跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.2) 您好!臺灣時間:2025/11/29 02:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘奕丞
研究生(外文):Yi-Cheng Pan
論文名稱:感應馬達驅動器之混合式直接轉矩控制
論文名稱(外文):Hybrid Direct Torque Control for Induction Motor Drives
指導教授:蘇仲清陳萬清陳萬清引用關係
指導教授(外文):Chung-Ching SuWan-Ching Chen
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:84
中文關鍵詞:直接轉矩控制混合式直接轉矩控制空間向量脈寬調變
外文關鍵詞:DTCHybrid DTCSVMPWM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:411
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
感應馬達在本身結構特性上有許多的優點,如架構堅固、易於維護、價格更便宜等優點,所以在工業應用的場合中,感應馬達是扮演了相當重要的角色。近幾年來由於直接轉矩控制技術日漸成熟,然而直接轉矩控制與磁場導向控制的不同之處在於它並不企圖複製出直流馬達驅動器的電機行為,而是著眼於以PWM變頻器驅動之感應馬達的磁通與轉矩產生能力的充分利用。在這種認知上,直接轉矩控制可被視為感應馬達控制的一種嶄新的觀念。
本文主要目的為結合以切換表為基礎的直接轉矩控制和以空間向量調變為基礎的直接轉矩控制,並進一步發展出一個適當的選擇切換策略,以實現一感應馬達驅動器之混合式直接轉矩控制技術。在暫態操作期間,驅動器使用切換表控制的傳統直接轉矩控制法則以使馬達保有快速之轉矩響應,在穩態時驅動器則採用空間向量調變法的改良式直接轉矩控制以降低轉矩、轉速、磁通及電流等漣波。因本文所提之方法結合了傳統與改良式的直接轉矩控制技術之優點,故由電腦模擬與實驗結果顯示出本法在馬達暫態及穩態響應上均有良好之性能表現。
Induction motors have been widely used in industry applications. According to its mechanical structure identities, the induction motor has a lot of advantages such as stable structure, low price, simplicity of maintenance and so on. Recently, direct torque control technique has been well developed. Differently from the field-oriented control (FOC), DTC does not tend to reproduce the electromechanical behavior of a dc motor drive but is aimed at a complete exploitation of the flux and torque-producing capabilities of an induction motor (IM) fed by a pulse width modulation (PWM) inverter. In this case, DTC can be viewed as a novel concept in the control of IM drives.
This paper develops a hybrid direct torque control (H-DTC) strategy, which combine the switching-table -based direct torque control (ST-DTC) and the space vector modulation direct torque control (SVM-DTC), for high performance induction motor (IM) drives. A switching logic is designed for choosing either the ST-DTC or SVM-DTC strategy during the drive operation to guaranty transient and steady-state performance. Under transient operating conditions, the fast torque response is preserved by using ST-DTC, while better steady-state performance is achieved by using the SVM-DTC. The effectiveness of the proposed method will be demonstrated by computer simulations and experimental tests.
中文摘要………………………………………………………………………………… i
英文摘要………………………………………………………………………………… ii
誌謝……………………………………………………………………………………… iii
目錄……………………………………………………………………………………… iv
表目錄…………………………………………………………………………………… vi
圖目錄…………………………………………………………………………………… vii
符號說明………………………………………………………………………………… x
第一章 緒論……………………………………………………………………………… 1
1.1 研究動機…………………………………………………………………………… 1
1.2 研究背景與目的…………………………………………………………………… 2
1.3 內容大綱…………………………………………………………………………… 3
第二章 感應馬達動態之數學模式與系統描述………………………………………… 5
2.1 簡介………………………………………………………………………………… 5
2.2 感應馬達數學模式………………………………………………………………… 5
2.3 變頻器調變方式之探討…………………………………………………………… 11
2.3.1 正弦脈波寬度調變法…………………………………………………………… 12
2.3.2 電壓空間向量脈波寬度調變法………………………………………………… 14
第三章 直接轉矩控制與磁通控制……………………………………………………… 19
3.1 簡介………………………………………………………………………………… 19
3.2 直接轉矩控制原理………………………………………………………………… 19
3.3 感應馬達直接轉矩控制的系統架構……………………………………………… 22
3.3.1 三相電壓、電流轉換到對應的 兩軸電壓、電流…………………………… 23
3.3.2 定子磁通、電磁轉矩及定子磁通相位角度 的計算………………………… 24
3.3.3 開關切換表……………………………………………………………………… 24
3.3.4 速度控制器……………………………………………………………………… 27
3.4 空間向量調變為基礎之直接轉矩控制…………………………………………… 28
3.4.1 感應馬達改良式直接轉矩控制的系統架構…………………………………… 28
3.4.2 參考電壓向量策略……………………………………………………………… 29
3.5 混合式直接轉矩控制……………………………………………………………… 32
3.5.1 感應馬達混合式直接轉矩控制的系統架構…………………………………… 32
3.5.2 切換邏輯………………………………………………………………………… 33
第四章 電腦模擬………………………………………………………………………… 34
4.1 傳統直接轉矩控制與混合式直接轉矩控制之模擬響應………………………… 34
4.1.1 正轉無載模擬…………………………………………………………………… 35
4.1.2 正反轉無載模擬………………………………………………………………… 38
4.1.3 正反轉加載模擬………………………………………………………………… 41
4.1.4 正轉加載模擬…………………………………………………………………… 44
4.2 傳統、改良式直接轉矩控制與混合式直接轉矩控制之模擬響應比較………… 47
4.3 模擬結果討論……………………………………………………………………… 49
第五章 實驗結果………………………………………………………………………… 50
5.1 硬體架構簡介……………………………………………………………………… 50
5.1.1 個人電腦………………………………………………………………………… 50
5.1.2 馬達控制界面卡………………………………………………………………… 51
5.1.3 變頻器功率驅動電路…………………………………………………………… 52
5.1.4 感應馬達與光編碼器…………………………………………………………… 52
5.2 軟體架構…………………………………………………………………………… 52
5.3 傳統直接轉矩控制與混合式直接轉矩控制之實驗響應………………………… 53
5.3.1 正轉無載實驗…………………………………………………………………… 54
5.3.2 正反轉無載實驗………………………………………………………………… 69
5.4 傳統、改良式直接轉矩控制與混合式直接轉矩控制之響應比較……………… 72
5.5 實驗結果討論……………………………………………………………………… 74
第六章 結論與建議……………………………………………………………………… 75
6.1 結論………………………………………………………………………………… 75
6.2 建議………………………………………………………………………………… 75
參考文獻………………………………………………………………………………… 77
附錄……………………………………………………………………………………… 83
簡歷……………………………………………………………………………………… 84
1.王偉修、劉昌煥著,PC-Based馬達控制器即時發展系統,微鋒科技,民國八十七年十二月。
2.史宗岳、賴炎生、羅永昌、劉昌煥,「直接轉矩控制變頻器的製作」,中華民國第十九屆電力工程研討會論文集,pp. 863-867, 1998.
3.張志明、陳秋麟、李哲銘、劉益華、林義能,「以微處理機為基礎的感應電動機直接轉矩控制」,中華民國第十九屆電力工程研討會論文集,pp. 406-411, 1998.
4.陳俊成,「感應馬達直接轉矩之研究」,國防大學中正理工學院電子工程技術研究所,國防大學碩士論文,民國八十九年六月。
5.許溢适譯著,AC伺服系統的理論與設計實務,文笙書局,民國八十一年六月。
6.曾世昌,「感應馬達直接轉矩與磁通控制器之設計」,國防大學中正理工學院電子工程技術研究所,國防大學碩士論文,民國八十八年六月。
7.羅永昌、劉昌煥、賴炎生,「具定子電阻調適的感應馬達直接轉矩控制」,中華民國第十九屆電力工程研討會論文集,pp. 1079-1083, 1998.
8.羅永昌、賴炎生、史宗岳、劉昌煥,「利用空間向量調變技術控制變頻器的直接轉矩控制驅動器」,中華民國第十八屆電力工程研討會論文集,pp. 401-405, 1997.
9.羅明對,「PC-Based 感應馬達無量測向量控制器之研製」,國立雲林科技大學電機工程技術研究所,碩士論文,民國八十七年六月。
10.Attaianese, C., Perfetto, A., Damiano, A., and Marongiu, I., “A Direct Torque Control Algorithm Imposing the Mechanical Response of Speed Controlled Induction Motor Drives”, Proceedings of the IEEE International Symposium on Industrial Electronics, pp. 157-162, June. 1996.
11.Badder, U., Depenbrock, M., and Gierse, G.., “Direct Self Control (DSC) of Inverter-Fed Induction Machine: A Basis for Speed Control Without Speed Measurement”, IEEE Trans. Ind. Appl., Vol. 28, No. 3, pp. 581-588, May/June 1992.
12.Blaschke, F., “The Principle of Field Oriented as Applied to the New Transvector Closed-Loop Control System for Rotating-Field Machines”, Siemens Reviews, Vol. 34, No. 5, pp. 217-220, May 1972.
13.Bonanno, F., Consoli, A., Raciti, A., and Testa, A., “A Innovative Direct Self-Control Scheme for Induction Motor Drives”, IEEE Trans. Power Elec., Vol. 12, No. 5, pp. 800-806, Sep. 1997.
14.Bose, B. K., Power Electronics and AC Drives, Prentice-Hall, New Jersey, 1986.
15.Bose, B. K., Power Electronics and Variable Frequency Drives, IEEE PRESS, New York, 1997.
16.Buja, G.., Casadei, D., and Serra, G.., “DTC-Based Strategies for Induction Motor Drives”, Proceedings of the 23rd International Conference on Industrial Electronics, Control, and Instrumentation, Vol. 4, pp. 1506-1516, 1997.
17.Buja, G.., Casadei, D., and Serra, G.., “Direct Torque Control of Induction Motor Drives”, Proceedings of the IEEE International Symposium on Industrial Electronics, Vol. 1, pp. TU2-TU8, 1997.
18.Casadei, D., Grandi, G.., Serra, G.., and Tani, A., “Effects of Flux and Torque Hysteresis Band Amplitude in Direct Torque Control of Induction Machines”, 20th Annual Conference of IEEE Industrial Electronics, Vol. 1, pp. 299-304, Sept. 1994.
19.Casadei, D., Serra, G.., and Tani, A., “Direct Flux and Torque Control of Induction Machine for Electric Vehicle Application”, 7th International Conference on Electrical Machines and Drives, pp. 349-353, 1995.
20.Casadei, D., Serra, G.., and Tani, A., “Improvement of Direct Torque Control Performance by using a Discrete SVM Technique”, 29th Annual IEEE Power Electronics Specialists Conference, Vol. 2, pp. 997-1003, May. 1998.
21.Chapuis, Y. A., Roye, D., and Davoine, J., “Principles and Implementation of Direct Torque Control by Stator Flux Orientation of an Induction Motor”, Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition, Vol. 1, pp. 185-191, March 1995.
22.Consoli, A., Scarcella, G.., and Testa, A., “A new Zero-Frequency Flux-Position Detection approach for Direct-Field-Oriented-Control drive”, IEEE Trans. Industry Applications, Vol. 36, pp. 797-804, No. 3, May./June. 2000.
23.Dabney, J. B., and Harman, T. L., Mastering SIMULINK 2, Prentice-Hall, New Jersey, 1998.
24.Depenbrock, M., “Direct Self-Control (DSC) of Inverter-Fed Induction Machine”, IEEE Trans. on Power Electronics, Vol. 3, No. 4, pp. 420-429, 1988.
25.Diong, B., “Space-Vector PWM Control of an Induction Motor Drive”, Proceedings of International Conference on Control Applications, pp. 578-579, Sept. 1995.
26.Habetler, T. G.., Profumo, F., Pastorelli, M., and Tolbert, L. M., “Direct Torque Control of Induction Machines using Space Vector Modulation”, IEEE Trans. Industry Applications, Vol. 28, No. 5, pp. 1045-1053, 1992.
27.Kazmierkowski, M. P., and Kasprowicz, A. B., “Improved Direct Torque and Flux Control of PWM Inverter-Fed Induction Motor Drives” , IEEE Trans. Ind. Elec., Vol. 42, No. 4, pp. 344-350, Aug. 1995.
28.Krause, P. C., Analysis of Electric Machinery, McGraw-Hill, New York, 1987.
29.Lascu, C., and Trzynadlowski, A. M., ”A sensorlesssm hybrid DTC drive for high-volume low-cost applications”, IEEE Trans. on Industrial Electronis, Vol. 51, No. 5, pp. 1048-1055, 2004.
30.Ludtke, I., and Jayne, M. G.., “Direct Torque Control of Induction Motors”, IEE Colloquim on Vector Control and Direct Torque Control of Induction Motors, pp. 1-6, 1995.
31.Ludtke, I., and Jayne, M. G.., “A Comparative Study of High Performance Speed Control Strategies for Voltage-Sourced PWM Inverter-Fed Induction Motor Drives”, IEE 7th International Conference on Electrical Machines and Drives, pp. 343-348, 1995.
32.Nait Said M. S., and Benbouzid, M. E. H., “Induction motors direct field oriented control with robust On-Line tuning of rotor resistance”, IEEE Trans. Energy Conversion, Vol. 14, No. 4, pp. 1038-1042, Dec. 1999.
33.Nash, J. N., “Direct Torque Control, Induction Motor Vector Control without an Encoder ” , IEEE Trans. on Industry Applications, Vol. 33, No. 2, pp. 333-341, 1997.
34.Novotny, D. W., and Lipo, T. A., Vector Control and Dynamics of AC Drives, Clarendon Press, Oxford, New York, 1996.
35.Plunkett, A. B., “Direct Flux and Torque Regulation in a PWM Inverter–Induction Motor Drive”, IEEE Trans. Ind. Appl., Vol. Ia-3, No. 2, pp. 139-146, March/April 1977.
36.Purcell, A., and Acarnley, P., “Multilevel Hysteresis Comparator Forms for Direct Torque Control Scheme”, IEE Electronics Letters, Vol. 34, pp. 601-603, March 1998.
37.Sng, E. K., Liew, A. C. and Lipo, T. A., “New Observer- Based DFO scheme for speed sensorless Field-Oriented drives for Low-Zero-Speed operation”, IEEE Trans. Power Electronics, Vol. 13, No. 5, pp. 959-968, Sept. 1998.
38.Takahashi, I. and Noguchi, T., “A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor”, IEEE Trans. Ind. Industry Applications, Vol. 22, No. 5, pp. 820-827, 1986.
39.Takahashi, I., and Noguchi, T., “Take a Look Back upon the Past Decade of Direct Torque Control”, Proceedings of the 23rd International Conference on Industrial Electronics, Control, and Instrumentation, Vol. 2, pp. 546-551, Nov. 1997.
40.Takahashi, I., and Ohmori, Y., “High-Performance Direct Torque Control of an Induction Motor”, IEEE Trans. Ind. Appl., Vol. 25, No. 2, pp. 257-264, Mar./Apr. 1989.
41.Tiitinen, P., Pohkalainen, P., and Lalu, J., “The Next Generation Motor Control Method: Direct Torque Control (DTC)”, EPE Journal, Vol. 5, No. 1, pp. 14-18, 1995.
42.Van der Broeck, H. W., Skudelny, H. C., and Stanke, G. V., “Analysis and Realization of a Pulsewidth Modulator Based on Voltage Space Vectors”, IEEE Trans. Ind. Appl., Vol. 24, No. 1, pp. 142-150, Jan./Feb. 1988.
43.Wu, X. Q., and Steimel, A., “Direct Self Control Of Induction Machines Fed by a Double Three-Level Inverter”, IEEE Trans. Ind. Elec., Vol. 44, No. 4, pp. 519-527, Aug. 1997.
44.Xia, Y., and Oghanna, W., “Study on Fuzzy Control of Induction Machine with Direct Torque Control Approach”, Proceedings of the IEEE International Symposium on Industrial Electronics, Vol. 2, pp. 625-630, July 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top