跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/14 08:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李烱源
研究生(外文):Chiung-Yuan Lee
論文名稱:盒裝豆腐物化特性之研究
論文名稱(外文):Investigation on the Physicochemical Properties of Packed Tofu
指導教授:郭孟怡郭孟怡引用關係
指導教授(外文):Meng-I Kuo
學位類別:碩士
校院名稱:輔仁大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2008
畢業學年度:95
語文別:中文
論文頁數:164
中文關鍵詞:豆腐水分子移動性微結構流變特性γ-PGA儲存
外文關鍵詞:tofuwater mobilitymicrostructurerheological propertyγ-PGAstorage
相關次數:
  • 被引用被引用:9
  • 點閱點閱:1027
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
豆腐為最受歡迎的東方傳統食品之一。然而,豆腐產品的保存期限由於離水而受限,其中又以盒裝豆腐離水現象最為明顯。以大豆蛋白為基質包覆著高達90 %水的盒裝豆腐而言,於儲存期間微細結構、流變特性以及水的移動性和分佈之變化對於離水應有影響。聚麩胺酸 (poly- γ- glutamic acid, γ- PGA) 具水溶性和可食性,於食品加工中可以當作保水劑及品質改良劑。本研究以分子、結構和巨觀等三個層次探討於十六天儲存期間盒裝豆腐的物化特性之變化並探討添加γ-PGA (Na) 的影響。
盒裝豆腐的製作是以0.30%葡萄糖酸內酯 (Glucono-δ-lactone, GDL) 作為凝結劑,配合添加不同濃度 (0.10%、0.15%及0.20%) 之高分子量 (1000-1500 kDa)、中分子量 (600-800 kDa) 與低分子量 (200-400 kDa) 的γ-PGA (Na)。盒裝豆腐的組成分為89% 水分、 3.5%蛋白質、 2.7% 脂質及0.5% 灰分。藉由離心作用方式 (3100×g、75 min、4℃) 可將豆腐內水區分為expressible water (83%) 及 entrapped water (17%)。儲存期間盒裝豆腐內的expressible water含量由17%減少為12%而entrapped water含量由83% 增加至 88%。盒裝豆腐之水分子狀態亦根據核磁共振儀 (nuclear magnetic resonance, NMR) 之spin-spin relaxation time (T2) 分析區分成低移動性水分子 (T21 ~19 ms) 及高移動性水分子 (T22 ~90 ms)與相對應的質子強度A1 (6.05×107) 和A2 (93.95×107)。儲存期間盒裝豆腐內的T21 及 A1 呈現增加趨勢,而 T22及A2則呈現下降趨勢。另外,儲存初期盒裝豆腐的微結構呈現大孔洞且連續的蜂窩狀結構,而於儲存十六天後呈現多孔且緻密的結構。盒裝豆腐之流變特性G及G”於儲存初期呈現下降趨勢,而儲存十六天後則呈現增加趨勢。故儲存期間盒裝豆腐微結構的改變造成黏彈性的增加,且結構的變化導致豆腐內水分子狀態重新分布進而影響離水。
添加γ-PGA (Na) 可使盒裝豆腐的離水由17%下降至10%以下,其中添加γ-PGA (Na) 的分子量和濃度愈高效果愈佳。添加γ-PGA (Na) 會增加盒裝豆腐內entrapped water以及低移動性水分子部分的水含量,以及降低盒裝豆腐的G及G值,且隨著添加γ-PGA (Na) 的分子量和濃度的增加有顯著性的變化。γ-PGA (Na) 盒裝豆腐呈現較不連續的結構,且γ-PGA (Na) 是以類似圓形薄膜包覆於豆腐內的蛋白質連續網狀結構中。故添加γ-PGA (Na) 造成豆腐微結構改變進而改變黏彈性,導致水分子狀態重新分布,又γ-PGA (Na) 具有保水性,進而延緩離水現象。另外,儲存期間γ-PGA (Na) 豆腐內水分子狀態的變化與添加γ-PGA (Na) 之分子量和濃度有關。γ-PGA豆腐於儲存期間由孔洞大小不均一且較不連續的結構改變成為較小孔洞且緊密的結構,而微結構的變化導致豆腐黏彈性明顯增加。
Tofu is one of the most popular foods in the traditional oriental diet. However, the shelf-life of tofu is limited due to syneresis, especially in the packed tofu. Packed tofu is a soy protein matrix which contains about 90% of moisture. Changes of the microstructure, rheological properties, and the distribution and mobility of water in packed tofu during storage might contribute to the syneresis. Poly-γ-glutamic acid (γ-PGA) is a water soluble and edible substance, and its derivatives can be added in the processed foods as water holding agent and texture enhancer. The objectives of this study were to investigate the changes of the physicochemical properties of packed tofu during storage under molecular, structural and macroscopic levels; and to study the effect of γ-PGA (Na) addition on the physicochemical properties of packed tofu during 16-d storage.
Tofu was made by using 0.30% glucono-δ-lactone as the coagulant with the addition of different concentrations (0.10%, 0.15%, and 0.20%) and molecular weights (1000-1500 kDa, 600-800 kDa, and 200-400 kDa) of γ-PGA. The compositions of packed tofu were 89% moisture, 3.5% protein, 2.7% lipid, and 0.5% ash. Water in tofu was divided into expressible water (83%) and entrapped water (17%) using centrifugation (3100×g for 75 min at 4℃). The amount of expressible water in tofu decreased from 17% to 12% but that of entrapped water increased from 83% to 88% during 16-d storage. The state of water in tofu was also classified into two fractions based on the spin-spin relaxation time (T2) measured by nuclear magnetic resonance. T21 (19 ms) and T22 (90 ms) represented low and high water mobility in tofu, respectively, and their corresponding proton intensities were A1 (6.05×107) and A2 (93.95×107). The values of T21 and A1 increased but that of T22 and A2 decreased in packed tofu during 16-d storage. The microstructure of tofu showed a uniform and continuous honeycomb-like structure in the early stage of storage, and became porous but compact after 16-d storage. The rheological properties, storage modulus (G) and loss modulus (G), of tofu decreased during the early stage of storage but increased after 16-d storage. The above results revealed that the changes in tofu microstructure during storage caused an increase in the viscoelasticity of tofu, resulting in a redistribution between two water states in tofu.
The syneresis of packed tofu was reduced from 17% to 10% when the γ-PGA (Na) was added. The effect was more pronounced in the addition of γ-PGA with higher molecular weight and concentration. The amount of entrapped water and water in low mobility fraction of packed tofu increased but the values of G and G decreased when γ-PGA (Na) was added. The effect was different for the γ-PGA with different molecular weight and concentration. Packed tofu with γ-PGA (Na) addition showed a discontinuous structure with a film like γ-PGA (Na) entrapped within the protein network. The above results revealed that the addition of γ-PGA (Na) in packed tofu would alter the microstructure and rheological properties of tofu and cause the redistribution of the state of water, resulting in the decrease of syneresis. The microstructure of γ-PGA (Na) packed tofu was changed from the non-uniform pores and discontinuous network to the small pores and compact structure during 16-d storage, and leading to the increase of tofu viscoelasticity.
目錄

第一章 前言 1
第二章 文獻回顧 3
壹、 大豆 3
一、 大豆蛋白 4
二、 大豆蛋白凝膠機制與凝膠之影響因子 7
貳、 豆腐 19
一、 豆腐之製備與種類 19
二、 豆腐凝膠機制 24
參、 常見食品內水的狀態之測定方法 24
一、 示差掃描熱分析儀 (DSC) 之分析 27
二、 離心方式之分析 28
三、 核磁共振儀 (NMR) 之分析 28
肆、 黏彈性食品結構之測定方法 38
一、 動態流變儀 (Dynamic Rheometer) 之分析 39
二、 掃描式電子顯微鏡 (SEM) 之分析 43
伍、 豆腐質地之影響因子 46
一、 加工條件 46
二、 凝固劑種類與添加條件 48
三、 添加物 53
四、 儲存 54
陸、 γ-聚麩胺酸 (γ-polyglutamic acid,γ-PGA) 55
第三章 材料與方法 58
壹、 試驗架構 58
貳、 試驗材料 60
一、 試驗樣品 60
二、 試驗藥品 60
三、 儀器設備 60
參、 試驗方法 61
一、 大豆浸泡時間之分析 61
二、 原料豆漿與盒裝豆腐之製備 61
三、 一般成分分析 64
(一)、 水分 64
(二)、 粗蛋白 64
(三)、 粗脂肪 65
(四)、 灰分 66
四、 豆腐離水之分析 66
五、 水分子狀態之測定 67
(一)、 離心方式之分析 67
(二)、 水的移動性之分析 69
六、 流變特性之分析 72
(一)、 溫度掃描 (Temperature sweep) 72
(二)、 時間掃描 (Time sweep) 72
(三)、 頻率掃描 (Frequency sweep) 73
七、 質地分析 73
八、 微結構之分析 74
九、 統計分析 74
第四章 結果與討論 75
壹、 大豆之成分分析 75
貳、 大豆之最適浸泡時間 75
參、 試驗盒裝豆腐之物化特性 76
一、 豆腐組成分及質地特性之分析 79
二、 豆腐離水之測定 83
三、 豆腐水分子狀態之分析 83
(一)、 離心方式之測定 83
(二)、 水分子移動性之測定 86
四、 豆腐微結構之分析 90
五、 豆腐流變特性之分析 92
(一)、 盒裝豆腐的凝膠行為 92
(二)、 盒裝豆腐的膠體網狀結構特性 93
六、 試驗盒裝豆腐儲存時物化特性之變化 96
肆、 添加物對盒裝豆腐物化特性之影響 103
一、 γ-PGA (Na) 豆腐之水分含量 103
二、 γ-PGA (Na) 豆腐之離水 104
三、 γ-PGA (Na) 豆腐之水分子狀態 104
(一)、 離心方式之測定 104
(二)、 水分子移動性之測定 110
四、 γ-PGA (Na) 豆腐之微結構 113
五、 γ-PGA (Na) 豆腐之流變特性 114
六、 討論 123
伍、 添加物對盒裝豆腐儲存期間物化特性之影響 124
第五章 結論 147
第六章 未來研究方向 149
第七章 參考文獻 150
附錄 168

表目錄

表一、本研究豆腐製作所採用之大豆一般成分分析 77
表二、自製及市售盒裝豆腐的組成分和離水 81
表三、自製及市售盒裝豆腐的質地特性 82
表四、離心力對儲存期間盒裝豆腐expressible water含量的影響 85
表五、盒裝豆腐內的水分子移動性及相對應質子強度於4℃儲存16天之變化 100
表六、盒裝豆腐物化特性之變異數分析 108
表七、不同分子量及濃度的γ-PGA (Na) 添加對盒裝豆腐內的水分子移動性及相對應質子強度的影響 111
表八、不同分子量及濃度的γ-PGA (Na) 添加對盒裝豆腐製作中加熱凝膠時流變特性的影響 120
表九、不同分子量及濃度的γ-PGA (Na) 添加對盒裝豆腐流變特性的影響 122
表十、不同分子量及濃度的γ-PGA (Na) 添加對盒裝豆腐內的水分子移動性於4℃儲存16天之變化的影響 131
表十一、不同分子量及濃度的γ-PGA (Na) 添加對盒裝豆腐內水分子之質子強度於4℃儲存16天之變化的影響 132
表十二、不同分子量及濃度的γ-PGA (Na) 添加對盒裝豆腐流變特性於4℃儲存16天之變化的影響 146


圖目錄

圖一、7S球蛋白分子圖示 (βαα形式) 6
圖二、11S球蛋白分子、三聚體及六聚體圖示 9
圖三、Fine-stranded及coarse-aggregated網狀結構之示意圖 12
圖四、不同CaSO4•2H2O濃度製備豆腐的網狀結構 15
圖五、鈣離子誘導絲狀及粒狀大豆蛋白冷凝膠體形成之機制 18
圖六、豆漿及豆腐之製造流程圖 20
圖七、葡萄糖酸-δ-內酯水解為葡萄糖酸之結構圖 23
圖八、以GDL及CaS04為凝固劑之大豆蛋白凝膠機制 26
圖九、質子的核自旋及核磁矩 31
圖十、質子於外加磁場作用下所產生的旋進運動 32
圖十一、90度脈衝對質子淨磁量之影響 33
圖十二、倒轉-回覆法的脈衝序列 35
圖十三、CPMG的脈衝序列 36
圖十四、不同濃度CaSO4作為凝固劑之豆腐微結構 51
圖十五、不同熱處理對盒裝豆腐微結構的影響 52
圖十六、γ-聚麩胺酸的基本單元 56
圖十七、試驗架構示意圖 59
圖十八、原料豆漿與盒裝豆腐製備流程圖 63
圖十九、離心方式分析用的豆腐樣本製備流程圖 68
圖二十、NMR T2 測量用的豆腐樣本製備流程圖 71
圖二十一、大豆於浸泡時之吸水量 78
圖二十二、利用公式 (9) 預測豆腐內的質子強度 88
圖二十三、盒裝豆腐內水分子的T2 relaxation time 和相對應的質子強度 89
圖二十四、盒裝豆腐之微結構 91
圖二十五、盒裝豆腐製作中加熱凝膠之變化 94
圖二十六、盒裝豆腐之流變特性 95
圖二十七、盒裝豆腐內的expressible water及entrapped water 含量於4℃儲存16天之變化 99
圖二十八、盒裝豆腐微結構於4℃儲存16天之變化 101
圖二十九、盒裝豆腐流變特性於4℃儲存16天之變化 102
圖三十、不同分子量及濃度的γ-PGA (Na) 添加對盒裝豆腐水分含量之影響 106
圖三十一、不同分子量及濃度的γ-PGA (Na) 添加對盒裝豆腐離水之影響 107
圖三十二、不同分子量及濃度的γ-PGA (Na) 添加對盒裝豆腐內expressible water 和entrapped water含量的影響 109
圖三十三、不同分子量及濃度的γ-PGA (Na) 添加對盒裝豆腐內水分子質子強度的影響 112
圖三十四、不同濃度的高分子量的γ-PGA (Na) 添加對盒裝豆腐微結構之影響。 115
圖三十五、不同濃度的中分子量的γ-PGA (Na) 添加對盒裝豆腐微結構之影響 116
圖三十六、不同濃度的低分子量的γ-PGA (Na) 添加對盒裝豆腐微結構之影響 117
圖三十七、不同濃度的高分子量γ-PGA (Na) 添加對盒裝豆腐製作中加熱凝膠之變化的影響 118
圖三十八、不同分子量及濃度的γ-PGA (Na) 添加對盒裝豆腐流變特性影響 121
圖三十九、不同分子量及濃度的γ-PGA (Na) 添加對盒裝豆腐內的expressible water 和entrapped water含量於4℃儲存16天之變化的影響 126
圖四十、添加0.10%的高分子量γ-PGA (Na) 對盒裝豆腐微結構於4℃儲存16天之變化之影響 135
圖四十一、添加0.15%的高分子量γ-PGA (Na) 對盒裝豆腐微結構於4℃儲存16天之變化之影響 136
圖四十二、添加0.20%的高分子量γ-PGA (Na) 對盒裝豆腐微結構於4℃儲存16天之變化之影響 137
圖四十三、添加0.10%的中分子量γ-PGA (Na) 對盒裝豆腐微結構於4℃儲存16天之變化之影響 138
圖四十四、添加0.15%的中分子量γ-PGA (Na) 對盒裝豆腐微結構於4℃儲存16天之變化之影響 139
圖四十五、添加0.20%的中分子量γ-PGA (Na) 對盒裝豆腐微結構於4℃儲存16天之變化之影響 140
圖四十六、添加0.10%的低分子量γ-PGA (Na) 對盒裝豆腐微結構於4℃儲存16天之變化之影響 141
圖四十七、添加0.15%的低分子量γ-PGA (Na) 對盒裝豆腐微結構於4℃儲存16天之變化之影響 142
圖四十八、添加0.20%的低分子量γ-PGA (Na) 對盒裝豆腐微結構於4℃儲存16天之變化之影響 143
何觀輝。2005。聚麩胺酸之結構特性與工業應用。生物產業 16:172-182。
李育德、顏文藝、莊祖煌。1988。聚合物物性。高立圖書有限公司。台北市。
李詩若。2006。聚麩胺酸 (γ- PGA) 在食品之應用。輔仁大學食品營養學系碩士學位論文。臺北縣。
李寬容。1989。核磁共振儀原理與應用。科儀新知 11:63-72。
汪建民。1998。材料分析。中國材料科學學會。新竹市。
林麗娟、田大昌。2002。微結構分析技術之介紹。工業材料雜誌 181:73-79。
邱玉婷。2006。聚麩胺酸於抗氧化活性、吸附雜環胺及微膠囊化之功能性評估。輔仁大學食品營養學系碩士學位論文。臺北縣。
張艮媚。2004。盒裝豆腐質地改進之研究。國立嘉義大學食品科學研究所碩士論文。嘉義縣。
張為憲。1996。水果與蔬菜。In:張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、顏國欽、林志城、林慶文編著。食品化學。華香園出版社。台北市。492 p。
陳世爵。1992。豆腐專用之黃豆及其特性。食品工業 24:49-51。
陳仲仁。1997。黃豆蛋白的組織、功能、特性及在食品上的應用。食品工業28:19-28。
陳家全、李家維、楊瑞森。1991。生物電子顯微鏡學。行政院國家科學委員會精密儀器發展中心。新竹。3-4, 25-26, 111-112, 118-119 p。
陳雅玲。2003。聚麩胺酸的物性與化妝品應用之研究。靜宜大學應用化學系碩士學位論文。台中縣。
陳櫻雪。2006。凝固劑對豆腐質地特性及異黃酮素保留之影響。國立嘉義大學食品科學研究所碩士學位論文。嘉義縣。
蔡孟貞。2000。大豆蛋白之變性與凝膠之關係及與多醣類交互作用之研究。國立臺灣大學食品科技研究所博士論文。台北市。
鄧木火。1987。磁共振造影與核磁共振原理。華榮出版社。台北市。
戴蔭方、劉成軍、張超良、曹慶榮、李保真。1998。藥用蔬果。度假出版社。台北市。
續光清。1992。食品製造。財團法人徐氏基金會出版。台北市。
續光清。1996。食品工業。財團法人徐氏基金會出版。台北市。130-133, 407-416, 445-447 p。
AACC. 2000. Approved methods of Analysis, 10th ed. American Association of cereal chemists, St. Paul, MN.
Ablett S. 1992. Overview of NMR applications in food science. Trend Food Sci Technol 3:246-250.
Aguilera JM, Stanley DW. 1999. Microstructural principles of food processing and engineering. 2nd ed. New York: Aspen Publishers.
Amstrong HJ, Hill SE, Schrooyen P, Mitchell JR. 1994. A comparison of the viscoelastic properties of conventional and Maillard protein gels. J Text Stud 25:285-298.
Apichartsrangkoon A. 2003. Effects of high pressure on rheological properties of soy protein gels. Food Chem 80:55-60.
Ascencio C, Torres N, Isoard-Acosta F, Gomez-Perez FJ, Hernandez-Pando R, Tovar AR. 2004. Soy protein affects serum insulin and hepatic SREBP-1 mRNA and reduces fatty liver in rats. J Nutr 134:522-529.
Beddows CG, Wong J. 1987. Optimization of yield and properties of silken tofu from soybeans Ⅲ. Coagulant concentration, mixing and filtration pressure. Int J Food Sci Technol 22:29-34.
Belitz HD, Grosch W, Schieberle P. 2004. Carbohydrates. In: Belitz HD, Grosch W, Schieberle P editor. Food chemistry. 3rd ed. Germany: Springer. 258-259 p
Belton PS. 1995. NMR in heterogeneous systems. In: Belton PS, Delgadillo I, Gil AM, Webb GA, eds. Magnetic resonance in food science. London: The Royal Society of Chemistry. p 18-32.
Berlin E. 1981. Hydration of milk proteins. In: Rockland LB and Steward GF, editors. Water Activity: influences on food quality. New York: Academic Press. 466-488 p.
Birt DF, Hendrich S, Wang W. 2001. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther 90:157-177.
Brosio E, Altobelli G, Nola AD. 1984. A pulsed low-resolution NMR study of water binding to milk proteins. J Food Technol 19:103-108.
Brosio E, Altobelli G, Yu SU, Nola AD. 1983. A pulsed low resolution NMR study of water binding to powdered milk. J Food Technol 18:219-226.
Callaghan P, Jolley KW, Humphrey RS. 1983. Diffusion of fat and water in cheese as studied by pulsed field gradient nuclear magnetic resonance. J Colloid Interface Sci 93:521-529.
Carr and Purcell. 1954. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630-638.
Catsimpoolas N, Funk SK, Meyer EW. 1970. Thermal aggregation of glycinin subunits. Cereal Chem 47:331-344.
Catsimpoolas N, Meyer EW. 1970. Gelation phenomena of soybean globulins. I. Protein-protein interactions. Cereal Chem 47:559-569.
Champagene CP, Aurouze B, Goulet G. 1991. Inhibition of undesirable gas production in tofu. J Food Sci 56:1600-1603.
Chang KLB, Lin YS, Chen RH. 2003. The effect of chitosan on the gel propertied of tofu (soybean curd). J Food Eng 57:315-319.
Chanyongvorakul Y, Matsumura Y, Nonaka M, Motoki M, Mori T. 1995. Physical properties of soy bean and broad bean 11S globulin gels formed by transglutaminase reaction. J Food Sci 60:483-493.
Chanyongvorakul Y, Matsumura Y, Sakamoto H, Motoki M, Mori T. 1994. Gelation of beans 11S globulins by Ca2+-independent transglutaminase. Biosci Biotechnol Biochem 58:864-869.
Charles AL, Kao HM, Huang TC. 2003. Physical investigations of surface membrane-water relationship of intact and gelatinized wheat-starch systems. Carbohydr Res 338:2403-2408.
Cheftel JC. 1992. Effects of high hydrostatic pressure on food constituents: An overview. In: Balny C, Hayashi R, Heremans K, Masson P, editors. High pressure and biotechnology. Montrouge: Colloque INSERM/John Libbey Eurotex Ltd. p 195-209.
Chen PL, Long R, Ruan R, Labuza TP. 1997. NMR studies of water mobility in bread during storage. Lebensm -Wiss u -Technol 30: 178–83.
Chen PL, Ruan RR. 1998. Water in foods and biological materials-a nuclear magnetic approach. Lancaster: Technomic Publishing Co. p 1-50.
Choi SG, Kim KM, Hanna MA., Weller CL, Kerr WL. 2003. Molecular dynamics of soy-protein isolate films plasticized by water and glycerol. J Food Sci 68:2516-2522.
Chronakis IS. 1996. Network formation and viscoelastic properties of commercial soy protein dispersions: effect of heat treatment, pH and calcium ions. Food Res Int 29:123-134.
Clark AH, Ross-Murphy SB. 1987. Structural and mechanical properties of biopolymer gels. Adv Polymer Sci 83:157-192.
Damodaran S. 1996. Amino acids, peptides, and proteins. In: Fennema OR, editor. Food chemistry. 3rd ed. New York: Marcel Dekker. 371 p.
deMan JM, deMan L, Gupta S. 1986. Texture and microstructure of soybean curd (tofu) as affected by different coagulants. Food Microstruct 5:83-89.
Demonty I, Lamarche B, Jones PJH. 2003. Role of isoflavones in the hypocholesterolemic effect of soy. Nutr Rev 61:189-203.
Derome AE. 1987. Modern NMR techniques for chemistry research. Oxford: Pergamon Press. p 85-95.
Essenlink E, van Aalst H, Maliepaard M, Hendeson TMH, Hoekstra NLL, van Duynhoven J. 2003. Impact of industrial dough processing on structure: a rheology, nuclear magnetic resonance, and electron microscopic study. Cereal Chem 80:419-423.
Farrell HM, Pessen JH, Kumosinski TF. 1989. Water interactions with bovine caseins by hydrogen-2 nuclear magnetic resonance relaxation studies: structural implications. J Dairy Sci 72:562-574.
Fennema OR. 1996. Water and ice. In: Fennema OR editor. Food chemistry. 3rd ed. New York: Marcel Dekker. 18-88 p.
Fuchigam M i, Ogawa N, Teramoto A. 2002. Trehalose and hydrostatic pressure effects on the structure and sensory properties of frozen tofu (soybean curd). Innov Food Sci Emerg Technol 3:139-147.
Fuchigami M, Teramoto A. 1997. Structural and textural change in kinu-tofu due to high-pressure-freezing. J Food Sci 62:828-832.
Fukui K, Tachibana N, Wanezaki S, Tsuzaki S, Takamatsu K, Yamamoto T, Hashimoto Y, Shimoda T. 2002. Isoflavone-free soy protein prepared by column chromatography reduces plasma cholesterol in rats. J Agric Food Chem 50:5717-5721.
Fukushima D. 1991. Recent progress of soybean protein food: chemistry, technology, and nutrition. Food Rev Int 7:323-351.
Fukushima D. 2000. Soybean processing. In: Nakai S, Modler W. editors. Food protein: processing and applications. New York: Wiley-VCH. p 309-342.
Fullerton GD, Cameron IL. 1988. Relaxation of biological tissue. In: Wehrli FW, Shaw D, Kneeland JB. editors. Biomedical magnetic resonance imaging: principles, methodology, and application. New York: VCH Publishers. 113-155 p.
Gandhi AP, Bourne MC. 1988. Effect of pressure and storage time on texture profile parameters of soybean curd (tofu). J Texture Stud 19:137-142.
German B, Damodaran S, Kinsella JE. 1982. Thermal dissociation behavior of soy proteins. J Agric Food Chem 30:807-811.
Geurts TJ, Walstra P, Mulder H. 1974. Water binding to milk protein, with particular reference to cheese. Neth Milk Dairy J 28:46-72.
Grozav EK, Danilenko AN, Bikbov TM, Grinberg VY, Tolstoguzov VB. 1985. Studies on the effect of ethanol on thermal denaturation of soybean globulins by differential scanning microcalorimetry. J Food Sci 50:1266-1270.
Guo MR, Kindstedt PS. 1995. Age-related changes in. the water phase of Mozzarella cheese. J Dairy Sci 78:2099-2107.
Hansen JR. 1976. Hydration of soybean protein. J Agric Food Chem 24:1136.
Hashizume K, Kakiuchi K, Koyama E, Watanabe T. 1971. Denaturation of soybean protein by freezing. Agric Biol Chem 35: 449-459.
Hemar Y, Hall CE, Munro PA, Singh H. 2002. Small and large deformation rheology and microstructure of κ-carrageenan gels containing commercial milk protein products. Int Dairy J 12:371-381.
Hermansson AM. 1978. Physico-chemical aspects of soy proteins structure formation. J Text Stud 9:33-58.
Hermansson AM. 1986. Soy protein gelation. J Am Oil Chem Soc 63:658-666.
Hermansson AM. 1994. Microstructure of protein gels related to functionality. In Yada RY, Jackman RL, Smith JL editors. Protein structure-function relationships in foods. London: Blackie Academic & Professional. 22-42 p.
Hong YS, Lee CH. 2006. Self-diffusion coefficient of water in tofu determined by pulsed field gradient nuclear magnetic resonance. J Agric Food Chem 54:219-223.
Hou HJ, Chang KC, Shih MC. 1997. Yield and textural properties of soft tofu as affected by coagulation method. J Food Sci 62:824-827.
Howard PA, Lehnhardt WF, Orthoefer FT. 1983. 7S and 11S vegetable protein fraction and isolation. U.S. Patent 4,368,151.
Kang IJ, Matsumura Y, Ikura K, Motoki M, Sakamoto H, Mori T. 1994. Gelation and gel properties of soybean glycinin in a transglutaminase-catalyzed system. J Agric Food Chem 42:159-165.
Kao FJ, Su NW, Lee MH. 2003. Effect of calcium sulfate concentration in soymilk on the microstructure of firm tofu and the protein constitutions in tofu whey. J Agric Food Chem 55:6211-6216.
Karim AA, Sulebele GA, Azhar ME, Ping CY. 1999. Effect of carrageenan on yield and properties of tofu. Food Chem 66:159-165.
Karta SK. 1990. Critical and variable factors in tofu processing. ASA Technical Bulletin l:HN 10-XX.
Ker YC, Chen RH,Wu CS. 1993. Relationships of secondary structure, microstructure, and mechanical properties of heat-induced gel of soy 11S golobulin. Biosci Biotechnol Biochem 57:536-541.
Kim JM, Lee CM. 1987. Effects of starch on textural properties of surimi gel. J Food Sci 52:722-725.
Kim M, Han JS. 2003. Evaluation of physico-chemical characteristics and microstructure of tofu containing high viscosity chitosan. J Food Sci Technol 37: 277-283.
Kim YS, Choi YM, Noh DO, Cho SY, Suh HJ. 2007. The effect of oyster shell powder on the extension of the shelf life of tofu. Food Chem 103:155-160.
Kinsella JE, Fox PF. 1986. Water sorption by proteins: milk and whey proteins. Crit Rev Food Sci Nutr 24:91-139.
Kinsella JE. 1979. Functional properties of soy proteins. J Am Oil Chem Soc 56:242-258.
Kitamura K. 1995. Genetic improvement of nutritional and food processing quality in soybean. Jap Agri Res Quart 29:1-8.
Kohyama K, Murata M, Tani F, Sano Y, Doi E. 1995a. Effects of protein composition on gelation of mixture containing soybean 7S and 11S globulins. Biosci Biotech Biochem 59:240-245.
Kohyama K, Nishinari K. 1993. Rheological studies on the gelation process of soybean 7S and 11S proteins in the presence of glucono-δ-lactone. J Agric Food Chem 41:8-14.
Kohyama K, Sano Y, Doi E. 1995b. Rheological characteristics and gelation mechanism of tofu (soybean curd). J Agric Food Chem 43:1808-1812.
Koshiyama I. 1969. Distribution of the 7S proteins in soybean globulins by gel filtration with Sephadex G-200. Agric Biol Chem 33:281-284.
Kuo MI, Gunasekaran S, Johnson M, Chen C. 2001. Nuclear magnetic resonance study of water mobility in pasta filata and non-pasta filata Mozzarella. J Dairy Sci 84:1950-1958.
Kwan SW, Easa AM. 2003. Comparing physical properties of retort-resistant glucono-δ-lactone tofu treated with commercial transglutaminase enzyme or low levels of glucose. Lebensm-Wiss Technol 36:643-646.
Lambelet P, Berrocal R, Desarzens C, Froehlicher I, Ducret F. 1988. Pulsed low-resolution NMR investigations of protein sols and gels. J Food Sci 53:943-xxx.
Lamsal BP, Jung S, Johnson LA. 2007. Rheological properties of soy protein hydrolysates obtained from limited enzymatic hydrolysis. LWT 40:1215-1223.
Le Dean A, Mariette F, Lucas T, Marin M. 2001. Assessment of the state of water in reconstituted milk protein dispersions by nuclear magnetic resonance (NMR) and differential scanning calorimetry ( DSC). Lebensm.- Wiss. u.-Technol 34:299-305.
Lee KS, Kim DH, Baek SH, Choun SH. 1990. Effects of coagulants and soaking solutions of tofu (soybean curd) on extending its shelf-life. Korean J Food Sci Technol 22:116-122.
Lelievre J, Creamer LK. 1978. An NMR study of the formation and syneresis of renneted milk gels. Milchwissenschaft 33:73-76.
Leung HK, Steinbrg MP, Wei LS, Nelson AI. 1976. Water binding of macromolecules determined by pulsed NMR. J Food Sci 41:297-300.
Li JY, Yeh AI, Fan KL. 2007a. Gelation characteristics and morphology of corn starch/soy protein concentrate composites during heating. J Food Eng 78: 1240-1247.
Li S, Dickinson LC, Chinachoti P. 1998. Mobility of “unfreezable” and “freezable” water in waxy corn starch by 1H and 2H NMR. J Agric Food Chem 46:62-71.
Li X, Hua Y, Qiu A, Yang C, Cui S. 2007b. Phase behavior and microstructure of preheated soy proteins and k-carrageenan mixtures. Food Hydrocoll. In press.
Liu K. 1997. Soybeans: chemistry, technology, and utilization. New York: Chapman & Hall. p 4, 37, 43, 45, 166-170, 181-182.
Liu K. 2000. Expanding soybean food utilization. Food Technol 54:46-58.
Liu ZS, Chang SKC, Li LT, Tatsumi E. 2004. Effect of selective thermal denaturation of soybean proteins on soymilk viscosity and tofus physical properties. Food Res Int 37:815-822.
Liu ZS, Chang SKC. 2003. Development of a rapid titration method for predicting optimal coagulant concentration for filled tofu. J Agric Food Chem 51:5214-5221.
Liu ZS, Chang SKC. 2004. Effect of soy milk characteristics and cooking conditions on coagulant requirements for making filled tofu. J Agric Food Chem 52:3405-3411.
Ma CY, Liu WS, Kwok KC, Kwok F. 1996. Isolation and characterization of proteins from soymilk residue (okara). Food Res Int 29:799-805.
Maltais A, Remondetto GE, Subirade M. 2007. Mechanisms involved in the formation and structure of soya protein cold-set gels: A molecular and supramolecular investigation. Food Hydrocoll In press.
McClements DJ, Keogh MK. 1995. Physical properties of cold setting gels formed from heat-denatured whey isolate. J Sci Food Agric 69:7-14.
McMahon DJ, Fife RL, Oberg CJ. 1999. Water partitioning in Mozzarella cheese and its relationship to cheese meltability. J Dairy Sci 82:1361-1369.
Meiboom S, Gill D. 1958. Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Inst 29:668-691.
Messina M, Deschecmaker K, Erdman JW, Jr. 1998. The role of soy in preventing and treating chronic disease. Am J Clin Nutr 68:1329.
Mezger TG. 2002. XXXX. In: Zorll U, editor. The rheology handbook: for users of rotational and oscillatory rheometers. Germany: Hannover.
Molina E, Defaye AB, Ledward DA. 2002. Soy protein pressure-induced gels. Food Hydrocoll 16:625-632.
Molina Ortiz SE, Puppo MC, Wagner JR. 2004. Relationship between structural changes and functional properties of soy protein isolates-carrageenan systems. Food Hydrocoll 18:1045-1053.
Moreira MA, Hermodson MA, Larkins BA, Nielsen NC. 1979. Partial characterization of the acidic and basic polypeptides of glycinin. J Biol Chem 254:9921-9926.
Mori T. 1988. Mechanism of heat-induced gelation mechanism of soybean globulins. Nippon Nogeikagaku Kaishi 62:882-885.
Multani AS, Li C, Ozen M, Yadav M, Yu DF, Wallace S, Pathak S. 1997. Paclitaxel and water-soluble poly (L-glutamic acid)-paclitaxel, induce direct chromosomal abnormalities and cell death in a murine metastatic melanoma cell line. Anticancer Res 17:4269-4274.
Nakamura T, Utsumi S, Mori T. 1986. Mechanism of heat-induced gelation and gel properties of soybean 7S globulin. Agric Biol Chem 50:1287-1293.
Nielsen NC. 1985. Structure of soy proteins. In: Altschul AM, Wilcke HL, editors. New protein foods. Orlando: Academic Press. 27-64 p.
Nielsen NC. 1996. Soybean seed composition. In: Verma DPS, Shoemaker RC, editors. Soybean genetics, molecular biology and biotechnology. Oxon: CAB International. 127-163 p.
Nio N, Motoki M, Takinami K. 1985. Gelation of casein and soybean globulins by transglutaminase. Agric Biol Chem 49:2283-2286.
Nishi T, Hara H, Hira T, Tomita F. 2001. Dietary protein peptic hydrolysates stimulate cholecystokinin release via direct sensing by rat intestinal mucosal cells. Exp Bio Med 226:1031-1036.
Noh EJ, Park SY, Park JI, Hong ST, Yun SE. 2005. Coagulation of soymilk and quality of tofu as affected by freeze treatment of soybean. Food Chem 91:715-721.
Nonaka M, Tanaka H, Okiyama A, Motoki M, Ando H, Umeda K, Matsumura A. 1989. Polymerization of several proteins by Ca2+-independent transglutaminase derived from microorganisms. Agric Biol Chem 53:2619-2623.
Oakenfull D, Scott A. 1986. Stabilisation of gelatin gels by sugars and polyols. Food Hydrocoll 1:163-175.
Obata A, Matsuura M, Kitamura K. 1996. Degradation of sulfhydryl groups in soymilk by lipoxygenases during soybean grinding. Biosci Biotech Biochem 60:1229-1232.
Obata A, Matsuura M. 1993. Decrease in the gel strength of tofu caused by an enzyme reaction during soybean grinding and its control. Biosci Biotech Biochem 57: 542-543.
Ollivon MR. 1991. Water relationships in foods. In: Levine H, Slade L, editor. Calorimetric and thermodielectrical measurements of water interactions with some food material. New York: Plenum Press 175-189 p.
Panyam D, Kilara A. 1996. Enhancing the functionality of food proteins by enzymatic modification. Trends Food Sci Technol 7:120-125.
Pitombo RNM, Lima GAMR. 2003. Nuclear magnetic resonance and water activity in measuring the water mobility in Pintado (Pseudoplatystoma corruscans) fish. J Food Eng 58:59-66.
Pontecorvo AJ, Bourne MC. 1978. Simple methods for extending the shelf life of soy curd (tofu) in tropical areas. J Food Sci 43:969-972.
Potter SM. 1995. Overview of proposed mechanisms for the hypocholesterolemic effect of soy. J Nutr 125:606-611.
Poysa V, Woodrow L. 2002. Stability of soybean seed composition and its effect on soymilk and tofu yield and quality. Food Res Int 35:337-345.
Provencher SW. 1982. A constrained regulation method for inverting data represented by linear algebraic or integral equations. Comp Phys Comm 27:213-227.
Puppo MC, Anon MC. 1998. Structural properties of heat-induced soy protein gels as affected by ionic strength and pH. J Agric Food Chem 46:3583-3589.
Puppo MC, Lupano CE, Anon MC. 1995. Gelation of soybean protein isolates in acidic condition. Effect of pH and proteins contraction. J Agric Food Chem 42:2356-2361.
Rao MA. 1992. Measurement of viscoelasticity properties of fluid and semisolid food. In: Rao MA and Steffe JF, editors. Viscoelastic Propeties of Foods. London: Elservier Science LTD. 207-220 p.
Rao MA. 1999. Rheological behavior of processed fluid and semisolid foods. In: Rao MA, editor. Rheological behavior of processed fluid and semisolid foods: principles and applications. p 105-1088, 244-254.
Renkema JMS, Knabben JHM, van Vliet T. 2001. Gel formation by β-conglycinin and glycinin and their mixtures. Food Hydrocoll 15:407-411.
Renkema JMS, Lakemond CMM, deJongh HHJ, Gruppen H, Vliet TV. 2000. The effect of pH on heat denaturation and gel forming properties of soy proteins. J Biotechnol 79:223-230.
Roman-Gutierrez AD, Guilbert S, Cuq B. 2002. Frozen and unfrozen water contents of wheat flours and their components. Cereal Chem 79:471-475.
Roser B. 1991. Trehalose, a new approach to premium dried foods. Trends Food Sci Technol 2:166-169.
Ruan RR, Chen PL. 2000. Nuclear magnetic resonance techniques and their application in food quality analysis. In: Gunasekaran S, editor. Nondestructive food evaluation: techniques to analyze properties and quality. New York: Marcel Dekker Inc. p165- 216.
Saio K, Kamiya M, Watanabe T. 1969. Food processing characteristics of soybean 11S and 7S proteins. Part I. Effect of difference of protein components among soybean varieties of formation of tofu gel. Agri Biol Chem 33:1301-1308.
Saio K, Kamiya M, Watanabe T. 1971. Food processing characteristics of soybeans. Part Ⅱ. Effect of Sulfhydryl Groups on Physical Properties of Tofu-gel. Agri Biol Chem 33:1301-1308.
Saio K. 1979. Tofu-relationships between texture and fine structure. Cereal Foods World 24:342-354.
Samant SK, Singhal RS, Kulkarni PR, Rege DV. 1993. Protein-polysaccharide interactions: a new approach in food formulations. Int J Food Sci Technol 28:547-562.
Sanchez VE, Bartholomai GB, Pilosof AMR. 1995. Rheological properties of food gums as related to their water binding capacity and to soy protein interaction. Lebensm-Wiss Technol 28:380-385.
Sawai J, Shiga H, Kojima H. 2001. Kinetic analysis of the bacterial action of heated scallop-shell powder. Int J Food Microbiol 71:211-218.
Schaefer MJ, Love J. 1992. Relationships between soybean components and tofu texture. J Food Quality 15:53-66.
Sheard PR, Fellows A, Ledward DA, Mitchell JR. 1986. Macromolecule changes associated with the heat treatment of soy flour. J Food Technol 21:55-60.
Shen CF, de Man L, Buzzel RI, de Man JM. 1991. Yield and quality of tofu as affected by soybean and soymilk charactreistics: Glucono delta lactone coagulant. J Food Sci 56:109-112.
Shen CF, deMan L, Buzzel RI, deMan JM. 1991. Yield and quality of tofu as affected by soybean and soymilk charactreistics: Glucono delta lactone coagulant. J Food Sci 56:109-112.
Shih MC, Hou HJ, Chang KC. 1997. Process optimization for soft tofu. J Food Sci 62: 833-837.
Shimada K, Matsushita S. 1980. Relationship between thermal coagulation of protein and amino acid compositions. J Agric Food Chem 28:413-417.
Staswick PE, Hermodson MA, Nielsen NC. 1981. Identification of the acidic and basic subunit complexes of glycinin. J Biol Chem 256:8752-8755.
Staswick PE, Hermodson MA, Nielsen NC. 1984. Identification of the cystine which links the acidic and basic components of the glycinin subunits. J Biol Chem 259: 13431-13435.
Steffe JF. 1992. Introduction to rheology. In: XXXX, editor. Rheological methods in food process engineering. East Lansing: Freeman Press.
Suhara H. 1995. Application of antimicrobial calcium agent in food products. The Food Industry 38:32-44.
Sun N, Breene WM. 1991. Calcium sulphate concentration influence on yield and quality of tofu from five soybean varieties. J Food Sci 56:1604-1607.
Sykes GE, Gayler KR. 1981. Detection and characterization of a new β-conglycinin from soybean seeds. Arch Biochem Biophys 210:525-530.
Tabilo-Munizaga G, Barbosa-Canovas GV. 2005. Rheology for the food industry. J Food Eng 67:147-156.
Tananuwong K, Reid DS. 2004. DSC and NMR relaxation studies of starch-water interactions during gelatinization. Carbohydrate Polymers 58:345-358.
Tang CH , Wu H, Chen Z, Yang XQ. 2006. Formation and properties of glycinin-rich and β-conglycinin-rich soy protein isolate gels induced by microbial transglutaminase. Food Res Int 39:87-97.
Tang CH, Li L, Wang JL, Yang XQ. 2007. Formation and rheological properties of cold-set tofu induced by microbial transglutaminase. LWT 40:579-586.
Tang CH. 2007. Effect of thermal pretreatment of raw soymilk on the gel strength and microstructure of tofu induced by microbial transglutaminase. LWT 40:1403-1409.
Thanh VH, Shibasaki K. 1976. Major proteins of soybean seeds. A straightforward fraction and their characterization. J Agric Food Chem 24:1117-1121.
Thanh VH, Shibasaki K. 1978. Major proteins of soybean seeds. Subunit structure of β-conglycinin. J Agric Food Chem 26:692-695.
Tolstoguzov VB, Grinberg VY, Gurov AN. 1985. Some physicochemical approaches to the problem of protein texturization. J Agric Food Chem 33:151-159.
Tolstoguzov VB. 1991. Functional properties of food proteins and role of protein-polysaccharide interaction. Food Hydrocoll 4:429.
Tombs MP. 1974. Gelation of globular proteins. Faraday Discuss Chem Soc 57: 158-164.
Tsai SJ, Lan CY, Kao CS, Chen SC. 1981. Studies on the yield and quality characteristics of tofu. J Food Sci 46:1734-1740.
Utsumi S, Kinesella JE. 1985. Forces involved in soy protein gelation: effects of various reagents on the formation, hardness and solubility of heat-induced gels made from 7S, 11S and soy isolate. J Food Sci 50:1278-1282.
Verrez-Bagnis V, Bouchet B, Gallant DJ. 1993. Relationship between the starch granule structure and the textural properties of heat-induced surimi gel. Food Struct 12:309-320.
Wang CH, Damodaran S. 1991. Thermal gelation of globular proteins: influence of protein conformation on gel strength. J Agric Food Chem 39:433-438.
Wang HL, Hesseltine CW. 1982. Coagulation condition in tofu processing. Process Biochem 17:7-12.
Wolf WJ, Cowan JC. 1975. Soybeans as a food source. Cleveland: CRC Press.
Wolf WJ, Tamura T. 1969. Heat denaturation of soybean 11S protein. Cereal Chem 46:331-344.
Wolf WJ. 1969. Soybean protein nomenclature: a progress report. Cereal Sci Today 14: 75, 76, 78, 129.
Wolf WJ. 1970. Soy proteins: their functional, chemical, and physical properties. J Agric Food Chem 18:969-976.
Wolf WJ. 1972. Purification and properties of the proteins. In: Smith AK, Circle SJ, editors. Soybeans: chemistry and technology. Westport: The AVI Publishing Company. 93-143 p.
Wolf WJ. Rackis JJ, Smith AK, Sasame HA, Bacbcock GE. 1958. Behavior of the 11S protein of soybeans in acid solution I. Effects of pH, ionic strength and time on ultracentrifugal and optical rotary properties. J Am Chem Soc 80:5730-5735.
Wu MC, Lanier TC, Hamann DD. 1985. Thermal transitions of admixed starch/fish protein system during heating. J Food Sci 50:20-25.
Wu MT, Salunkhe DK. 1997. Extending shelf life of fresh soybean curds by in-package microwave treatments. J Food Sci 42:1448-1450.
Xiong Y L, Blanchard SP. 1993. Viscoelastic properties of myofibrillar protein-polysaccharide composite gels. J Food Sci 58:164–167.
Yamauchi F, Sato M, Sato W, Kamata Y, Shibasaki K. 1981. Isolation and identification of a new type of β-conglycinin in soybean globulins. Agri Biol Chem 45:2863-2868.
Yamauchi F, Yamagishi T, Iwabuchi S. 1991. Molecular understanding of heat-induced
Zhang GQ, Hirasakib GJ. 2003. CPMG relaxation by diffusion with constant magnetic field gradient in a restricted geometry: numerical simulation and application. J Magn Reson 163:81-91.
Zhang H, Li L, Tatsumi E, Isobe S. 2005. High-pressure treatment effects on proteins in soy milk. LWT 38:7-14.
Zhang H, Li L, Tatsumi E, Kotwal S. 2003. Influence of high pressure on conformational changes of soybean glycinin. Innov Food Sci & Emerg Technol 4:269-275.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳清山(1996)。共創學校與家長會雙贏局面。北縣教育,13,14-19。
2. 石明原(2001)。愛在家人相聚時-營造家庭學習的新風貌。師友月刊,411,23-26。
3. 王秀雲(1996)。健全家長會功能以協助校務發展。北縣教育,17,50-51。
4. 吳清山(1994)。有興趣,大家一起來-談美國家長會組織。國立教育資料館館訊,2 7 ,14-19。
5. 吳璧如(1999)。家長參與學校教育之原理探究。中學教育學報,6,69-105。
6. 沈水木(1995)。國小家長會對校務發展之影響。研習資訊,12(2),63-67。
7. 林水木(2003)。多元社會變遷下學校家長會組織運作之展望。學校行政雙月刊,
8. 林明地(1998)。家長參與學校活動與校務:台灣省公立國民中小學校長的看法分析。教育政策論壇,1(2),155-186。
9. 林振春(1996)。社區時代中家長會的角色與任務。社教雙月刊,73,40-41。
10. 林義男(1988)。國小學生家庭社經背景、父母參與及學業成就的關係。國立台灣教育學院輔導學報,11,95-141。
11. 林義男(1993)。國中學生家庭社經背景、父母參與及其學業成就的關係。國立彰化師範大學輔導學報,16,157-212。
12. 周新富(1998)。提高家長參與子女學習的有效途徑。人文及社會學科教學通訊,
13. 周愫嫻 (1996)。家長會與學校的對話關係。北縣教育,13,20-24。
14. 周煥臣(1992)。結合社區資源積極推展校務。教師之友,33(5),11-14 。
15. 洪福財(1996)。如何強化學校家長會之功能。教育資料文摘,37(1),148-174。