跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 08:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:傅建程
研究生(外文):Chien-Cheng Fu
論文名稱:具溫度感測之CMOS生物感測讀取電路
論文名稱(外文):CMOS BIOSENSOR READOUT CIRCUIT WITH TEMPERATURE SENSOR
指導教授:王瑞祿
指導教授(外文):Ruey-Lue Wang
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:102
中文關鍵詞:離子感測場效電晶體延伸式閘極感測場效電晶體溫度感測電路多路感測讀取電路補償電路內建參考電極
外文關鍵詞:Ion-Sensitive Field Effect TransistorExtended Gate Field Effect Transistortemperature sensor circuitmuti-sensor readout circuitcompensation circuitbuilt-in reference electrode
相關次數:
  • 被引用被引用:2
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在1970年,由Bergveld所發明的離子感測場效電晶體,結合了化學感測薄膜和金屬-氧化物-半導體場效電晶體,多年來各種各樣的感測薄膜、讀取電路和校正方法相繼被提出。本論文提出一個新的溫度感測電路、具內建金參考電極的離子感測場效電晶體(ISFET)、及多路輸入與具補償電流機制的讀取電路。
原先實驗室團隊已證實了native aluminum oxide應用在pH濃度量測上,擁有良好的線性度與靈敏度,並提出了相關的讀取電路設計,經過實驗量測得到不錯的結果,但仍有可進一步改良的地方,例如降低輸出信號的準位以便能使用較少位元數來獲得較好的解析度。
首先,本論文提出了以正溫度係數的電壓來偏壓的具源極退化多晶矽電組之共源極放大器,實現一高線性度輸出電流的溫度感測器,並透過電流控制振盪器產生頻率隨溫度成高線性增加的脈波輸出。量測結果顯示,在0℃ ~ 125℃溫度範圍內,溫度感測器所量測到的線性度可達99.99%,溫度線性誤差在0.47℃ ~ −0.45℃。
接著,提出新的多路感測讀取電路及可調整輸出信號範圍的電流補償方法。跟實驗室先前提出的多路感測讀取電路相比,此電路具有較低功耗、較小晶片面積以及可補償製程變異造成的各路輸出間之誤差,讓各路輸出結果趨於一致。讀取電路輸出為數位脈波,脈波頻率與溫度或pH濃度的關係具有良好的線性度。
此外,本論文也設計內建金參考電極的ISFET元件結構,探討改變外部Ag/AgCl參考電極與內建Au參考電極偏壓時,輸出脈波頻率與pH值特性之靈敏度與線性度。量測結果顯示,在相同輸出頻率範圍之偏壓條件下,Ag/AgCl與Au參考電極操作時的靈敏度較大,靈敏度分別為−2.24 KHz/pH與−2.91 KHz/pH,線性度分別為99.18%與99.88%。

The ion-sensitive field effect transistor (ISFET), introduced first by Bergveld in 1970, combined the chemical-sensitive membrane with the metal-oxide-semiconductor field effect transistor. For the past many years, various sensing membrane, readout circuits and calibration methods have been presented. In this thesis, a novel temperature sensor, ISFET structures with built-in gold (Au) reference electrode, and several readout circuits with multiple inputs and an offset sub-circuit are presented.
Our laboratory has confirmed previously that the native aluminum oxide applies to the pH-value sensing and brings about the good linearity and sensitivity. In addition, the related read-out circuits have also been presented and the good experimental measurement results have also been exhibited. But the improvement of the read-out circuit, such as the reduction of output signal level for the better resolution by less bit number, is still needed.
At first, we utilize a common-source amplifier with a source-degeneration poly-crystalline silicon resistor, which gate is biased by a voltage with a positive temperature coefficient, to implement a temperature sensor with a highly linear output current. By using a current controlled oscillator, the pulse output, which frequency increases highly linearly with increasing temperature, is generated. For the temperature range from 0℃ to 125℃, the measured linearity is up to 99.99% at least and the related nonlinear temperature error range is from 0.47℃ to −0.45℃.
Then, we purpose to novel multi-sensor readout circuits and a current offset mechanism, which can adjust the output signal level. Compared with the readout circuit previously presented by our laboratory, the novel readout circuit architecture has a less power consumption and a smaller chip area, and can reduce the output error resulting from process variation, which causes difference between each output characteristics of the multi-sensor readout circuit. The offset mechanism can make these output characteristics nearly the same. The output of the readout circuit is digital pulses, which frequencies exhibit good linearity with environmental temperature and pH value.
In addition, the ISFET device structures with built-in gold reference were designed and the sensitivity and linearity of transfer characteristics of output pulse frequency against pH value under the bias by an external silver/silver chloride (Ag/AgCl) reference electrode and a built-in Au reference electrode were studied. The measurement results show that under the chosen biasing conditions for the approximate output frequencies with Ag/AgCl and Au reference electrodes, the sensitivities are -2.24 and -2.91 KHz/pH with linearity of 99.18% and 99.88%, respectively. The sensitivity of the sensor by using the built-in Au reference electrode is larger than by using an external Ag/AgCl electrode.

目錄

致謝 Ⅰ
中文摘要 Ⅱ
英文摘要 Ⅳ
目錄 Ⅶ
表目錄 Ⅸ
圖目錄 Ⅹ
緒論 1
研究背景 1
研究動機與目的 2
論文架構 4
ISFET工作原理與分析 5
2-1 生物感測器種類 5
2-2 離子感測場效電晶體(ISFET)工作原理 8
2-2.1 MOSFET特性 9
2-2.2 ISFET特性 10
2-2.3 EGFET特性 14
2-2.4 吸附鍵結模型與電雙層模型 15
2-3 參考電極 19
2-4 ISFET原件實驗與結果 22
第三章 溫度感測電路設計 26
3-1 電路架構介紹 26
3-1.1 溫度感測器 28
3-1.2 電流控制振盪器 37
3-2 整體溫度感測電路的模擬與量測 40
第四章 多路感測電路設計 53
4-1 電路架構介紹 55
4-1.1 先前之電路架構 55
4-1.2 帶差參考電路 59
4-1.3 多路運算放大器 64
4-2 多路感測電路的模擬與量測 67
4-2.1 具溫度多路感測電路 67
4-2.2 單一感測含補償電路 74
4-2.3 多路感測含補償電路 84
4-2.4 具溫度多路感測含補償電路 90
第五章 結論 94
第六章 參考文獻 97
表目錄

表1-1 不同材質之ISFET/EGFET感測薄膜特性比較 3
表3-1 pH緩衝溶液對溫度之變化 27
表3-2 SR正反器操作模式 38
表3-3 整理不同偏壓Vb下,模擬與量測0℃~125℃之特性 51
表4-1 BUN:Creatinine ranges and significance 55
表4-2 2-to-4 line decoder 66
表4-3 Postsim muti-OPA特性 67
表4-4 具溫度多路感測模擬與量測整理 73









圖目錄

圖 1-1 ENFET sensor system 1
圖 1-2 論文架構圖 4
圖 2-1 生物感測系統 8
圖 2-2 n-MOSFET元件示意圖 9
圖2-3 n-ISFET元件示意圖 11
圖 2-4 EGFET量測系統示意圖 15
圖 2-5 Site-Binding Model示意圖 16
圖 2-6 EIS架構之電荷密度與電位分佈 17
圖 2-7 Helmholtz電雙層模型與電位分佈 18
圖 2-8 Stern電雙層模型與電位分佈 19
圖 2-9 Ag/AgCl參考電極 21
圖 2-10 pseudo Ag/AgCl參考電極 22
圖 2-11 元件剖面圖與量測方法 23
圖 2-12 ISFET元件晶片照相圖 24
圖 2-13 pH値與相對應等效閘極電壓 25
圖 3-1 溶液、參考電極、臨界電壓所受溫度之影響圖 28
圖3-2 溫度感測器(未修正) 29
圖 3-3 V_G2對溫度模擬圖 31
圖 3-4 V_G2對溫度誤差模擬圖 31
圖 3-5 V_G5對溫度模擬圖 32
圖 3-6 V_G5對溫度誤差模擬圖 32
圖 3-7 定電壓之電阻對溫度電路圖 33
圖 3-8 電阻對溫度之變化模擬圖 34
圖 3-9 電阻對溫度之誤差模擬圖 34
圖 3-10 溫度感測器(修正後) 35
圖 3-11 電流對溫度模擬圖 36
圖 3-12 電流對溫度誤差模擬圖 36
圖 3-13 電流控制振盪器 37
圖3-14 電流控制振盪器模擬圖 39
圖3-15 電流控制振盪器layout圖 40
圖3-16 溫度感測脈波輸出電路圖 41
圖 3-17 頻率輸出對溫度模擬圖(TT) (Vb = 1V時) 43
圖 3-18 頻率對溫度誤差模擬圖(TT) (Vb = 1V時) 43
圖 3-19 頻率輸出對溫度模擬圖(FF) (Vb = 1V時) 44
圖 3-20 頻率對溫度誤差模擬圖(FF) (Vb = 1V時) 44
圖 3-21 頻率輸出對溫度模擬圖(SS) (Vb = 1V時) 45
圖 3-22 頻率對溫度誤差模擬圖(SS) (Vb = 1V時) 45
圖 3-23 頻率輸出對溫度模擬圖(TT) (Vb = 1.13V時) 46
圖 3-24 頻率對溫度誤差模擬圖(TT) (Vb = 1.13V時) 46
圖 3-25 頻率輸出對溫度模擬圖(TT) (Vb = 1.2V時) 47
圖 3-26 頻率對溫度誤差模擬圖(TT) (Vb = 1.2V時) 47
圖 3-27 頻率輸出對溫度量測圖 (Vb = 1V時) 48
圖3-28 頻率對溫度誤差量測圖 (Vb = 1V時) 48
圖3-29 頻率輸出對溫度量測圖 (Vb = 1.13V時) 49
圖 3-30 頻率對溫度誤差量測圖 (Vb = 1.13V時) 49
圖 3-31 頻率輸出對溫度量測圖 (Vb = 1.2V時) 50
圖3-32 頻率對溫度誤差量測圖 (Vb = 1.2V時) 50
圖3-33 晶片照相圖 52
圖 4-1 單輸入ISFET脈波輸出讀取電路圖 56
圖 4-2 量測之等效閘極電壓-頻率圖 57
圖 4-3 量測之pH值-等效閘極電壓圖 58
圖 4-4 muti-ISFET讀取電路圖 59
圖 4-5 帶差參考電路與溫度感測電路圖 60
圖 4-6 M4隨溫度變化之電流模擬圖 62
圖 4-7 M7隨溫度變化之電流模擬圖 63
圖 4-8 two-stage OPA 64
圖4-9 多路運算放大器電路圖 66
圖 4-10 具溫度多路感測電路圖 68
圖 4-11 輸入電壓(ipa)對頻率模擬圖 70
圖 4-12 溫度(ipb)對頻率模擬圖 70
圖 4-13 輸入電壓(ipc)對頻率模擬圖 71
圖 4-14 輸入電壓(ipa)對頻率量測圖 71
圖 4-15 溫度(ipb)對頻率量測圖 72
圖 4-16 輸入電壓(ipc)對頻率量測圖 72
圖 4-17 輸入電壓對頻率量測圖 73
圖 4-18 具溫度多路感測電路晶片照相圖 74
圖 4-19 單一感測含補償電路圖 75
圖 4-20 輸入電壓對頻率模擬圖(Voffset =2.4V) 76
圖 4-21 輸入電壓對頻率模擬圖(Voffset =2.55V) 77
圖 4-22 輸入電壓對頻率模擬圖(Voffset =2.7V) 77
圖 4-23 輸入電壓對頻率模擬圖 77
圖 4-24 輸入電壓對頻率量測圖(Voffset =2.4V) 78
圖 4-25 pH濃度對頻率量測圖(Voffset =2.4V) 78
圖 4-26 pH 7.02對頻率量測圖(Voffset =2.4V) 79
圖 4-27 pH量測架構圖 79
圖 4-28 pH濃度對頻率量測圖(Voffset =2.55V) 80
圖 4-29 pH濃度對頻率量測圖(Voffset =2.7V) 80
圖 4-30 pH濃度對頻率量測圖 80
圖 4-31 單一感測含補償電路晶片照相圖 82
圖 4-32 pH濃度對頻率量測圖(Voffset =2.4V;Vref =1.6V) 82
圖 4-33 pH濃度對頻率量測圖(Voffset =2.4V;Vref =1.75V) 83
圖 4-34 pH濃度對頻率量測圖(Voffset =2.55V;Vref =1.6V) 83
圖 4-35 pH濃度對頻率量測圖 83
圖 4-36 多路感測含補償電路圖 84
圖 4-37 輸入電壓對頻率量測圖(Voffset =2.7V) 85
圖 4-38 輸入電壓(ipa)對頻率量測圖(Voffset =2.55V) 86
圖 4-39 輸入電壓(ipa)對頻率量測圖(Voffset =2.67V) 86
圖 4-40 輸入電壓(ipa)對頻率量測圖(Voffset =2.7V) 86
圖4-41 輸入電壓(ipb)對頻率量測圖(Voffset =2.7V) 87
圖 4-42 輸入電壓(ipc)對頻率量測圖(Voffset =2.7V) 87
圖 4-43 輸入電壓對頻率量測圖(Voffset =2.7V) 87
圖 4-44 輸入電壓(ipa)對頻率量測圖(Voffset =2.7V) 88
圖 4-45 輸入電壓(ipb)對頻率量測圖(Voffset =2.55V) 89
圖 4-46 輸入電壓(ipc)對頻率量測圖(Voffset =2.67V) 89
圖 4-47 輸入電壓對頻率量測圖 89
圖 4-48 多路感測含補償電路晶片照相圖 90
圖 4-49 具溫度多路感測含補償電路圖 91
圖 4-50 輸入電壓(ipa)對頻率模擬圖(Voffset =2.4V) 92
圖 4-51 輸入電壓(ipb)對頻率模擬圖(Voffset =2.4V) 92
圖 4-52 溫度(ipc)對頻率模擬圖(Voffset =2.4V) 92
圖 4-53 輸入電壓(ipd)對頻率模擬圖(Voffset =2.4V) 93
圖 4-54 具溫度多路感測含補償電路layout圖 93

[1] P. Bergveld, "Development of an ion-sensitive solid-state device for
neurophysiological measurements," IEEE Trans. Bio-Med. Eng.(Short Commun.), vol. BME-17, pp. 70-71, Jan. 1970.
[2] S. Caras, J. Janata, "Field Effect Transistor Sensitive to Penicillin," Analytical Chemistry 52, pp. 1935-1937, 1980.
[3] N. Jafiezic-Renault, A. Soldatkin, C. Martelet, P. Temple-Boyer, W. Sant, M.L. Pourciel, P. Montoriol, A. Montiel-Costes, "Tailoring enzymatic membranes for ENFETs for dialysis monitoring," Trans. Solid-State Sensors, Actuators and Microsystems Conference, 12th International Conference, vol. 2, pp. 1188-1191, 2003.
[4] J. C. Dutta, M. Hazarika, "Modeling of Enzyme Biosensor based on pH­sensitive Field Effect Transistor for detection of Glucose," Devices, Circuits and Systems(ICDCS), International Conference, pp. 686-688, 2012.
[5] J. C. Dutta, S. Roy, " Biologically Inspired Circuit Model for Simulation of Acetylcholine Gated Ion Channels of the Postsynaptic Membrane at Synaptic Cleft," Biomedical Engineering and Sciences(IECBES), IEEE EMBS Conference, pp. 17-19, 2010.
[6] J. V. D. Spiegel, I. Lauks, P. Chan and D. Babic, "The Extended Gate Chemical Sensitive Field Effect Transistor as Multi-Species Microprobe," Sensors and Actuators, Vol. 4, pp. 291-298, 1983.
[7] 黃昭仁, "低功率可攜式之離子感測酸鹼度計系統晶片設計," 中原大學電子碩士論文, Juan. 2007.
[8] 馮晉嘉, (2002) 電子鼻(Electronic nose). [Online] Available: http://www.itri.org.tw/chi/services/ieknews/h2001-B01-50041-81D1-0.pdf
[9] 劉康義, "離子場效電晶體具及行為模型開發與感測器陣列訊號處理電路設計," 中原大學電子碩士論文, Jul. 2004.
[10] 武世香, 虞淳, 王貴華, "化學量傳感器, 感測器技術," 第四期, pp. 51-56, 1990.
[11] 陳省宏, "電流與電位式量測釕氧化物與盤尼西林酵素修飾電極之研究," 國立雲林科技大學 電子碩士論文, Jul. 2006.
[12] G. A. Saurbery, "Use a quartz vibrator from weight thin films on a microbalance," Z. Physik., Vol. 155, pp. 206-210, 1959.
[13] "生物感測技術-講義" 國立清華大學數位學習系統
[14] J. Bignell and R. Donovan, Digital Electronics, 4th ed., Delmar Thomson Learning, 1999.
[15] 劉適意, "釕濺鍍於生醫感測器之備製、量測及讀出電路之探討," 國立雲林科技大學 電子碩士論文, Jul. 2004.
[16] 張獻文, "可數位輸出的生醫感測電路," 國立高雄師範大學 電子碩士論文, Aug. 2010.
[17] 葉瓊敏, "具溫度感測之生醫多路感測晶片設計," 國立高雄師範大學 電子碩士論文, Jul. 2011.
[19] L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, "Separate structure extended gate H^+-ion sensitive field effect transistor on a glass substrate," Sens. Actuators B, Chem., vol. 71, no. 1/2, pp. 106–111,Nov. 2000.
[20] J. L. Chiang, J. C. Chou, and Y. C. Chen, "Study of the pH-ISFET and EnFET for biosensor applications," J. Med. Biol. Eng., vol. 21, no. 3,
pp. 135–146, 2001.
[21] N. H. Chou, J. C. Chou, T. P. Sun, and S. K. Hsiung, "Differential
type solid-state urea biosensors based on ion-selective electrodes," Sens.
Actuators B, Chem., vol. 130, no. 1, pp. 359–366, Mar. 2008.
[22] H. H. Li, W. S. Dai, J. C. Chou and H. C. Cheng, "An Extended-Gate Field-Effect Transistor With Low-Temperature Hydrothermally Synthesized 〖SnO〗_2 Nanorods as pH Sensor," IEEE Electron Device Letters, vol. 33, issue 10, pp. 1495-1497, 2012.
[23] D. E. Yates, S. Levine, and T. W. Healy, "Site-binding model of the electrical double layer at the oxide/water interface," J. Chem. Soc. Faraday Trans. 1, vol. 70, pp. 1807–1818, Jan. 1974.
[24] R. E. G. Van Hall, J. C.T. Eijkel, P. Bergveld, "A Novel Description of ISFET Sensitivity with the Buffer Capacity and Double-Layer Capacitance as Key Parameters," Sensors and Actuators B, Vol. 24-25, PP.201-205, 1995.
[25] C.D. Fung, P.W. Cheung and W. H. Ko, "A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor," IEEE Trans. Electron Devices, Vol. ED-33, NO.1, PP. 8-18, 1986.
[26] C. H. Hamann, A. Hamnett, and W. Vielstich, “Electrochemistry”, Wiley-Vch: New York, 1998.
[27] 田福助,電化學理論與應用,中華民國77年8月5日二版發行
[28] 龔柏誠, "以CMOS為主的離子感測場效電晶體微系統之特性探討及其尿液檢測之應用," 國立成功大學微電子工程所碩士論文, Jul. 2010.
[29] J. L. Chiang, S. S. Jan, J. C. Chou, Y. C. Chen, "Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide," Sensors and Actuators B: Chemical, vol. 76, pp. 624-628, 2001.
[30] K. E. Kujik, "A precision reference voltage source," IEEE Journal of Solid-State Circuits, vol. SC-8, pp. 222-226, Jun. 1973.
[31] F. Sebastiano, L. J. Breems, K. A. A. Makinwa, S. D. Drago, M. W. Leenaerts, and B. Nauta, "A 1.2-V 10-mW NPN-Based Temperature Sensor in 65-nm CMOS With an accuracy of 0.2℃ (3σ) From -70℃ to 125℃," IEEE J. Solid-State Circuits, 45, (12), pp.2591-2601, 2010.
[32] P. Chen, C.-C. Chen, C.-C. Tsai, and W. F. Lu, "A Time-to-Digital-Converter-Based CMOS Smart Temperature Sensor," IEEE J. Solid-State Circuits, 40, (8), pp.1642-1648, 2005.
[33] Sergio Martinoia, Leandro Lorenzelli, Giuseppe Massobrio, Paolo Conci, Alberto Lui, "Temperature effects on the ISFET behavior:simulation and measurements," Sensors and Actuators B:Chemical, vol.50, pp.60-68, 1998.
[34] C. W. Lin, and S. F. Lin, "A Highly Linear CMOS Temperature Sensor," the 8th International Conference on ECTI-CON, pp.74-77, 2011.
[35] R. L. Wang, C. W. Yu, C. Yu, T. H. Liu, C. M. Yen, C. F. Lin, H. H. Tsai, Y. Z. Juang, "A temperature sensor using a BJT-MOSFET pair,"
Electron. Lett., 48 (9), pp.503-504, 2012.
[36] H. Zhu, B. Xiang, X. W. Ni, B. X. Mo and Z. F. Wang, "A Low Noise Current-Controlled Oscillator With High Control Linearity," IEEE J. Solid-State Circuits, 7th, vol. 2, pp.1551-1554, 2004.
[37] C. Y. Chen, H. Li. Shieh, T. P. Sun, "Portable Urea Biosensor Based on The Extended Base Bipolar Junction Transistor," IEEE Sensor, pp.789-792, Nov. 2010.
[38] W. Juffali, P. Georgiou and C. Toumazou, "ISFET based Urea:Creatinine translinear sensor," IEEE Electronics Letters, vol. 46, issue 11, pp. 746-748, 2010.
[39] 劉德璿, "高精準型電壓輸出之CMOS溫度感測器," 私立崑山科技大學電子工程學系, 2011.
[40] R. L. Wang, C. C. Fu, C. M. Yeh, C. Yu, C. Y. Yu, C. F. Lin, H. H. Tsai and Y. Z. Juang, "A Multisensor readout circuit with a multiplexed pulse-signal output," 2012 International Conference on Solid State Devices and Materials (SSDM 2012), Sept. 2012.
[41] D. Hilbiber, "A new semiconductor voltage stand," ISCC Dig. Of
Tech. Papers, pp.32-33, Feb. 1964.
[42] R. Widlar, "New developments in IC voltage regulators," ISCC Dig.
Of Tech. Papers, pp.158-159, Feb. 1970.
[43] H. Banba, "A CMOS Bandgap Reference Circuit with Sub-1-V Operation," IEEE J. Solid-State Circuits, vol. 34, No. 5, May 1999.
[44] Much of the material presented in this section comes from the text , "Analog Integrated Circuit Design," by D. Johns and K. Martin, ISBN 0-471-14448-7, Wiley, 1997.
[45] R. L. Wang, C. C. Fu, C. Yu, P. Y. Liu, Y. T. Chuang, C. F. Lin,
H. H. Liao, H. H. Tsai and Y. Z. Juang, “A Multi-sensor Readout Circuit
Using Multiple Differential-input Operation Amplifier with Pulse Output,” 2013 International Conference on Solid State Devices and Materials (SSDM 2013), September 24-27, 2013, Fukuoka, Japan.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊