跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/13 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林佑憲
研究生(外文):Yow-Sien Lin
論文名稱:腦型磷酸肌酸酶在漢丁頓氏舞蹈症中的角色探討
論文名稱(外文):The functional role of brain-type creatine kinase in Huntington’s disease
指導教授:陳儀莊陳儀莊引用關係
指導教授(外文):Yijuang Chern
學位類別:博士
校院名稱:國立陽明大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:132
中文關鍵詞:腦型磷酸肌酸酶腦型磷酸肌酸酶腦型磷酸肌酸酶腦型磷酸肌酸酶腦型磷酸肌酸酶
外文關鍵詞:Huntington's diseaseCKBMetabolismNeuronal dysfunctionHearing loss
相關次數:
  • 被引用被引用:0
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:1
漢丁頓舞蹈症肇因於huntingtin 基因第一個表現子上的CAG核酸重複片段的過度增長。大腦皮質與基底核中的紋狀體為最主要受影響的區域。近年來有許多文獻指出,漢丁頓舞蹈症具有能量代謝異常的現象,但其中的機制則尚未明瞭。利用二維膠體電泳,我們發現在R6/2漢丁頓舞蹈症小鼠模型中,紋狀體內的腦型核酸肌酸酶表達量受抑制的現象。已知腦型核酸肌酸酶可透過催化肌酸以及磷酸化肌酸之間的轉換,放出ATP能量,提供細胞內特殊區域中能量的消費利用。利用定量反轉錄聚合酶連鎖反應分析,以及啟動子活性分析,我們發覺腦型核酸肌酸基因的轉錄受到突變型漢丁頓蛋白(htt109Q)的抑制。免疫細胞染色指出腦型核酸肌酸酶可廣泛表達在神經元細胞本體,以及神經突出上。更有趣的是,R6/2小鼠神經突出上的核酸肌酸酶則顯著減少了。外源性表達腦型核酸肌酸酶可拯救突變漢丁頓蛋白所造成的異常,包括:細胞存活率的下降,突變漢丁頓蛋白的聚集,以及神經突起生長受損的現象。我們發現直接利用核酸肌酸酶的短髮夾核醣核酸(shRNA)來抑制Neuro-2a細胞中的腦型核酸肌酸酶亦會抑制神經突起的生長。我們的研究認為,腦型核酸肌酸酶的降低,對於漢丁頓舞蹈症神經功能異常扮演重要的角色,利用增加腦型核酸肌酸酶的活性或表達量,將可能是改善漢丁頓氏症的重要標的。
本論文的第二部分,則是探討漢丁頓氏症病患的聽力喪失問題,以及與腦型磷酸肌酸酶的相關性。過去的研究曾指出,腦型磷酸肌酸酶在聽覺毛細胞中的絨毛扮演重要的能量維持與傳遞的角色,我因此探討漢丁頓舞蹈症病人是否有聽力缺損。本研究共蒐集了十九位漢丁頓舞蹈症的病患(年齡在四十到五十九歲之間),進行純音聽力檢查(PTA)以及聽性腦幹反應檢查。漢丁頓舞蹈症的病患純音聽力檢查的閥值具有顯著增加的情形。與臨床的發現一致,利用兩種不同的漢丁頓舞蹈症小鼠模型(R6/2 and Hdh(CAG)150) 聽性腦幹反應的閾值也顯著提高。這些證據證明罹患漢丁頓氏症會引發聽力喪失。免疫組織染色指出突變型huntingin亦可在耳蝸中表現,並形成核內聚集體影響其正常功能。定量反轉錄聚合酶連鎖反應及西方式點墨亦指出漢丁頓小鼠耳鍋中腦型核酸肌酸酶表達量的降低。利用補充肌酸,漢丁頓小鼠的聽力損傷受到顯著的改善,磷酸化肌酸及腦型核酸肌酸酶系統功能在漢丁頓氏症可能受損,進而使得聽力受損。最重要的,利用肌酸可改善漢丁頓氏症的聽力受損。
綜論以上發現腦型核酸肌酸酶的減少,無論在中樞神經系統,以及週邊感覺神經皆扮演重要的角色,研究如何增強病患腦型核酸肌酸酶的活性或蛋白表達,將可能是治療漢丁頓舞蹈症的新標的。

Huntington’s disease (HD) is caused by expended CAG repeat in the exon 1 of huntingtin gene, and preferentially affects the functions of the striatum and cortex in the brain. Recent studies indicate that energy metabolism is impaired in HD, but the mechanisms remain unclear. Using 2D gel electrophoresis, we found that brain type creatine kinase (CKB) was down-regulated in the striatum of a transgenic HD mouse model (R6/2). The major function of CKB is known to regenerate ATP through regulating the levels of creatine and phosphor-creatine at specific energy consuming sites. By using a quantitative RT-PCR analysis and the promoter assay, we found that the transcript level of CKB was suppressed by polyglutamine-expanded mutant Huntingtin (Htt). Immunocytochemical staining revealed that CKB existed in both soma and neuronal processes. Interestingly, expression of CKB protein in the neuronal processes of R6/2 mice was greatly reduced when compared to those of age-controlled wildtype mice. Exogenous expression of CKB rescued the mutant Htt-induced defects including cell survival, Htt aggregate, and damaged neurite outgrowth. We also showed that down-regulation of CKB in Neuro-2a cells caused inhibition of neurite outgrowth. Our data suggest that downregulation of CKB contributes to neuronal dysfunction in HD. Strategies aimed at increasing the expression or activity of CKB may lead to beneficial effects on the progression of HD.
In the Second part of this thesis, the hearing loss in HD and the associated down regulation of CKB was investigated. We initiated this study because CKB is particularly important in ATP homeostasis in high energy demanding organs, and that CKB knockout mice show significant hearing loss. We hypothesized that CKB down-regulation may also occur in the cochlea and cause hearing defect in HD. In this study, 19 HD patients (aged 40–59) were assessed using pure-tone audiometry (PTA) and auditory brainstem responses (ABR). We demonstrate that the PTA thresholds were significantly elevated in HD patients. Consistently, two HD mouse models (R6/2 and Hdh(CAG)150) also showed elevated ABR thresholds. Hearing loss thus appears to be an authentic symptom of HD. Immunohistochemical analyses demonstrated the presence of mutant Htt in the organ of Corti of HD mice, and might interfere with its normal functions. Quantitative RT-PCR and western blot analyses further revealed reduced expression of CKB in the cochlea of HD mice. Treatment with creatine supplements ameliorated the hearing impairment of HD mice, suggesting that the poor PCr-CK system in the cochlea of HD mice may contribute to their hearing impairment. Most importantly, creatine may be used to treat the hearing abnormality of HD patients.
In summary, down-regulation of CKB plays an important role cross the central and peripheral nervous systems. Enhancement of the activity and/or expression of CKB in HD patients may serve as an important therapeutic means for HD.

Contents
Contents i
List of Tables iii
List of Figures iv
List of Abbreviation vi
Chinese abstract viii
Abstract x
Introduction 1
Huntington’s disease (HD) 1
UHDRS 1
Cell cultures 2
HD fly model 2
HD mouse model 3
HD and energy dysfunction 4
Brain-type creatine kinase (CKB) 4
CKB and neurodegenerative disorders 5
CKB interacting protein 5
HD and sensory system dysfunction 7
CKB and hearing function 8
Materials and Methods 9
Results 22
1.1 Down regulation of CKB in the presence of mutant Htt 22
1.2 CKB was down-regulated in the brain of HD mice in an age-dependent manner. 22
1.3 PolyQ-expanded mutant Huntingtin (Htt) suppressed CKB promoter activity 23
1.4 Overexpression of CKB ameliorated the abnormalities caused by mutant Htt in ST14A cells. 23
1.5 Overexpression of the brain type creatine kinase (CKB) attenuated mutant Htt aggregation 24
1.6 Abnormal distribution of CKB in primary cortical neurons purified from R6/2 mice. 25
1.7 Overexpression of CKB rescued the mutant Htt-induced impairment of neurite outgrowth. 25
1.8 Overexpression of CKB rescued the proteosome activity impaired by mutant Htt. 26
1.9 Overexpression of CKB led to beneficial effects on HD flies 27
2.1 HD patients showed impaired hearing sensitivity 27
2.2 Two mouse models of HD exhibit hearing impairment. 29
2.3 PolyQ-expanded mutant Htt forms intranuclear inclustions in the cochlea. 30
2.4 Scanning electron microscope analysis. 30
2.5 CKB is down-regulated in the cochlea of HD mice. 30
2.6 Energy deplete in the cochlea of HD mice. 31
2.7 Beneficial effects of creatine supplementation on auditory dysfunction in HD mice. 31
Discussion 34
Part I 34
Part II 36
Conclusion and perspectives 41
References 42
Tables and Figures 56
Appendices 103
Paper 112


(1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell, 72, 971-983.
(1996) Huntington Study Group. Unified Huntington's Disease Rating Scale: reliability and consistency. Mov Disord, 11, 136-142.
Aksenov, M. Y., Aksenova, M. V., Payne, R. M., Smith, C. D., Markesbery, W. R. and Carney, J. M. (1997) The expression of creatine kinase isoenzymes in neocortex of patients with neurodegenerative disorders: Alzheimer's and Pick's disease. Exp Neurol, 146, 458-465.
Aksenova, M. V., Aksenov, M. Y., Markesbery, W. R. and Butterfield, D. A. (1999a) Aging in a dish: age-dependent changes of neuronal survival, protein oxidation, and creatine kinase BB expression in long-term hippocampal cell culture. J Neurosci Res, 58, 308-317.
Aksenova, M. V., Aksenov, M. Y., Payne, R. M., Trojanowski, J. Q., Schmidt, M. L., Carney, J. M., Butterfield, D. A. and Markesbery, W. R. (1999b) Oxidation of cytosolic proteins and expression of creatine kinase BB in frontal lobe in different neurodegenerative disorders. Dement Geriatr Cogn Disord, 10, 158-165.
Andreassen, O. A., Dedeoglu, A., Ferrante, R. J. et al. (2001) Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington's disease. Neurobiol Dis, 8, 479-491.
Andrews, T. C. and Brooks, D. J. (1998) Advances in the understanding of early Huntington's disease using the functional imaging techniques of PET and SPET. Mol Med Today, 4, 532-539.
Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. and Finkbeiner, S. (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature, 431, 805-810.
Bae, B. I., Xu, H., Igarashi, S. et al. (2005) p53 mediates cellular dysfunction and behavioral abnormalities in Huntington's disease. Neuron, 47, 29-41.
Bainbridge, K. E., Hoffman, H. J. and Cowie, C. C. (2008) Diabetes and hearing impairment in the United States: audiometric evidence from the National Health and Nutrition Examination Survey, 1999 to 2004. Annals of internal medicine, 149, 1-10.
Benchoua, A., Trioulier, Y., Zala, D. et al. (2006) Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol Biol Cell, 17, 1652-1663.
Bender, A., Auer, D. P., Merl, T. et al. (2005) Creatine supplementation lowers brain glutamate levels in Huntington's disease. J Neurol, 252, 36-41.
Bennett, E. J., Shaler, T. A., Woodman, B., Ryu, K. Y., Zaitseva, T. S., Becker, C. H., Bates, G. P., Schulman, H. and Kopito, R. R. (2007) Global changes to the ubiquitin system in Huntington's disease. Nature, 448, 704-708.
Beste, C., Saft, C., Gunturkun, O. and Falkenstein, M. (2008) Increased cognitive functioning in symptomatic Huntington's disease as revealed by behavioral and event-related potential indices of auditory sensory memory and attention. J Neurosci, 28, 11695-11702.
Bjorkqvist, M., Wild, E. J., Thiele, J. et al. (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. The Journal of experimental medicine, 205, 1869-1877.
Blauert, J. (1983) Spatial Hearing. The Psychophysics of Human Sound Localization. MIT Press, Cambridge, MA.
Bollen, E., Arts, R. J., Roos, R. A., van der Velde, E. A. and Buruma, O. J. (1986) Brainstem reflexes and brainstem auditory evoked responses in Huntington's chorea. J Neurol Neurosurg Psychiatry, 49, 313-315.
Booth, R. F. and Clark, J. B. (1978) Studies on the mitochondrially bound form of rat brain creatine kinase. The Biochemical journal, 170, 145-151.
Bosch, M., Pineda, J. R., Sunol, C., Petriz, J., Cattaneo, E., Alberch, J. and Canals, J. M. (2004) Induction of GABAergic phenotype in a neural stem cell line for transplantation in an excitotoxic model of Huntington's disease. Exp Neurol, 190, 42-58.
Brand, A. H. and Dormand, E. L. (1995) The GAL4 system as a tool for unravelling the mysteries of the Drosophila nervous system. Curr Opin Neurobiol, 5, 572-578.
Brand, A. H. and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401-415.
Browne, S. E., Bowling, A. C., MacGarvey, U., Baik, M. J., Berger, S. C., Muqit, M. M., Bird, E. D. and Beal, M. F. (1997) Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann Neurol, 41, 646-653.
Browne, S. E., Ferrante, R. J. and Beal, M. F. (1999) Oxidative stress in Huntington's disease. Brain Pathol, 9, 147-163.
Burklen, T. S., Hirschy, A. and Wallimann, T. (2007) Brain-type creatine kinase BB-CK interacts with the Golgi Matrix Protein GM130 in early prophase. Mol Cell Biochem, 297, 53-64.
Butterworth, J., Yates, C. M. and Reynolds, G. P. (1985) Distribution of phosphate-activated glutaminase, succinic dehydrogenase, pyruvate dehydrogenase and gamma-glutamyl transpeptidase in post-mortem brain from Huntington's disease and agonal cases. J Neurol Sci, 67, 161-171.
Cattaneo, E. and Conti, L. (1998) Generation and characterization of embryonic striatal conditionally immortalized ST14A cells. J Neurosci Res, 53, 223-234.
Chang, D. T., Rintoul, G. L., Pandipati, S. and Reynolds, I. J. (2006) Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol Dis, 22, 388-400.
Chiang, M.-C., Chen, H.-M., Lee, Y.-H. et al. (2007a) Dysregulation of C/EBP{alpha} by mutant Huntingtin causes the urea cycle deficiency in Huntington's disease. Human Molecular Genetics, 16, 483-498.
Chiang, M. C., Chen, H. M., Lai, H. L., Chen, H. W., Chou, S. Y., Chen, C. M., Tsai, F. J. and Chern, Y. (2009a) The A2A adenosine receptor rescues the urea cycle deficiency of Huntington's disease by enhancing the activity of the ubiquitin-proteasome system. Hum Mol Genet.
Chiang, M. C., Chen, H. M., Lai, H. L., Chen, H. W., Chou, S. Y., Chen, C. M., Tsai, F. J. and Chern, Y. (2009b) The A2A adenosine receptor rescues the urea cycle deficiency of Huntington's disease by enhancing the activity of the ubiquitin-proteasome system. Hum Mol Genet, 18, 2929-2942.
Chiang, M. C., Chen, H. M., Lee, Y. H. et al. (2007b) Dysregulation of C/EBPalpha by mutant Huntingtin causes the urea cycle deficiency in Huntington's disease. Hum Mol Genet, 16, 483-498.
Chiang, M. C., Lee, Y. C., Huang, C. L. and Chern, Y. (2005) cAMP-response element-binding protein contributes to suppression of the A2A adenosine receptor promoter by mutant Huntingtin with expanded polyglutamine residues. J Biol Chem, 280, 14331-14340.
Choi, H., Park, C. S., Kim, B. G., Cho, J. W., Park, J. B., Bae, Y. S. and Bae, D. S. (2001) Creatine kinase B is a target molecule of reactive oxygen species in cervical cancer. Mol Cells, 12, 412-417.
Clark, J. G. (1981) Uses and abuses of hearing loss classification. ASHA, 23, 493-500.
Coleman, B., Rickard, N. A., de Silva, M. G. and Shepherd, R. K. (2009) A protocol for cryoembedding the adult guinea pig cochlea for fluorescence immunohistology. J Neurosci Methods, 176, 144-151.
Cui, L., Jeong, H., Borovecki, F., Parkhurst, C. N., Tanese, N. and Krainc, D. (2006) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 127, 59-69.
Davies, S. W., Turmaine, M., Cozens, B. A. et al. (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell, 90, 537-548.
De Volder, A., Bol, A., Michel, C., Cogneau, M., Evrard, P., Lyon, G. and Goffinet, A. M. (1988) Brain glucose utilization in childhood Huntington's disease studied with positron emission tomography (PET). Brain Dev, 10, 47-50.
Debrincat, M. A., Zhang, J. G., Willson, T. A. et al. (2007) Ankyrin repeat and suppressors of cytokine signaling box protein asb-9 targets creatine kinase B for degradation. J Biol Chem, 282, 4728-4737.
Demartino, G. N. and Gillette, T. G. (2007) Proteasomes: machines for all reasons. Cell, 129, 659-662.
Deschepper, M., Hoogendoorn, B., Brooks, S., Dunnett, S. B. and Jones, L. (2011) Proteomic changes in the brains of Huntington's disease mouse models reflect pathology and implicate mitochondrial changes. Brain Res Bull.
DiFiglia, M. (2002) Huntingtin fragments that aggregate go their separate ways. Mol Cell, 10, 224-225.
Djousse, L., Knowlton, B., Cupples, L. A., Marder, K., Shoulson, I. and Myers, R. H. (2002) Weight loss in early stage of Huntington's disease. Neurology, 59, 1325-1330.
Dunah, A. W., Jeong, H., Griffin, A. et al. (2002) Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science, 296, 2238-2243.
Dupre, N., Howard, H. C., Mathieu, J., Karpati, G., Vanasse, M., Bouchard, J. P., Carpenter, S. and Rouleau, G. A. (2003) Hereditary motor and sensory neuropathy with agenesis of the corpus callosum. Ann Neurol, 54, 9-18.
Ehle, A. L., Stewart, R. M., Lellelid, N. A. and Leventhal, N. A. (1984) Evoked potentials in Huntington's disease. A comparative and longitudinal study. Arch Neurol, 41, 379-382.
Ehrlich, M. E., Conti, L., Toselli, M. et al. (2001) ST14A cells have properties of a medium-size spiny neuron. Exp Neurol, 167, 215-226.
Ellis, M. C., O'Neill, E. M. and Rubin, G. M. (1993) Expression of Drosophila glass protein and evidence for negative regulation of its activity in non-neuronal cells by another DNA-binding protein. Development, 119, 855-865.
Ermak, G., Hench, K. J., Chang, K. T., Sachdev, S. and Davies, K. J. (2009) Regulator of calcineurin (RCAN1-1L) is deficient in Huntington disease and protective against mutant huntingtin toxicity in vitro. J Biol Chem, 284, 11845-11853.
Fay, P. (1988) Hearing in Vertebrates: a Psychophysics Databook. Hill-Fay Associates, Winnetka IL.
Ferrante, R. J., Andreassen, O. A., Jenkins, B. G., Dedeoglu, A., Kuemmerle, S., Kubilus, J. K., Kaddurah-Daouk, R., Hersch, S. M. and Beal, M. F. (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease. J Neurosci, 20, 4389-4397.
Fransen, E., Lemkens, N., Van Laer, L. and Van Camp, G. (2003) Age-related hearing impairment (ARHI): environmental risk factors and genetic prospects. Experimental gerontology, 38, 353-359.
Gomez-Tortosa, E., del Barrio, A., Barroso, T. and Garcia Ruiz, P. J. (1996) Visual processing disorders in patients with Huntington's disease and asymptomatic carriers. J Neurol, 243, 286-292.
Grant, K. W. (2005) Frequency band-importance functions for auditory and auditory-visual speech recognition. The Journal of the Acoustical Society of America, 117, 2424-2424.
Gu, M., Gash, M. T., Mann, V. M., Javoy-Agid, F., Cooper, J. M. and Schapira, A. H. (1996) Mitochondrial defect in Huntington's disease caudate nucleus. Ann Neurol, 39, 385-389.
Gulacsi, A., Lee, C. R., Sik, A., Viitanen, T., Kaila, K., Tepper, J. M. and Freund, T. F. (2003) Cell type-specific differences in chloride-regulatory mechanisms and GABA(A) receptor-mediated inhibition in rat substantia nigra. J Neurosci, 23, 8237-8246.
Gurwitz, D. and Cunningham, D. D. (1988) Thrombin modulates and reverses neuroblastoma neurite outgrowth. Proc Natl Acad Sci U S A, 85, 3440-3444.
Gutekunst, C. A., Li, S. H., Yi, H. et al. (1999) Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. J Neurosci, 19, 2522-2534.
Hardt, P. (2005) Is Loss of Hearing Caused by HD? In: HDAC Article, Vol. 2005.
Harris, F. P. (2005) Hearing Difficulties in Patients with Huntington’s Disease: Preliminary Findings of an Exploratory Study., Vol. 2005.
He, D. Z., Zheng, J., Edge, R. and Dallos, P. (2000) Isolation of cochlear inner hair cells. Hear Res, 145, 156-160.
Hegde, A. N. and Upadhya, S. C. (2007) The ubiquitin-proteasome pathway in health and disease of the nervous system. Trends Neurosci, 30, 587-595.
Hershko, A. and Ciechanover, A. (1998) The ubiquitin system. Annu Rev Biochem, 67, 425-479.
Hiki, K., D'Andrea, R. J., Furze, J., Crawford, J., Woollatt, E., Sutherland, G. R., Vadas, M. A. and Gamble, J. R. (1999) Cloning, characterization, and chromosomal location of a novel human K+-Cl- cotransporter. J Biol Chem, 274, 10661-10667.
Howard, H. C., Mount, D. B., Rochefort, D. et al. (2002) The K-Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum. Nat Genet, 32, 384-392.
Huntington_Study_Group (1996) Unified Huntington's Disease Rating Scale: reliability and consistency. Mov Disord, 11, 136-142.
Inoue, K., Ueno, S. and Fukuda, A. (2004) Interaction of neuron-specific K+-Cl- cotransporter, KCC2, with brain-type creatine kinase. FEBS Lett, 564, 131-135.
Inoue, K., Yamada, J., Ueno, S. and Fukuda, A. (2006) Brain-type creatine kinase activates neuron-specific K+-Cl- co-transporter KCC2. J Neurochem, 96, 598-608.
Jacobus, W. E. and Lehninger, A. L. (1973) Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. J Biol Chem, 248, 4803-4810.
Jenkins, B. G., Koroshetz, W. J., Beal, M. F. and Rosen, B. R. (1993) Evidence for impairment of energy metabolism in vivo in Huntington's disease using localized 1H NMR spectroscopy. Neurology, 43, 2689-2695.
Josiassen, R. C., Shagass, C., Mancall, E. L. and Roemer, R. A. (1984) Auditory and visual evoked potentials in Huntington's disease. Electroencephalogr Clin Neurophysiol, 57, 113-118.
Kaminosono, S., Saito, T., Oyama, F., Ohshima, T., Asada, A., Nagai, Y., Nukina, N. and Hisanaga, S. (2008) Suppression of mutant Huntingtin aggregate formation by Cdk5/p35 through the effect on microtubule stability. J Neurosci, 28, 8747-8755.
Kim, J., Amante, D. J., Moody, J. P. et al. (2010a) Reduced creatine kinase as a central and peripheral biomarker in Huntington's disease. Biochim Biophys Acta, 1802, 673-681.
Kim, J., Moody, J. P., Edgerly, C. K., Bordiuk, O. L., Cormier, K., Smith, K., Beal, M. F. and Ferrante, R. J. (2010b) Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease. Hum Mol Genet, 19, 3919-3935.
Kim, L., Steves, A., Collins, M., Fu, J. and Ritchie, M. E. (1997) bFGF induces BCK promoter-driven expression in muscle via increased binding of a nuclear protein. The American journal of physiology, 273, C223-229.
Klebe, R. J. and Ruddle, F. H. (1969) Neuroblastoma: Cell culture analysis of a differentiating stem cell system. J Cell Biology, 43, p. 69A.
Kodani, A. and Sutterlin, C. (2008) The Golgi protein GM130 regulates centrosome morphology and function. Mol Biol Cell, 19, 745-753.
Kropotov, J. D., Alho, K., Naatanen, R., Ponomarev, V. A., Kropotova, O. V., Anichkov, A. D. and Nechaev, V. B. (2000) Human auditory-cortex mechanisms of preattentive sound discrimination. Neurosci Lett, 280, 87-90.
Kuwert, T., Lange, H. W., Langen, K. J., Herzog, H., Aulich, A. and Feinendegen, L. E. (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington's disease. Brain, 113 ( Pt 5), 1405-1423.
Kuzhikandathil, E. V. and Molloy, G. R. (1999) Proximal promoter of the rat brain creatine kinase gene lacks a consensus CRE element but is essential for the cAMP-mediated increased transcription in glioblastoma cells. J Neurosci Res, 56, 371-385.
Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
Lang, F., Busch, G. L., Ritter, M., Volkl, H., Waldegger, S., Gulbins, E. and Haussinger, D. (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev, 78, 247-306.
Lawler, J. M., Barnes, W. S., Wu, G., Song, W. and Demaree, S. (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun, 290, 47-52.
Lee, H. S., Kim, K. R., Chung, W. H., Cho, Y. S. and Hong, S. H. (2008) Early sensorineural hearing loss in ob/ob mouse, an animal model of type 2 diabetes. Clin Exp Otorhinolaryngol, 1, 211-216.
Li, H., Khirug, S., Cai, C. et al. (2007) KCC2 interacts with the dendritic cytoskeleton to promote spine development. Neuron, 56, 1019-1033.
Li, S. H., Cheng, A. L., Zhou, H., Lam, S., Rao, M., Li, H. and Li, X. J. (2002) Interaction of Huntington disease protein with transcriptional activator Sp1. Mol Cell Biol, 22, 1277-1287.
Li, X. J., Orr, A. L. and Li, S. (2009) Impaired mitochondrial trafficking in Huntington's disease. Biochim Biophys Acta, 1802, 62-65.
Lim, D., Fedrizzi, L., Tartari, M., Zuccato, C., Cattaneo, E., Brini, M. and Carafoli, E. (2008) Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease. J Biol Chem, 283, 5780-5789.
Lin, C.-H., Tallaksen-Greene, S., Chien, W.-M. et al. (2001a) Neurological abnormalities in a knock-in mouse model of Huntington's disease. Hum. Mol. Genet., 10, 137-144.
Lin, C. H., Tallaksen-Greene, S., Chien, W. M. et al. (2001b) Neurological abnormalities in a knock-in mouse model of Huntington's disease. Hum Mol Genet, 10, 137-144.
Lin, L., Perryman, M. B., Friedman, D., Roberts, R. and Ma, T. S. (1994) Determination of the catalytic site of creatine kinase by site-directed mutagenesis. Biochim Biophys Acta, 1206, 97-104.
Liu, F. C., Wu, G. C., Hsieh, S. T., Lai, H. L., Wang, H. F., Wang, T. W. and Chern, Y. (1998) Expression of type VI adenylyl cyclase in the central nervous system: implication for a potential regulator of multiple signals in different neurotransmitter systems. FEBS Lett, 436, 92-98.
Macleod, K. F., Sherry, N., Hannon, G., Beach, D., Tokino, T., Kinzler, K., Vogelstein, B. and Jacks, T. (1995) p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev, 9, 935-944.
Mahajan, V. B., Pai, K. S., Lau, A. and Cunningham, D. D. (2000) Creatine kinase, an ATP-generating enzyme, is required for thrombin receptor signaling to the cytoskeleton. Proc Natl Acad Sci U S A, 97, 12062-12067.
Mangiarini, L., Sathasivam, K., Seller, M. et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87, 493-506.
Marsh, J. L., Pallos, J. and Thompson, L. M. (2003) Fly models of Huntington's disease. Hum Mol Genet, 12 Spec No 2, R187-193.
Martin, J. B. and Gusella, J. F. (1986) Huntington's disease. Pathogenesis and management. N Engl J Med, 315, 1267-1276.
Matsumoto, G., Kim, S. and Morimoto, R. I. (2006) Huntingtin and mutant SOD1 form aggregate structures with distinct molecular properties in human cells. J Biol Chem, 281, 4477-4485.
McBride, W. H., Iwamoto, K. S., Syljuasen, R., Pervan, M. and Pajonk, F. (2003) The role of the ubiquitin/proteasome system in cellular responses to radiation. Oncogene, 22, 5755-5773.
Mekhfi, H., Veksler, V., Mateo, P., Maupoil, V., Rochette, L. and Ventura-Clapier, R. (1996) Creatine kinase is the main target of reactive oxygen species in cardiac myofibrils. Circ Res, 78, 1016-1027.
Mihm, M. J., Amann, D. M., Schanbacher, B. L., Altschuld, R. A., Bauer, J. A. and Hoyt, K. R. (2007) Cardiac dysfunction in the R6/2 mouse model of Huntington's disease. Neurobiol Dis, 25, 297-308.
Milakovic, T. and Johnson, G. V. (2005) Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin. J Biol Chem, 280, 30773-30782.
Milakovic, T., Quintanilla, R. A. and Johnson, G. V. (2006) Mutant huntingtin expression induces mitochondrial calcium handling defects in clonal striatal cells: functional consequences. J Biol Chem, 281, 34785-34795.
Mitchell, I. J., Heims, H., Neville, E. A. and Rickards, H. (2005) Huntington's disease patients show impaired perception of disgust in the gustatory and olfactory modalities. The Journal of neuropsychiatry and clinical neurosciences, 17, 119-121.
Moberg, P. J., Pearlson, G. D., Speedie, L. J., Lipsey, J. R., Strauss, M. E. and Folstein, S. E. (1987) Olfactory recognition: differential impairments in early and late Huntington's and Alzheimer's diseases. J Clin Exp Neuropsychol, 9, 650-664.
Morton, A. J., Hunt, M. J., Hodges, A. K., Lewis, P. D., Redfern, A. J., Dunnett, S. B. and Jones, L. (2005) A combination drug therapy improves cognition and reverses gene expression changes in a mouse model of Huntington's disease. Eur J Neurosci, 21, 855-870.
Mount, D. B., Mercado, A., Song, L., Xu, J., George, A. L., Jr., Delpire, E. and Gamba, G. (1999) Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family. J Biol Chem, 274, 16355-16362.
Muratani, M. and Tansey, W. P. (2003) How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol, 4, 192-201.
Nordin, S., Paulsen, J. S. and Murphy, C. (1995) Sensory- and memory-mediated olfactory dysfunction in Huntington's disease. J Int Neuropsychol Soc, 1, 281-290.
Oepen, G., Doerr, M. and Thoden, U. (1981) Visual (VEP) and somatosensory (SSEP) evoked potentials in Huntington's chorea. Electroencephalogr Clin Neurophysiol, 51, 666-670.
Olmsted, J. B., Carlson, K., Klebe, R., Ruddle, F. and Rosenbaum, J. (1970) Isolation of microtubule protein from cultured mouse neuroblastoma cells. Proc Natl Acad Sci U S A, 65, 129-136.
Opii, W. O., Joshi, G., Head, E., Milgram, N. W., Muggenburg, B. A., Klein, J. B., Pierce, W. M., Cotman, C. W. and Butterfield, D. A. (2008) Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and a program of behavioral enrichment: relevance to Alzheimer's disease. Neurobiology of aging, 29, 51-70.
Opitz, B., Schroger, E. and von Cramon, D. Y. (2005) Sensory and cognitive mechanisms for preattentive change detection in auditory cortex. Eur J Neurosci, 21, 531-535.
Payne, R. M., Haas, R. C. and Strauss, A. W. (1991) Structural characterization and tissue-specific expression of the mRNAs encoding isoenzymes from two rat mitochondrial creatine kinase genes. Biochimica et biophysica acta, 1089, 352-361.
Perluigi, M., Poon, H. F., Maragos, W., Pierce, W. M., Klein, J. B., Calabrese, V., Cini, C., De Marco, C. and Butterfield, D. A. (2005) Proteomic analysis of protein expression and oxidative modification in r6/2 transgenic mice: a model of Huntington disease. Mol Cell Proteomics, 4, 1849-1861.
Peters, T. W. and Huang, M. (2007) Protein aggregation and polyasparagine-mediated cellular toxicity in Saccharomyces cerevisiae. Prion, 1, 144-153.
Phan, J., Hickey, M. A., Zhang, P., Chesselet, M.-F. and Reue, K. (2009) Adipose tissue dysfunction tracks disease progression in two Huntington's disease mouse models. Hum. Mol. Genet., 18, 1006-1016.
Pike, C. J., Vaughan, P. J., Cunningham, D. D. and Cotman, C. W. (1996) Thrombin attenuates neuronal cell death and modulates astrocyte reactivity induced by beta-amyloid in vitro. J Neurochem, 66, 1374-1382.
Race, J. E., Makhlouf, F. N., Logue, P. J., Wilson, F. H., Dunham, P. B. and Holtzman, E. J. (1999) Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter. Am J Physiol, 277, C1210-1219.
Ren, J., Zhao, P., Chen, L., Xu, A., Brown, S. N. and Xiao, X. (2009) Hearing loss in middle-aged subjects with type 2 diabetes mellitus. Arch Med Res, 40, 18-23.
Ribchester, R. R., Thomson, D., Wood, N. I., Hinks, T., Gillingwater, T. H., Wishart, T. M., Court, F. A. and Morton, A. J. (2004) Progressive abnormalities in skeletal muscle and neuromuscular junctions of transgenic mice expressing the Huntington's disease mutation. The European journal of neuroscience, 20, 3092-3114.
Riboni, L., Prinetti, A., Bassi, R., Caminiti, A. and Tettamanti, G. (1995) A mediator role of ceramide in the regulation of neuroblastoma Neuro2a cell differentiation. J Biol Chem, 270, 26868-26875.
Rivera, C., Voipio, J., Payne, J. A., Ruusuvuori, E., Lahtinen, H., Lamsa, K., Pirvola, U., Saarma, M. and Kaila, K. (1999) The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature, 397, 251-255.
Robinow, S., Campos, A. R., Yao, K. M. and White, K. (1988) The elav gene product of Drosophila, required in neurons, has three RNP consensus motifs. Science, 242, 1570-1572.
Rosas, H. D., Feigin, A. S. and Hersch, S. M. (2004) Using advances in neuroimaging to detect, understand, and monitor disease progression in Huntington's disease. NeuroRx, 1, 263-272.
Sadri-Vakili, G., Bouzou, B., Benn, C. L. et al. (2007) Histones associated with downregulated genes are hypo-acetylated in Huntington's disease models. Hum Mol Genet, 16, 1293-1306.
Saft, C., Schuttke, A., Beste, C., Andrich, J., Heindel, W. and Pfleiderer, B. (2008) fMRI reveals altered auditory processing in manifest and premanifest Huntington's disease. Neuropsychologia, 46, 1279-1289.
Salin-Cantegrel, A., Shekarabi, M., Holbert, S. et al. (2008) HMSN/ACC truncation mutations disrupt brain-type creatine kinase-dependant activation of K+/Cl- cotransporter 3. Hum Mol Genet.
Sathasivam, K., Hobbs, C., Turmaine, M. et al. (1999) Formation of polyglutamine inclusions in non-CNS tissue. Hum Mol Genet, 8, 813-822.
Sato, C., Matsuda, T. and Kitajima, K. (2002) Neuronal differentiation-dependent expression of the disialic acid epitope on CD166 and its involvement in neurite formation in Neuro2A cells. J Biol Chem, 277, 45299-45305.
Seidman, M. D., Ahmad, N. and Bai, U. (2002) Molecular mechanisms of age-related hearing loss. Ageing research reviews, 1, 331-343.
Seo, H., Kim, W. and Isacson, O. (2008) Compensatory changes in the ubiquitin-proteasome system, brain-derived neurotrophic factor and mitochondrial complex II/III in YAC72 and R6/2 transgenic mice partially model Huntington's disease patients. Hum Mol Genet, 17, 3144-3153.
Seo, H., Sonntag, K. C. and Isacson, O. (2004) Generalized brain and skin proteasome inhibition in Huntington's disease. Ann Neurol, 56, 319-328.
Shin, J. B., Streijger, F., Beynon, A. et al. (2007) Hair bundles are specialized for ATP delivery via creatine kinase. Neuron, 53, 371-386.
Sorolla, M. A., Reverter-Branchat, G., Tamarit, J., Ferrer, I., Ros, J. and Cabiscol, E. (2008) Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic Biol Med, 45, 667-678.
Spatz, M., Waisman, A. and Kaye, A. M. (1992) Responsiveness of the 5'-flanking region of the brain type isozyme of creatine kinase to estrogens and antiestrogen. The Journal of steroid biochemistry and molecular biology, 41, 711-714.
Spires, T. L., Grote, H. E., Garry, S., Cordery, P. M., Van Dellen, A., Blakemore, C. and Hannan, A. J. (2004) Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington's disease transgenic mice. Eur J Neurosci, 19, 2799-2807.
Steffan, J. S., Kazantsev, A., Spasic-Boskovic, O. et al. (2000) The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A, 97, 6763-6768.
Suidan, H. S., Nobes, C. D., Hall, A. and Monard, D. (1997) Astrocyte spreading in response to thrombin and lysophosphatidic acid is dependent on the Rho GTPase. Glia, 21, 244-252.
Suidan, H. S., Stone, S. R., Hemmings, B. A. and Monard, D. (1992) Thrombin causes neurite retraction in neuronal cells through activation of cell surface receptors. Neuron, 8, 363-375.
Sukovich, D. A., Mukherjee, R. and Benfield, P. A. (1994) A novel, cell-type-specific mechanism for estrogen receptor-mediated gene activation in the absence of an estrogen-responsive element. Molecular and cellular biology, 14, 7134-7143.
Tallaksen-Greene, S. J., Crouse, A. B., Hunter, J. M., Detloff, P. J. and Albin, R. L. (2005) Neuronal intranuclear inclusions and neuropil aggregates in HdhCAG(150) knockin mice. Neuroscience, 131, 843-852.
Trettel, F., Rigamonti, D., Hilditch-Maguire, P., Wheeler, V. C., Sharp, A. H., Persichetti, F., Cattaneo, E. and MacDonald, M. E. (2000) Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum Mol Genet, 9, 2799-2809.
Tsuji, S., Yamashita, T., Tanaka, M. and Nagai, Y. (1988) Synthetic sialyl compounds as well as natural gangliosides induce neuritogenesis in a mouse neuroblastoma cell line (Neuro2a). J Neurochem, 50, 414-423.
Valenza, M., Carroll, J. B., Leoni, V. et al. (2007) Cholesterol biosynthesis pathway is disturbed in YAC128 mice and is modulated by huntingtin mutation. Hum Mol Genet, 16, 2187-2198.
van Roon-Mom, W. M., Reid, S. J., Jones, A. L., MacDonald, M. E., Faull, R. L. and Snell, R. G. (2002) Insoluble TATA-binding protein accumulation in Huntington's disease cortex. Brain Res Mol Brain Res, 109, 1-10.
Vasilyeva, O. N., Frisina, S. T., Zhu, X., Walton, J. P. and Frisina, R. D. (2009) Interactions of hearing loss and diabetes mellitus in the middle age CBA/CaJ mouse model of presbycusis. Hear Res, 249, 44-53.
Vaughan, P. J., Pike, C. J., Cotman, C. W. and Cunningham, D. D. (1995) Thrombin receptor activation protects neurons and astrocytes from cell death produced by environmental insults. J Neurosci, 15, 5389-5401.
von Mikecz, A. (2006) The nuclear ubiquitin-proteasome system. J Cell Sci, 119, 1977-1984.
Vonsattel, J. P., Myers, R. H., Stevens, T. J., Ferrante, R. J., Bird, E. D. and Richardson, E. P., Jr. (1985) Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol, 44, 559-577.
Wallimann, T. (2007) Introduction--creatine: cheap ergogenic supplement with great potential for health and disease. Sub-cellular biochemistry, 46, 1-16.
Wallimann, T., Moser, H., Zurbriggen, B., Wegmann, G. and Eppenberger, H. M. (1986a) Creatine kinase isoenzymes in spermatozoa. J Muscle Res Cell Motil, 7, 25-34.
Wallimann, T., Walzthony, D., Wegmann, G., Moser, H., Eppenberger, H. M. and Barrantes, F. J. (1985) Subcellular localization of creatine kinase in Torpedo electrocytes: association with acetylcholine receptor-rich membranes. J Cell Biol, 100, 1063-1072.
Wallimann, T., Wegmann, G., Moser, H., Huber, R. and Eppenberger, H. M. (1986b) High content of creatine kinase in chicken retina: compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells. Proc Natl Acad Sci U S A, 83, 3816-3819.
Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K. and Eppenberger, H. M. (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. The Biochemical journal, 281 ( Pt 1), 21-40.
Wang, C. E., Zhou, H., McGuire, J. R., Cerullo, V., Lee, B., Li, S. H. and Li, X. J. (2008a) Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant huntingtin. J Cell Biol, 181, 803-816.
Wang, F., Samudio, I. and Safe, S. (2001) Transcriptional activation of rat creatine kinase B by 17beta-estradiol in MCF-7 cells involves an estrogen responsive element and GC-rich sites. J Cell Biochem, 84, 156-172.
Wang, J., Wang, C. E., Orr, A., Tydlacka, S., Li, S. H. and Li, X. J. (2008b) Impaired ubiquitin-proteasome system activity in the synapses of Huntington's disease mice. J Cell Biol, 180, 1177-1189.
Willis, D., Zhang, Y. and Molloy, G. R. (2005) Transcription of brain creatine kinase in U87-MG glioblastoma is modulated by factor AP2. Biochim Biophys Acta, 1728, 18-33.
Wolfgang, W. J., Miller, T. W., Webster, J. M., Huston, J. S., Thompson, L. M., Marsh, J. L. and Messer, A. (2005) Suppression of Huntington's disease pathology in Drosophila by human single-chain Fv antibodies. Proc Natl Acad Sci U S A, 102, 11563-11568.
Woodman, B., Butler, R., Landles, C., Lupton, M. K., Tse, J., Hockly, E., Moffitt, H., Sathasivam, K. and Bates, G. P. (2007) The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Res Bull, 72, 83-97.
Wu-Peng, X. S., Pugliese, T. E., Dickerman, H. W. and Pentecost, B. T. (1992) Delineation of sites mediating estrogen regulation of the rat creatine kinase B gene. Mol Endocrinol, 6, 231-240.
Wu, W. L., Wang, C. H., Huang, E. Y. and Chen, C. C. (2009) Asic3(-/-) female mice with hearing deficit affects social development of pups. PLoS One, 4, e6508.
Wyss, M. and Kaddurah-Daouk, R. (2000) Creatine and creatinine metabolism. Physiol Rev, 80, 1107-1213.
Yamashita, T., Amano, H., Ohtani, M., Harada, N. and Kumazawa, T. (1991) Isolation of and calcium kinetics in cochlear inner hair cells of the guinea pig. Acta Otolaryngol, 111, 879-884.
Ye, C., Zhang, Y., Wang, W., Wang, J. and Li, H. (2008) Inhibition of neurite outgrowth and promotion of cell death by cytoplasmic soluble mutant huntingtin stably transfected in mouse neuroblastoma cells. Neurosci Lett, 442, 63-68.
Zhao, J., Schmieg, F. I., Simmons, D. T. and Molloy, G. R. (1994) Mouse p53 represses the rat brain creatine kinase gene but activates the rat muscle creatine kinase gene. Mol Cell Biol, 14, 8483-8492.
Zhou, H., Li, S. H. and Li, X. J. (2001) Chaperone suppression of cellular toxicity of huntingtin is independent of polyglutamine aggregation. J Biol Chem, 276, 48417-48424.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top