film Solar Cells and Poly-Si Field
Effect Transistor 41
2.6.1 Chemical Vapor Deposition 41
2.6.2 Laser Crystallization 44
2.6.3 Laser Annealing 48
2.6.4 Microwaves Annealing 50
Chapter 3 Experimental 52
3.1 Fabrication of a-Si:H Thin-film Solar Cells 52
3.1.1 Intrinsic and Doped a-Si:H Film 52
3.1.2 Hydrogen Concentration in a-Si:H Film 55
3.1.3 Bulk Defect Density in a-Si:H 57
3.1.4 Light-induced Degradation of a-Si:H 58
3.2 Crystallization of a-Si:H by Pulse Laser Anneal
(λ= 532 nm) 59
3.3 Low Thermal Budget Dielectrics 61
3.3.1 Plasma-assisted Oxidation 62
3.3.2 SiOx and SiNx Deposition 63
3.3.3 High-κ Al2O3 Deposition by Plasma-enhanced ALD 65
3.4 Source/Drain Activation by Pulse Laser Anneal 67
3.4.1 Visible-light Laser Anneal (λ= 532 nm) 67
3.4.2 CO2 Far-infrared Laser Anneal (λ= 10.6 μm) 69
3.5 Method of Device Parameters Extraction 71
3.5.1 Reverse Bias Quantum Efficiency 71
3.5.2 Deep-level Capacitance Profile (DLCP) 72
3.5.3 Electrical Parameters of Field Effect Transistor 75
3.5.4 Density of Interface Trap-states (Dit) 77
3.5.5 Density of States (DOS) 80
3.5.6 Electrical Characteristics of NVMs 82
Chapter 4 UV-visible Light-trapping Structure for High
Performance n-i-p a-Si:H Thin-film Solar Cells 83
4.1 Background of Light-scattering Structure 83
4.2 Integration of Silica Sphere Monolayer on n-i-p
PVs 84
4.3 Optimization of Loosely-packed Sub-micron
Silica-sphere 86
4.4 Haze Ratio Variation on LPSS Monolayer Density 88
4.5 LPSS Monolayer Density Effect on Solar
Efficiency 89
4.6 Summary 91
Chapter 5 Stabilizing and Boosting Solar-electricity
Efficiency of p-i-n a-Si:H Thin-film Solar Cells
by Multi-functional Stacked Light-trapping
Structure 93
5.1 Background of Frontside Light Trapping
Structure 93
5.2 Fabrication of Frontside FTO/Au-NPs/AZO
Electrode 95
5.3 Types of Frontside Light-trapping Structures 97
5.4 Current-voltage Characteristics of Light-trapping
Solar Cells 98
5.5 Interface-defect Analysis by Reverse Quantum
efficiency 99
5.5 Interface-defect Analysis by EDS Mappings 101
5.6 Bulk-defect of a-Si:H on FTO/Au-NPs/AZO
Electrode 102
5.7 Effect of Light-soaking Degradation 104
5.8 Summary 106
Chapter 6 Fabrication of Nano-scaled FETs and Charge-trap
NVMs using Low Thermal Budget Processes 107
6.1 Thin Poly-Si Film of High Crystallinity
on Insulator 107
6.2 Nano-scaled N/P-FETs using Thin Poly-Si Channel 108
6.3 Impact of Underlying Device during Laser
Crystallization 110
6.4 Background of Low Thermal Budget Charge-trap
NVMs 111
6.5 Fabrication of Low Thermal Budget Charge-trap
NVMs 113
6.6 Crystallinity and DOS of Thin Laser-crystallized
Poly-Si 116
6.7 Channel Thickness on the Performance of NVM
Transistor 118
6.8 Formation of SiO2/AlOxNy Tunnel Layer and
Charge-trap SiNx Layer of Gradient Bandgap 119
6.9 Memory Characteristics of MONOS and MONAOS NVMs 121
6.10 Summary 123
Chapter 7 Conclusion and Future Works 124
7.1 Conclusion 124
7.2 Future Works 124
References 127

Chapter 1
[1] D. I. Moon, J. S. Oh, S. J. Choi, S. Kim, J. Y. Kim, M. S. Kim, Y. S. Kim, M. H. Kang, J. W. Kim, and Y. K. Choi, “Multi-functional universal device using a band-engineered vertical structure,”, IEDM Tech. Dig., p. 24.6, (2011)
[2] P. Batude, M. Vinet, B. Previtali, C. Tabone, C. Xu, J. Mazurier, O. Weber, F. Andrieu, L. Tosti, L.Brevard, B. Sklenard, P. Coudrain, S. Bobba, H. Ben Jamaa, P-E. Gaillardon, A. Pouydebasque, O. Thomas, C. Le Royer, J.-M. Hartmann, L. Sanchez, L. Baud, V. Carron, L. Clavelier, G. De Micheli, S. Deleonibus, O. Faynot and T. Poiroux, “Advances, challenges and opportunities in 3D CMOS sequential integration,”, IEDM Tech. Dig., p. 7.3, (2011)
[3] C. C. Yang, S. H. Chen, J. M. Shieh, W. H. Huang, T. Y. Hsieh, C. H. Shen, T. T. Wu, H. H. Wang, Y. J. Lee, F. J. Hou, C. L. Pan, K. S. Chang-Liao, Chenming Hu, and F. L. Yang, ” Record-high 121/62 μA/μm on-currents 3D stacked epi-like Si FETs with and without metal back gate”, IEDM Tech. Dig., 731, 2013
[4] C. H. Shen, J. M. Shieh, W. H. Huang, T. T. Wu, C. C. Yang, C. J. Wan, C. D. Lin, H. H. Wang, B. Y. Chen, G. W. Huang, Y. C. Lien, Simon Wong, C. Wang, Y. C. Lai, C. F. Chen, M. F. Chang, Chenming Hu, and F. L. Yang, “Monolithic 3D chip integrated with 500ns NVM, 3ps logic circuits and SRAM”, IEDM Tech. Dig., S9p3, 2013
[5] C. H. Shen, J. M. Shieh, W. H. Huang, T. T. Wu, C. F. Chen, M. H. Kao, C. C. Yang, C. D. Lin, H. H. Wang, T. Y. Hsieh, B. Y. Chen, G. W. Huang, M. F. Chang, and F. L. Yang, “Heterogeneously integrated sub-40 nm low-power epi-like Ge/Si monolithic 3DIC with stacked SiGeC ambient light harvester “, IEDM Tech. Dig., 2014, s3p6

Chapter 2
[1] R. Street, Hydrogenated Amorphous Silicon, Cambridge University Press, Cambridge (1991).
[2] J. Poortmans and V. Arkhipov, Thin Film Solar Cells Fabrication, Characterization and Applications, ield Effect Devices and Applications: Devices for Portable, Low-Power, and Imaging Systems, 1st ed. (John Wiley &; Sons Ltd, 2006).
[3] Jackson W, Tsai C, Thompson R,” Diffusion of paramagnetic defects in amorphous silicon”, Phys. Rev. Lett. 64, 56 (1990)
[4] Zafar S, Schiff E,” “Hydrogen and defects in amorphous silicon”, Phys. Rev. Lett. 66, 1493 (1991).
[5] K. Morigaki, Physics of Amorphous Semiconductors, (Imperial College Press, 1999)
[6] W.B. Jackson, S.M. Kelso, C. C. Tsai, J.W. Allen, and S.-J. Oh,” Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon“, Phys. Rev. Lett., 31, 5187 (1985).
[7] A. Skumanich, “Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon”, Phys. Rev. B, 31, 2263 (1985)
[8] G. Conibeer M. Green, R. Corkish, Y. Cho, E. C. Cho, C. W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. TRupke, B. Richards, A. Shalav, K. L. Lin, “Silicon nanostructures for third generation photovoltaic solar cells”, Thin Solid Films, 511, 645 (2006) [9] Yu, D. Yao, and W. Knoll,” Surface plasmon field-enhanced fluorescence spectroscopy studies of the interaction between an antibody and its surface-coupled antigen.“, Anal. Chem., 75 (11), 2610 (2003).
[10] Http://www.sciencedaily.com/releases/2008/02/080221082950.htm
[11] R. Bouffaron1, L. Escoubas1, J. J. Simon1, Ph. Torchio1, F. Flory, G. Berginc, and Ph.Masclet,” Spherically shaped micro-structured antireflective surfaces“, Opt. Express, 16, 19304 (2008)
[12] M. Karlsson and F. Nikolajeff,” Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region“, Opt. Express, 11, 502 (2003)
[13] Y. Kanamori, M Sasaki, and K. Hane,” Broadband antireflection gratings fabricated upon silicon substrates“, Opt. Lett., 24,1422 (1999)
[14] J.K, Kim, T. E. Gessmann, E. Fred Schubert, J.-Q Xi, H Luo, J Cho, C Sone, and Y Park,” GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer”, Appl. Phys. Lett., 88,013501 (2006).
[15] M. Boccard, C. Battaglia, S. Hanni, K. Soderstrom, J. Escarre, S. Nicolay, F. Meillaud, M. Despseisse, and C. Ballif, “Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells”, Nano Lett. 12 (3), 1344 (2012)
[16]H. Tan, E. Psomakaki, O Isabella, M. Fischer, P. Babal, R. Vasudevan, M. Zeman, and A. H. M. Smets, “Micro-textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells”, Appl. Phys. Lett. 103, 173905 (2013))
[17] J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning“, Nano Lett. 10(6), 1979 (2009)
[18]J. W. Leem, D. H. Joo, J. S. Yu, “Biomimetic parabola-shaped AZO sub-wavelength grating structures for efficient antireflection of Si-based solar cells”, Sol. Energy Mater. Sol. Cells, 95(8), 2221 (2011)
[19]W. J. Nam, L. Ji, T. L. Benanti, V. V. Varadan, S. Wanger, Q. Wang, W. Nemeth, D. Neidich, and S. J. Fonash, “Incorporation of a light and carrier collection management nano-element array into superstrate a-Si:H solar cells”, Appl. Phys. Lett. 99, 073113 (2011)
[20]S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green,” Surface plasmon enhanced silicon solar cells”, J. Appl. Phys. 101, 093105 (2007).
[21]S. Pillai, K. R. Catchpole, T. Trupke, G.Zhang, J. Zhao, M. A. Green,” Enhanced emission from thin Si based LEDs using surface plasmons”, Appl. Phys. Lett. 88, 161102 (2006).
[22]S. Nie and R. Emory,” Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering”, Science, 275, 1102 (1997).
[23]Y. Tian and T. Tatsuma,” Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles
“, J. Am. Chem. Soc., 127, 7632 (2005)
[24]K. Nakayama, K. Tanabe, and Harry A. Atwater,” Plasmonic nanoparticle enhanced light absorption in GaAs solar cells”, Appl. Phys. Lett. 93, 121904 (2008)
[25]K.R. Catchpole and A. Polman,” Design principles for particle plasmon enhanced solar cells”, Opt. Express, 16, 21793 (2008)
[26]Yu. A. Akimov, W.S. Koh, and K. Ostrikov,” Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes
“, Opt. Express, 17(12), 10195 (2009)
[27]Y. A. Akimov, K. Ostrikov and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells”, Plasmonics, 4, 107 (2009)
[28] W. S. Koh and Y. A. Akimov, “Enhanced light trapping in thin-film solar cells”, SPIE, newsroom
[29]Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?”, Appl. Phys. Lett. 96, 073111 (2010)
[30] G. Xu, M. Tazawa, P. Jin, S. Nakao and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films“, Appl. Phys. Lett. 82, 3811 (2003)
[31]G. Xu, Y. Chen, M. Tazawa and P. Jin, “Influence of dielectric properties of a substrate upon plasmon resonance spectrum of supported Ag nanoparticles”, Appl. Phys. Lett. 88, 043114 (2006).
[32] E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F.X. Royer, H. Stiebig,” Thin-film Silicon Solar Cells with Integrated Silver Nanoparticles”, Thin Solid Films, 516, 6813 (2008)
[33] Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticles plasmon modes”, Opt. Exp. 17(12), 10195 (2009)
[34] S. Pillai and M. A. Green, “ Plasmonics for photovoltaic application”, Sol. Energy Mater. Sol. Cells, 94, 1481 (2010)
[35] E. A. Moulin, U. W. Paetzold, B. E. Pieters, W. Reetz, and R. Carius, “Plasmon-induced photoexcitation of “hot” electrons and “hot” holes in amorphous silicon photosensitive devices containing silver nanoparticles”, J. Appl. Phys. 113, 144501 (2013)
[36] Nicolae C. Panoiu and Richard M. Osgood,” Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes“, Opt. Lett., 32(19), 2825 (2007)
[37] L. Hu, X. Chen, and G. Chen, “Surface-plasmon enhancement near-bandgap light absorption in silicon photovoltaics”, J. Comput. Theor. Nanosci, 5, 2096(2008)
[38] H. T. Lue, Y. H. Shih, K. Y. Hsieh, R. Liu, and C. Y. Lu, “Novel soft erase and re-fill mthods for a P+-poly gate nitride-trapping nonvolatile memory device with excellent endurance and retention properties”, IEEE 43rd Annual International Reliability Physics Symposium, pp. 168-174 (2005)
[39] C. Y. Kang, “Barrier engineering in metal-aluminum oxide-nitride-oxide-silicon (MANOS) flash memory: Invited”, Current Applied Physics, 10, 27 (2010)
[40] C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, and K. N. Kim, “A novel SONOS structure of SiO2/SiN/Al2O3 with TaN metal gate for multi-giga bit flash memories”, IEDM, Tech. Digest, pp. 26.5.1-26.5.4 (2003)
[41] Lue H T, Wang S Y, Lai E K, BE-SONOS: A bandgap engineered SONOS with excellent performance and reliability”, IEDM, Tech. Digest, pp. 555 (2005)
[42] Lue H T, Wang S Y, Hsiao Y H, Reliability model of bandgap engineered SONOS (BE-SONOS)”, IEDM, Tech. Digest, pp. 495 (2006)
[43] Lai S C, Lue H T, Yang M J, “BE-SONOS: A bandgap engineered SONOS using metal gate and Al2O3 blocking layer to overcome erase saturation”, NVSMW, 88 (2007)
[44] Lue H T, Lai S C, Hsu T H, “Modeling of barrier engineered charge-trapping NAND flash (BE CTNF) devices“, IEEE Trans. Device Mater. Reliab., 10, 222 (2010)
[45] C. Y. Kang, “Barrier engineering in metal-aluminum oxide-nitride-oxide-silicon (MANOS) flash memory: Invited”, Current Applied Physics, 10, 27 (2010)
[46] H. T. Lue, S. Y. Wang, E. K. Lai, Y. H. Shih, S. C. Lai, L. W. Yang, K. C. Chen, J. Ku, K. Y. Hsieh, R. Liu, and C. Y. Lu, “BE-SONOS: A bandgap engineered SONOS with excellent performance and reliability”, IEDM, Tech. Digest. pp. 547-550 (2005)
[47] H. T. Lue, Z. y. Wang, Y. H. Hsiao, E. K. Lai, L. W. Yang, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu, and C. Y. Lu, “Reliability model of bandgap engineered SONOS (BE-SONOS)”, IEDM, Tech. Digest, pp. 18.5.1-18.5.4 (2006)
[48] S. Y. Wang, H. T. Lue, E. K. Lai, L. W. Yang, T. Yang, K. C. Chen, J. Gong, K. Y. Hsieh, R. Liu, and C. Y. Lu, “Reliability and processing effects of bandgap engineered SONOS (BE-SONOS) flash memory”, IEEE International Reliability Physics Symposium Proceedings, pp. 171-176 (2007)
[49] J. W. Jung and W. J. Cho, “Tunnel barrier engineering for non-volatile memory”, J. Semi. Tech. Sci. 8(1), 32 (2008)
[50] T. S. Chen, K. H. Wu, H. Chung and C. H. Kao, “Performance improvement of SONOS memory by bandgap engineering of charge-trapping layer”, IEEE Electro. Device Lett. 25, 4 (2004)
[51] K. H. Wu, H. C. CHien, C. C. Chan, T. S. Chen, and C. H. Kao, IEEE Trans. Electro. Device, 52, 5 (2005)
[52] H. C. Chien, C. H. Kao, J. W. Chang and T. K. Tsai, “SONOS device with tapered bandgap nitride layer”, “Two-bit SONOS type flash memory using band engineering in the nitride layer”, Microelectronic Engineering, 80, 256 (2005)
[53] C. Koch, M. Ito, and M. Schubert, “Low-temperature deposition of amorphous silicon solar cells”, Sol. Energy Mater. Sol. Cells, 68, 227 (2001)
[54] A. Matsuda,”Thin-film silicon growth process and solar cell application”, Jpn. J. Appl. Phys. 43, 7909 (2004)
[55] A. Sazonov, D. Striakhilev, C.-H. Lee, and A. Nathan,”Low-temperature materials and thin-film transistors for flexible electronics”, Proceedings of the IEEE 93, 1420 (2005)
[56] A. V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf,” Material and solar cell research in microcrystalline silicon”, Sol. Energy Mater. Sol. Cells, Cells 78, 469 (2003)
[57] J. Meier, J. Spitznagel, C. Bucher, S. Faÿ, T. Moriarty, A. Shah,” Potential of amorphous and microcrystalline silicon solar cells”, Thin Solid Films 451-452, 518(2004)
[58] J. Poortmans and V. Arkhipov, Thin Film Solar Cell, (John Wiley &; Sons, Ltd, England 2006)
[59] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, (John Wiley &; Sons, Ltd, England 2003)
[60] S. Jung, J. Kim, H. Son, S. Hwang, K. Jang, J. Lee, K. Lee, H. Park, K. Kim, J. Yi, H. Chung, B. Choi, K. Lee,” Fabrication and characterization of metal-oxide-nitride-oxynitride-polysilicon nonvolatile semiconductor memory device with silicon oxynitride (SiOxNy) as tunneling layer on glass”, J. Appl. Phys. 102, 094502 (2007)
[61] D. N. Song, N. V. Duy, S. W. Jung and J. S. Yi, “Embedded nonvolatile memory devices with various silicon nitride energy band gaps on glass used for flat panel display applications”, Semicond. Sci. Technol. 25, 085003 (2010)
[62] S. N. M. Mestanza, M. P. Obrador, E. Rodriguez, C. Biasotto, I. Doi, J. A. Diniz, and J. W. Swart,” Characterization and modeling of antireflective coatings of Si O 2, Si3 N4, and Si Ox Ny deposited by electron cyclotron resonance enhanced plasma chemical vapor deposition” J. Vac. Sci. Technol. B 24 (2), 823 (2006)
[63] R. Mroczyński, N. Kwietniewski, M. Ćwil, Pa. Hoffmann, R. B. Beck and A. Jakubowski, Vacuum, 82, 1013 (2008)
[64] W. S. Yang, Y. K. Kim, S. Y Yang, J. H. Choi, H. S. Park, S. I. Lee, J. B. Yoo,” Effect of SiO2 inermediate on Al2O3 and SiO2 n-poly Si interface deposited using atomic layer deposition (ALD) for deep submicron device applications,”, Surface and Coatings Technology, 131, 79 (2000)
[65] H. Kim, P. C. McIntyre, Journal of the Korean Physical Society, 48(1), 5 (2006)
[66] S. W. Choi, C. M. Jang, D. Y. Kim, J. S. Ha, H. S, Park, W. Y. Koh and C. S. Lee, “Plasma Enhanced Atomic Layer Deposition of Al2O3 and TiN”, Journal of the Korean Physical Society, 42, 975 (2003)
[67] D. L. Smith, Thin-Film Deposition: Principles and Practice, int'l ed. (McGraw-Hill, Inc., 1996).
[68] R. S. Sussmann, A. J. Harris and R. Ogden,” Laser annealing of glow discharge amorphous silicon”, J. Noncrystalline. Solid, 35-36, 249 (1980).
[69] T. Sameshima and S. Usui,” XeCl excimer laser annealing used in the fabrication of poly-Si TFTs”, Mat. Res. Soc. Symp. Proc., 71, 435 (1986).
[70] C. Prat, D. Zahorski, Y. Helen, T. M. Brahjm, O. Bonnaud,” Excimer laser annealing system for AMLCDs: a long laser pulse for high-performance, uniform, and stable TFT“, SPIE Proc., 33, 4295 (2001).
[71] A. Hara, F. Takeuchi, M. Takei, K. Suga, K. Yoshino, M. Chida, Y. sano and N. Sasai,”High-performance polycrystalline silicon thin film transistors on non-alkariglass produced using continuous wave laser lateral crystallization,” Jpn. J. Appl. Phys., 37, L5 (2002).
[72] C. W. Lin, L. J. Cheng, Y. L. Lu, Y. S. Lee, H. C. Cheng,” High-performance low-temperature poly-Si TFTs crystallized by excimer laser irradiation with recessed-channel structure”, IEEE Electro. Device Lett. 22(6), 269 (2001)”
[73] C. L Wang, I. C. Lee, C. Y. Wu, C. H. Chou, P. Y. Yang, Y. T. Cheng and H. C. Cheng,” High-Performance Polycrystalline-Silicon Nanowire Thin-Film Transistors With Location-Controlled Grain Boundary via Excimer Laser Crystallization“, IEEE Electro. Device Lett. 33(11), 1562 (2012)
[74] K. Suzuki, M. Tada,Y.Yamazi, andY. Ishizuka, in Proc. AM-LCD, 5 (1998).
[75] M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. Seki, S. Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, and H. Ohshima,” Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display“, IEEE Trans. Electron Devices, 46, 2282 (1999).
[76]A. shima, Y. wang, D. Upadhyaya, L. Feng, S. Talwar and A. Hiraiwa, VLSI ’05 Tech. Digest, 144 (2005).
[77]C. F. Nieh, K. C. Ku, C. H. Chen, L. T. Wang, L. P. Huang, Y. M. Sheu, C. C. Wang, T. L. Lee, S. C. Chen, M. S. Liang and J. Gong,”Millisecond anneal and short-channel effect control in Si CMOS transistor performance”, IEEE Electron Device Lett., 27, 969 (2006).
[78]J. Y. Kwon, D. Y. Kim, H. S. Cho, K. B. Park, J. S. Jung, J. M. Kim, Y. S. Park and T. Noguchi,” Low Temperature Poly-Si Thin Film Transistor on Plastic Substrates“, IEICE Trans. Electron., E88-C, 667 (2005).
[79] E. I. Shtyrkov, I. B. Khaibullin, M. M. Zaripov, M. F. Galyatudinov and R. M. Bayasitov,” Local laser annealing of implantation doped semiconductor layers”, Sov. Phys., 9, 1309 (1975).
[80]G. K. Giust and T. W. Sigmon,” Laser-processed thin-film transistors fabricated from sputtered amorphous-silicon films
“, IEEE Electron Device Lett., 18, 394 (1997).
[81]S. D. Brotherton, S.-G. Lee, C. Glasse, J. R. Ayres, and C. Glaister,” Short channel poly-Si TFTs”, Proc. IDW, 2834 (2002).
[82]D. Z. Peng, T. C. Chang, H. W. Zan, T. Y. Huang, C. Y. Chang, and P. T. Liu,” Reliability of laser-activated low-temperature polycrystalline silicon thin-film transistor”, Appl. Phys. Lett., 80, 4780 (2002).
[83] J. M Shieh, C. Chen, Y. T. Lin and C. L. P,”Enhanced green laser activation by antireflective gate structures in panel transistors”, Appl. Phys. Lett. 92, 063503 (2008)
[84] Y.C. Lien, J. M. Shieh, W. H. Huang, C. H. Tu, C. Wang, C. H. Shen, B. T. Dai, C. L. Pan, Chenming Hu, and F. L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing“, Appl. Phys. Lett. 100, 143501 (2012)
[85] S. Stathopoulos, A. Florakis, G. Tzortzis, T. Laspas, A. Triantafyllopoulos, Y. Spiegel, F. Torregrosa, and D. Tsoukalas, IEEE Trans. Electro. Devices, 61(3), 696 (2014)
[86] J. H. Booske, R. F. Cooper, and I. Dobson,” Mechanisms for Nonthermal Effects on Ionic Mobility during Microwave Processing of Crystalline Solides”, J. Mater. Res., 7(2), 495 (1992)
[87] A. G. Whittaker,” Diffusion in Microwave-Heated Ceramics“, Chem. Mater., 17 (13), 3 (2005)
[88] K. Thompson, Y. B. Gianchandani, J. Booske, and R. F. Cooper,” Direct silicon–silicon bonding by electromagnetic induction heating”, J. Microelectromech. Syst., 11 (4), 285 (2002)
[89] K. Thompson, J. H. Booske, Y. B. Gianchandani, and R. F. Cooper,”Electromagnetic Annealing for the 100nm Technology Node”, IEEE Electron Device Lett., 23 (3), 127 (2002)
[90] K. Thompson, J. H. Booske, R. F. Cooper, and Y. B. Gianchandani,” Electromagnetic fast firing for ultrashallow junction formation” IEEE Trans Semicond. Manuf., 16 (3), 460 (2003)
[91] Y. J. Lee, S. S. Chuang, F. K. Hsueh, H. M. Lin, S. C. Wu, C. Y. Wu,” A low-temperature microwave anneal process for boron-doped ultrathin Ge epilayer on Si substrate”, IEEE Electron Device Lett., 32(2), 194 (2011)

Chapter 3
[1] J. Li, J. Wang, M. Yin, P. Gao, D. He, Q. Chen, Y. Li, and H. Shirai,” Deposition of controllable preferred orientation silicon films on glass by inductively coupled plasma chemical vapor deposition”, J. Appl. Phys. 103, 043505 (2008)
[2] J. H. Wu, J. M. Shieh, B. T. Dai, and Y. C. S. Wu,” Synthesis of Microcrystalline Silicon at Room Temperature Using ICP”, Electrochem. Solid-State Lett. 7, G128 (2004)
[3] R.E.I. Schropp and M. Zeman, Amorphous and Microcrystalline Solar Cells: Modeling, Materials, and Device Technology, Kluwer Academic Publishers, 1998.
[4] J. Poortmans and V. Arkhipov, Thin Film Solar Cell, (John Wiley &; Sons, Ltd, England 2006)
[5] E. Bhattacharya and A.H. Mahan,” Microstructure and the light-induced metastability in hydrogenated amorphous silicon”, Appl. Phys. Lett. 52, 1587 (1988).
[6] B. Stannowski, R.E.I. Schropp, R.B. Wehrspohn, and M.J. Powell,” Amorphous-silicon thin-film transistors deposited by VHF-PECVD and hot-wire CVD”, J. of Non-Crystalline Solids, 299–302, 1340 (2002).
[7] J. M. Shieh, K. C. Tsai, and B. T. Dai,” Low hydrogen content in trimethylsilane-based dielectric barriers deposited by inductively coupled plasma”, Appl. Phys. Lett. 81, 1294 (2002).
[8] C. Monget, O. Joubert, and R. L. Inglebert,” Plasma polymerized methylsilane. II. Performance for 248 nm lithography”, J. Vac. Sci. Technol. B 18, 2534 (2000).
[9] S. Guha, J. Yang, D. L. Williamson, Y. Lubianiker, J. D. Cohen, and A.H. Mahan,” Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity”, Appl. Phys. Lett. 74, 1860 (1999).
[10] T. Unold, J. Hautala, and J. D. Cohen,” Effect of carbon impurities on the density of states and the stability of hydrogenated amorphous silicon
“, Phys. Rev. B, 50, 16985 (1994).
[11] R. Biswasl, Y. P. Li and B. C. Pan,” Isotopic effect between hydrogen and deuterium emission in silicon“, Phys. Rev. Lett. 82, 2512 (1999).
[12] R. Castagne and A. Vapaille, “Description of SiO2-Si interface properties by means very low frequency MOS capacitance measurements”, Surf. Sci. 28, 157 (1971)
[13] S. Stathopoulos, A. Florakis, G. Tzortzis, T. Laspas, A. Triantafyllopoulos, Y. Spiegel, F. Torregrosa, and D. Tsoukalas,” CO2 Laser Annealing for USJ Formation in Silicon: Comparison of Simulation and Experiment“, IEEE Trans. Electro. Devices, 61(3), 696 (2014)
[14] A. Banerjee, X. Xu, J. Yang, and S. Guha, "Carrier collection losses in amorphous silicon and amorphous silicon–germanium alloy solar cells", Appl. Phys. Lett., 67(20) (1995)
[15] C. E. Michelson, A. V. Gelatos, and J. D. Cohen, “Drive-level capacitance profiling: its application to determining gap sate densities in hydrogenated amorphous silicon films”, Appl. Phys. Letts. 47, 412 (1985)
[16]J. T. Heath, J D. Cohen and W. N. Shafarman, “Bulk and metastable defects in CuIn1-xGaxSe2 thin films using drive-level capacitance profiling”, J. Appl. Phys. 95, 3 (2004)
[17] D. K. Schroder, Semiconductor Material and Device Characterization, Wiley, New York, 2006.
[18] R. Castagne and A. Vapaille, “Description of SiO2-Si interface properties by means very low frequency MOS capacitance measurements”, “Description of SiO2-Si interface properties by means very low frequency MOS capacitance measurements”, Surf. Sci. 28, 157 (1971)
[19] G. Fortunato and P. Migliorato,” Determination of gap state density in polycrystalline silicon by field‐effect conductance”, Appl. Phys. Lett. 49, 1025 (1986).
[20] S. Hirae, M. Hirose and Y. Osaka,” Electronic properties of chemically deposited polycrystalline silicon“, J. Appl. Phys. 51, 1043 (1980).
[21] H. C. de Graaf, M. Huyber and J. G. de Groot,” Grain boundary states and the characteristics of lateral polysilicon diodes”, Solid State Electron. 25, 67 (1982).
[22] R. L. weisfield and D. A. Anderson,” An improved field-effect analysis for the determination of the pseudogap-state density in amorphous semiconductors”, Philos Mag. B. 44, 83 (1981).
[23] G. Fortunato, D. B. Meakin, P. Migliorato and P. G. Lecomer,” Field-effect analysis for the determination of gap-state density and Fermi-level temperature dependence in polycrystalline silicon”, Philos. Mag. B. 57, 573 (1988).
[24] T. Suzuki, Y. Osaka and M. Hirose, “heoretical Interpretations of the Gap State Density Determined from the Field Effect and Capacitance-Voltage Characteristics of Amorphous Semiconductors”, Jpn. J. Appl. Phys. 21, L159 (1982).

Chapter 4
[1] V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells”, Opt. Exp.18, A237-A245 (2010)
[2] J. Zhu, C. M. Hsu, Z. F. Yu, S. H. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning”, Nano Lett. 10 (6), 1979 (2010)
[3] P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices”, Appl. Phys. Lett. 93, 13108 (2008)
[4] Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle enhanced thin film solar cells: Metallic or dielectric nanoparticles?”, Appl. Phys. Lett. 93, 073111 (2010)
[5] M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer,and T. Pertsch, “Employing dielectric diffractive structures in solar cells–a numerical study”, Phys. Stat. Sol. 205, 12 (2008)
[6] J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres”, Adv. Mater. 23, 1272 (2011)
[7] Y. H Wang, R. Tummala, L. Chen, L. Q. Guo, W. D. Zhou, and M. Tao, “Solution processed omnidirectional antireflection coatings on amorphous silicon solar cells”, J. Appl. Phys. 105, 103501 (2009)
[8] C. H. Shen, J. M. Shieh, J. Y. Huang, H. C. Kuo, C. W. Hsu, B. T. Dai, C. T. Lee, C. L. Pan, and F. L. Yang, “Inductively coupled plasma grown semiconductor films for low cost solar cells with improved light-soaking stability”, Appl. Phys. Lett. 99, 033510 (2011)
[9] J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells”, Sol. Energy Mater. Sol. Cells, 95(8), 2221 (2011)

Chapter 5
[1] M. Boccard, C. Battaglia, S. Hanni, K. Soderstrom, J. Escarre, S. Nicolay, F. Meillaud, M. Despeisse, and C. Ballif, “Multiscale Transparent Electrode Architecture for Efficient Light Management and Carrier Collection in Solar Cells”, Nano Lett. 12, 1344 (2012)
[2] C. Battaglia, C. M. Hsu, K. Soderstrom, J. Escarre, F. J. Haug, M. Charriere, M. Boccard, M. Despeisse, Ducan T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?“, ACS Nano, 6, 2790 (2012)
[3] X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. G. Shi, and M. Gu, “Broadband Enhancement in Thin-Film Amorphous Silicon Solar Cells Enabled by Nucleated Silver Nanoparticles“, Nano Lett. 12, 2187 (2012)
[4] M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poreba, Z. Remes, J. Meier, and U. Kroll, “Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential“, Appl. Phys. Letts. 98, 163503 (2011)
[5] V. E. Ferry, M. A. Verschuuren, M. C. van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells“, Nano Lett. 11, 4239 (2011)
[6] J. Zhu, C. Me. Hsu, Zong F. Yu, S. H. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning“, Nano Lett. 10, 1979 (2010)
[7] M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer,and T. Pertsch, “Employing dielectric diffractive structures in solar cells–a numerical study“, Phys. Stat. Sol. A, 205(a) 2777 ( 2008)
[8] J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres“, Adv. Mater. 23, 1272 (2011)
[9] W. H. Huang, J. M. Shieh, F. M. Pan, C. H. Shen, Y. C. Lien, M. A. Tsai, H. C. Kuo, B. T. Dai, and F. L. Yang, “UV–Visible Light-Trapping Structure of Loosely Packed Submicrometer Silica Sphere for Amorphous Silicon Solar Cells“, IEEE Electro. Device Lett. 33 (7), 1036 (2012)
[10] E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. X. Royer and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles“, Thin Solid Films, 516, 6813 (2008)
[11] E. Moulin, P. Q. Luo, B. Pieters, J. Sukmanowski, J. Kirchhoff, W. Reetz, T. Muller, R. Carius, F. X. Royer, and H. Stiebig, “Photoresponse enhancement in the near infrared wavelength range of ultrathin amorphous silicon photosensitive devices by integration of silver nanoparticles”, Appl. Phys. Lett. 95, 033505 (2009)
[12] F. Lukermann, U. Heinzmann, and H. Stiebig, “Plasmon enhanced resonant defect absorption in thin a-Si:H n-i-p devices“, Appl. Phys. Lett. 100, 253907 (2012)
[13] A. Nuruddin, J. R. Abelson, “Improved transparent conductive oxide/p+/i junction in amorphous silicon solar cells by tailored hydrogen flux during growth“, Thin Solid Films, 394, 49 (2001)
[14] N. Chantarat, S. H. Hsu, C. C. Lin, M. C. Chiang and S. Y. Chen, “Mechanism of an AZO-coated FTO film in improving the hydrogen plasma durability of transparent conducting oxide thin films for amorphous-silicon based tandem solar cells“, J. Mat. Chem. 22, 8005 (2012)
[15] C. H. Shen, J. M. Shieh, J. Y. Huang, H. C. Kuo, C. W. Hsu, B. T. Dai, C. T. Lee, C. L. Pan, and F. L. Yang, “Inductively coupled plasma grown semiconductor films for low cost solar cells with improved light-soaking stability“, Appl. Phys. Lett. 99, 033510 (2011)
[16] M. Python, O. Madani, D. Domine, F. Meillaud, E. Vallat-Sauvain, C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells”, Sol. Energy Mater. Sol. Cells, 93, 1714 (2009)
[17] B. V. Enüstün and J. Trkevich, “Coagulation of Colloidal Gold“, J. Am. Chem. Soc. 85, 3317 (1963)
[18] S. Guha, J. Yang, D. L. Williamson, Y. Lubianiker, J. D. Cohen, and A. H. Mahan, “Structural, defect and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity”, Appl. Phys. Lett. 74, 1860 (1999)
[19] Jung. Y. Huang, C. Y. Lin, C. H. Shen, J. M. Shieh, and B. T. Dai, “Low cost high-efficiency amorphous silicon solar cells with improved light-soaking stability“, Sol. Energy Mater. Sol. Cells, 98, 277 (2012)
[20] G. Xu, M. Tazawa, P. Jin, S. Nakao and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films“, Appl. Phys. Lett. 82, 3811 (2003)
[21] G. Xu, Y. Chen, M. Tazawa and P. Jin, “Influence of dielectric properties of a substrate upon plasmon resonance spectrum of supported Ag nanoparticles”, Appl. Phys. Lett. 88, 043114 (2006).
[22] E. Moulin, P. Q. Luo, B. Pieters, J. Sukmanowski, J. Kirchhoff, W. Reetz, T. Muller, R. Carius, F-Xavier Royer, and H. Stiebig, “Photoresponse enhancement in the near infrared wavelength range of ultrathin amorphous silicon photosensitive devices by integration of silver nanoparticles”, Appl. Phys. Lett. 95, 033505 (2009)
[23] A. E. Delahoy, A. P. Stavrides, A. M. Patel, L. T. Le, J. A. Cambridge, “Influence of TCO type on the performance of amorphous silicon solar cells“, Proc. SPIE, 7045, 704506 (2008)
[24] T. Soderstrom, F. J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics”, J. Appl. Phys. 103, 114509 (2008)
[25] P. Roca I Cabarrocas, A. Fontcuberta I Morral, Y. Possissant, “Growth and optoelectronic properties of polymorphous silicon thin films”, Thin solid films, 403, 39 (2002)
[26] L. R. Wienkes, C. Blackwell, and J. Kakalios, “Electronic transport in doped mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films“, J. Appl. Phys. 100, 072105 (2012)
[27] H. Tasaki, W. Y. Kim, M. Hallerdt, M. Konagai, K. Takahashi, “Computer simulation model of the effects of interface states on high‐performance amorphous silicon solar cells“, J. Appl. Phys. 63, 550 (1988)
[28] H. S. Park, J. Y. Lee, H. W. Kim, D. Y. Kim J. A. Raja, “Influence of SnO2:F/ZnO:Al bi-layer as a front electrode on the properties of p-i-n amorphous silicon based thin film solar cells “, Appl. Phys. Letts. 102, 192602 (2013)

Chapter 6
[1] D. W. Greve, Field Effect Devices and Applications: Devices for Portable, Low-Power, and Imaging Systems, 1st ed. (Prentice-Hall, 1998).
[2] Y. H. Lu, P. Y. Kuo, Y. H. Wu and Y. H. Chen, “Novel GAA raised source/drain sub-10-nm poly-Si NW channel TFTs with self-aligned corked gate structure for 3-D IC applications” , VLSI, pp. 142 (2011)
[3] W. C. Chen, H. C. Lin, Y. C. Chang and C. D. Lin, “In Situ Doped Source/Drain for Performance Enhancement of Double-Gated Poly-Si Nanowire Transistors”, IEEE Trans. Electro. Devices, 55, 1608 (2010)
[4] T. K. Kang, T. C. Liao, C. M. Lin and H. W. Liu, “Gate-All-Around Poly-Si TFTs With Single-Crystal-Like Nanowire Channels”, IEEE Electro. Device Lett. 32, 1239 (2011)
[5] J. H. Park, Mu. Tada, D. Kuzum, P. Kapur, H. Y. Yu, H. S. Philip Wong and Krishna C. Saraswat, “Low Temperature (≤ 380 ºC) and High Performance Ge CMOS Technology with Novel Source/Drain by Metal-Induced Dopants Activation and High-K/Metal Gate Stack for Monolithic 3D Integration”, International Electron Devices Meeting (IEDM) Tech. Dig., p. 16.1 (2008)

[6] D. N. Song, N. V. Duy, S. W. Jung and J. S. Yi, “Embedded nonvolatile memory devices with various silicon nitride energy band gaps on glass used for flat panel display applications”, Semicond. Sci. Technol. 25, 085003 (2010)
[7] T. H. Hsu, H. T. Lue, C. C. Hsieh, E. K. Lai, C. P. Lu, S. P Hong, M. T. Wu, F. H. Hsu, N. Z. Lien, J. Y. Hsieh, L. W. Yang, T. H. Yang, K. C. Chen, K. Y. Hsieh, R. Liu, and C. Y. Lu, “Study of Sub-30nm Thin Film Transistor (TFT) Charge-Trapping (CT) Devices for 3D NAND Flash Application”, Tech. Dig.-In. Electron Devices Meet. 2009, 629
[8] H. T. Lue, S. H. Chen, Y. H. Shih, K. Y. Hsieh, and C. Y. Lu, “Over view of 3D NAND flash and progress of vertical gate (VG) architecture”, ICSICT, ,2012, 1
[9] H. T Lue, S. Y. Wang, E. K. Lai, . H. Shih, S. C. Lai, and L. W. Yang, “BE-SONOS: a bandgap engineered SONOS with excellent performance and reliability”, Tech. Dig.-In. Electron Devices Meet. 2005, 547
[10] P. F. Chiu, M. F. Chang, C. W. Wu, C. H. Chuang, S. S. Sheu, Y. S. Chen, and M. J. Tsai, “Low store energy, low VDDmin, 8T2R nonvolatile latch and SRAMs with vertical-stacked resistive memory (memristor) devices for low power mobile applications”, IEEE J. Solid-State Circuits, 47, 1483 (2012)
[11] H. T Lue, J. Y. Hsieh, M. J. Yang, Y. K. Chiou, C, W. Wu, T. B. Wu, G. L. Luo, C. H. Chien, E. K. Lai ; K. Y Hsieh, Rich Liu, and C. Y. Lu, “Study on the erase and retention mechanisms for MONOS, MANOS, and BE-SONOS nono-volatile memory devices”, Symp. VLSI Tech. Dig. 2007, 1
[12] C. H. Lee, K. C. Park, and K. Kim, “Charge-trapping memory cell of SiO2/SiN/high-κ dielectric Al2O3 with TaN metal gate for suppressing backward-tunneling effect”, Appl. Phys. Lett. 87, 073510 (2005)
[13] K. Kitahara1, Y. Ohashi1, Y. Katoh1, A. Hara and N. Sasaki, ”Submicron-scale characterization of poly-Si thin films crystallized by excimer laser and continuous-wave laser”, J. Appl. Phys. 95, 7850 (2004)
[14] C. H. Chou, I. C. Lee, P. Y. Yang, M. J. Hu, C. L. Wang, C. Y. Wu, Y. S. Chien, K. Y. Wang and H. C. Cheng, “Effects of crystallization mechanism on the electrical characteristics of green continuous-wave-laser-crystallized polycrystalline silicon thin film transistors”, Appl. Phys. Lett. 103, 053515 (2013)
[15] J. W. Jung and W. J. Cho, “Tunnel barrier engineering for non-volatile memory”, J. Semicond. Tech. Sci. 8(1), 32 (2008)
[16] P. Blomme, J. V. Houdt, and K. D. Meyer, “Write/erase cyceling endurance of memory cells with SiO2/HfO2/ tunneling dielectric”, IEEE Trans. Device Mater. Reliab., 4 (3), 345 (2004)
[17] F. Irrera and G. Puzzilli, “Crested barrier in the tunnel stack of non-volatile memories”, Microelectron. Reliab. 45, 907 (2005)
[18] U. P. Chiou, J. M. Shieh, C. C. Yang, W. H. Huang, Y. T. Kao, and Fu-Ming Pan, “Double-metal-gate nanocrystalline Si thin film transistors with flexible threshold voltage controllability”, Appl. Phys. Lett. 103, 203501 (2013)
[19] Y. C. Lien, J. M. Shieh, W. H. Huang, C. H. Tu, C. Wang, C. H. Shen, B. T. Dai, C. L. Pan, Chenming Hu, and F. L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing“, Appl. Phys. Lett. 100, 143501 (2012)
[20] C. Zhao, C. Z. Zhao, S. Taylor and Paul R. Chalker, “Review on non-volatile memory with high-κ dielectrics: Flash for generation beyond 32 nm”, Materials, 7, 5117 (2014)
[21] C. Y. Kang, “Barrier engineering in metal-aluminum oxide-nitride-oxide-silicon (MANOS) flash memory: Invited”, Current Applied Physics, 10, 27 (2010)
[22] K. H. Wu, H. C. Chien, C. C. Chan, T. S. Chen, and C. H. Kao, “SONOS device with tapered bandgap nitride layer”, IEEE Electron Dev. Lett. 55 (2), 987 (2005)
[23] N. Goel, D. C. Gilmer, H. Park, V. Diaz, Y. Sun, J. Price, C. Park, P. Pianetta, P. D. Krisch, and R. Jammy, “Erase and retention improvements in charge trap flash through engineered charge storage layer”, IEEE Electron Dev. Lett. 30(3), 216 (2005)
[24] S. Vep_rek, F. A. Sarott, and Z. Iqbal, “Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon”, Phys. Rev. B, 36, 3344 (1987).
[25] A. Marmorstein, A. T. Voutsas, and R. Solanki, “A systematic study and optimization of parameters affecting grain size and surface roughness in excimer laser annealed polysilicon thin films”, J. Appl. Phys. 82(9), 4303 (1997)
[26] T. Suzuki, Y. Osaka, and M. Hirose, “Theoretical Interpretations of the Gap State Density Determined from the Field Effect and Capacitance-Voltage Characteristics of Amorphous Semiconductors”, Jpn. J. Appl. Phys. 21, L159 (1982).
[27] G. Fortunato and P. Migliorato, “Determination of gap state density in polycrystalline silicon by field‐effect conductance”, Appl. Phys. Lett. 49, 1025 (1986).
[28] K. Y. Choi, J. S. Yoo, M. K. Han, and Y. S. Kim, “Hydrogen Passivation on the Grain Boundary and Intragranular Defects in Various Polysilicon Thin-Film Transistors“, Jpn. J. Appl. Phys. Part 1 35, 915 (1996).
[29] Y. T. Lin, C. Chen, J. M. Shieh and C. L. Pan, “Stability of continuous-wave laser-crystallized silicon transistors”, Appl. Phys. Lett. 90, 073508 (2007)
[30] J. Chen, R. Solomon, T. Y. Chan, P. K. Ko, and Chenming Hu, “Threshold voltage and C-V characteristics of SOI MOSFET’s related to Si film thickness variation on SIMOX wafer”, IEEE Trans. Electron Devices, 39 (10), 2346 (1992)
[31] D. W. Greve, Field Effect Devices and Applications: Devices for Portable, Low-Power, and Imaging Systems, 1st ed. (Prentice-Hall, 1998).
[32] N. H. Chen, Ch. Y. Wang, J. C. Hwang, and F. S. Huang, “MOCVD Al nanocrystals embedded AlOxNy thin films for nonvolatile memory”, ECS J. Solid State Sci. Technol. 1 (4), 190 (2012)
[33] G. He, S. Toyoda, Y. Shimogaki and M. Oshima, “Chemical bonding states and band alignment of ultrathin AlOxNy/Si gate stacks grown by metalorganic chemical vapor deposition”, Appl. Phys. Exp. 2, 075503 (2009)
[34] C. Y. Chen, K. S. Chang-Liao, J. J. Ho and T. K. Wang, “Improved programming/erasing speed of charge-trapping flash device with tunneling layer formed by low temperature nitrogen-rich SiN/SiO2 stack”, Solid State Electronics, 78, 22 (2012)
[35] N. Goel, D. C. Gilmer, H. Park, V. Diaz, Y. Sun, J. Price, C. Park, P. Pianetta, P. D. Kirsch and R. Jammy, “Erase and retention improvements in charge trap flash through engineered charge storage layer”, IEEE Electro. Dev. Letts. 30 (3), 216 (2009)
[36] D. W. Kim, D. U. Lee, E. K. Kim and W. J. Cho, “Charge loss mechanism of non-volatile V3Si nano-particles memory device”, Appl. Phys. Lett. 101, 233510 (2012)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top