跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 20:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅博文
研究生(外文):Po-Wen Lo
論文名稱:1998ML6.2瑞里地震發震構造與相關斷層構造
論文名稱(外文):Seismogenic Structures and Related Geological Structures associated the 1998 ML 6.2 Rueyli Earthquake
指導教授:陳于高陳于高引用關係李建成李建成引用關係
指導教授(外文):Yue-Gau ChenJian-Cheng Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:75
中文關鍵詞:瑞里大尖山水社寮觸口
外文關鍵詞:RueyliTachienshanChukouGOCAD
相關次數:
  • 被引用被引用:1
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  台灣為地震活動頻繁的區域,而地震與構造之活動息息相關。然而地震震源的深度,常常超過傳統地質調查及地球物理探勘如震測剖面及鑽井所能提供的資料深度。因此解析地震震源分布為瞭解地下構造的型態提供了另一個方向。
  本研究利用震源位置疊合法調整1998年規模6.2瑞里地震的主震及餘震震源位置,使地震的分布構造較清楚的顯示出來。利用三維模型處理軟體GOCAD的輔助,建立地震分布構造模型。另一方面,依據已發表的地質資料,於GOCAD中重建造成瑞里地震之大尖山斷層的地下斷層構造模型。依此而探討1998年瑞里地震之主餘震與大尖山斷層及其他地質構造之間的關係。
  地震模型顯示,瑞里地震的餘震分布呈現出一個“ㄟ”字型的曲面。可將其分為兩個構造面:一為淺而平緩的面,深度約6-7km,以小於10度的傾角向東傾斜;另一為西北─東南走向,以60-70度向東北傾斜的陡峭面,深度為6-10km。主震之位置即位於兩個面相接轉折之處。地下斷層模型顯示,大尖山斷層可分為三個主要的構造面:(1)主要斷層斷斜面(Main Ramp),北北東走向,傾角30度向東,深度由地表至6公里;(2)側向滑移面(Lateral Ramp),北西走向,傾角30-50度向東北;(3)主要斷平(Flat)或基底滑移面(Decollément),走向為南北向,傾角6度向東,深度自六公里往下延伸。而瑞里地震之主震位置落於側向滑移面轉為基底滑移面處。依據發震構造模型與地下斷層構造模型的空間分布與幾何型態,此“ㄟ”字型曲面之發震構造可視為大尖山斷層的縱向與側向延伸構造。由主震震源機制解顯示,瑞里地震之主要破裂面可能發生在大尖山斷層的側向滑移面上,並可能延伸至主要之斷層面上。
  本研究由地震震源分布成功的建立了地震構造模型,此方法可應用在震測資料與地質資料還無法解釋的深度,從而重建地下深部的構造。配合地質構造模型,可較完整的呈現地體構造的型態,對於了解斷層與地震的性質,提供我們更多的線索。
Earthquakes are related to active tectonics. The earthquakes are distributed largely within the whole crust. Thus the level of the earthquakes is usually much deeper than that geological survey and geophysical investigations can reach. Therefore, the distribution of the seismicity provides a good opportunity for understanding the subsurface geological structures. Due to Plio-Pleistocene plate convergence and ongoing mountain building processes, numerous earthquakes frequently occur in the Taiwan region. For the purpose of reconstructing the subsurface structures, this study focuses on the comparison between the seismogenic structures (derived from the seismicity distributions and the focal mechanism) and the geologic structures (inferred from the surface and subsurface available information). The 1998 ML 6.2 Rueyli earthquake is taken as a case study.
First, we reconstruct the seismogenic structures. We used the collapsing method to adjust the locations of the Rueyli earthquake aftershocks sequence (579 earthquakes have been used herein). This provides us more accurate locations for the earthquakes. Then we establish the seismogenic structures by using GOCAD software, a 3-D modeling software. Second, we reconstruct the subsurface fault structures based on available geological data. By comparison of two structures mentioned above, we thus discuss the relationship between the 1998 Rueyli earthquake and the Tachienshan fault system.
Two seismogenic surfaces of the Rueyli earthquakes are identified: one is a shallower and flatter surface, dipping 10° to east; the other is deeper and steeper, striking NW to SE and dipping 60° to 70° to northeast. The main shock is located near the conjunction of these two surfaces at the depth of about 7 km. The subsurface structure geometry shows that the Tachienshan fault consists of three main fault surfaces. The first one is the main ramp, striking to NNE and dipping 30° to SE. The second one is the lateral ramp, striking NW and dipping 30° to 50° to NE. At about 6 km deep, both ramps extend and connect to the flat or the decollément (the third fault surface of the Tachienshan fault), which strikes N-S, dipping 6° to east. The main shock is also located around the conjunction point where the lateral ramp connects to the flat. Based on the geometric relationships, the seismogenic structures of the Rueyli earthquake are closely related to the Tachienshan fault system. The focal mechanism of the main shock and the distribution of the aftershocks indicate that the Rueyli earthquake might release the energy on the lateral ramp and propagate northward to the main ramp.
In this study, we successfully built up the seismogenic structure model by the distribution of aftershocks. In addition to the geological structure model, the geotectonic characteristics can be understood in more details.
第一章緒論 1
1.1研究動機與目的 1
1.1.1 研究動機 1
1.1.2 研究目的 3
1.1.3 1998年瑞里地震簡介 3
1.2主要地質構造 6
1.2.1 大尖山斷層 6
1.2.2 鹿窟斷層 6
1.2.3 觸口斷層 8
1.2.4 水社寮斷層 8
1.3前人研究 8
第二章研究方法之簡介 13
2.1研究流程 13
2.2聯合震源定位法 15
2.3震源位置疊合法 16
2.3.1 地震定位的準度與誤差 16
2.3.2 震源位置疊合法之基本原理 16
2.3.3 震源位置疊合法的處理步驟 17
2.4GOCAD 18
第三章資料之蒐集及前處理分析 20
3.1瑞里地震之資料蒐集與處理分析 20
3.1.1 資料蒐集與篩選 20
3.1.2 震源位置疊合 20
3.1.3 載入GOCAD的前處理 23
3.22D及3D地震及地質剖面的分析及建立 24
3.2.1 研究平台 24
3.2.2 建立瑞里地震分布構造模型 24
3.2.3 利用2D資料建立3D模型 28
第四章瑞里地震模型及大尖山斷層模型的建立 32
4.1瑞里地震分布之構造模型 32
4.2大尖山斷層之地質構造模型 39
4.2.1 大尖山斷層模型(1) 41
4.2.2 大尖山斷層模型(2) 44
第五章地震模型及地質模型的比較及討論 48
5.1地震構造模型與地下斷層構造模型的比較 48
5.2震源機制解與大尖山斷層模型 52
5.3地震可能造成的破裂面積 53
5.4地震定位之誤差及問題 59
5.5地震分布構造面對地下構造之貢獻 59
第六章結論 61
參考文獻 63
附錄一 瑞里地震原始資料 66
附錄二 Vset格式範例 75
中國石油公司油礦探勘總處(1986) 十萬分之一地質圖。第五號,嘉義幅。
邱紹康 (1988) 嘉義縣奮起湖構造地質核查報告。台灣油礦探勘總處測勘處(未刊報告)。
耿文溥(1986) 台灣中部竹山及嘉義間之地質。經濟部中央地質調查所彙刊,第四號,第1-26頁。
張徽正、李元希、林啟文、盧絲丁、石同生、陳宏仁(1999) 台灣嘉義瑞里地震之地質災害。地質,第十九卷,第一期,第1-28頁。
張徽正、林啟文、陳勉銘、盧絲丁(1998) 台灣活動斷層概論,五十萬分之一台灣活動斷層分布圖說明書。經濟部中央地質調查所特刊,第十號,共103頁。
陳國誠、黃柏壽、溫國樑、邱宏智、葉永田、鄭世楠、彭瀚毅、張道明、林慶仁、辛在勤、石瑞銓(1999) 一九九八年嘉義瑞里地震之餘震調查。地質,第十九卷,第一期,第34-41頁。
陳朝輝、王維豪(1999) 瑞里地震系列和構造活動之初步研究。地質,第十九卷,第一期,第42-44頁。
陶彩霞(1999) 花東縱谷豐濱段之發震構造辨識及分布特性。國立台灣大學海洋研究所碩士論文,共97頁。
黃鑑水、何信昌、劉桓吉(1994) 台灣南部觸口斷層之調查與探勘。經濟部中央地質調查所彙刊,第九號,第51-76頁。
楊耿明、黃旭燦、吳榮章、李民、丁信修、梅文威(2001) 大尖山─觸口逆衝斷層系統的地下構造及演化特性。中國地質年會九十年年會暨學術研討會大會手冊及論文摘要,第82-84頁。
劉桓吉、方中權、莊德永(1989) 台灣新中橫公路嘉義觸口至塔塔加鞍部沿線地質。經濟部中央地質調查所彙刊,第五號,第19-30頁。
劉桓吉、李錦發(1998) 五萬分之一台灣地質圖及同說明書,雲林,圖幅第三十八號。經濟部中央地質調查所出版,共47頁。
歐國斌(1999)一九九八年嘉義瑞里地震之強地動觀測。地質,第十九卷,第一期,第29-33頁。
蔣守同(1986)以聯合震源定位法重定1972年瑞穗地震系列。國立台灣大學海洋研究所碩士論文。
Chen, K. C., Huang, B. S., Wen, K. L., Chiu, H. C., Yeh, Y. T., Cheng, S. N., Peng, H.Y., Chang, T. M., Shin, T. C., Shih, R. C., and Lin, C. R. (1999) A Study of Aftershocks of the 17 July 1998 Ruey-Li, Chiayi Earthquake. TAO, 10, 605-618.
Cheng, S. N. and Yeh, Y. T. (1991) Seismotectonics of the Taiwan-Luzon region as evidenced from seismicity and focal mechanism of earthquakes. Bulletin of the Institute of Earth Sciences, Academia Sinica ,11 ,60.
Dewey, J. W. (1971) Seismicity studies with the method of joint hypocenter determination. Doctoral Thesis, University of California, Berkeley.
Dewey, J. W., and Algermissen, S. T. (1974) Seismicity of the Middle America arc-trench system near Managua, Nicaragua.Bull. Seismol. Soc. Am., 64, 1,033-1,048.
Douglas, A. (1967) Joint epicentre determination. Nature,215,47-48.
Evernden, J. F. (1969) Precision of epicenters obtained by small numbers of world-wide stations. Bull. Seismol. Soc. Am., 59, 1365-1398.
Frohlich, C. (1979) An efficient method for joint hypocenter determination for large groups of earthquakes. Comput. Geosci., 5, 387-389.
Guiziou, J. L., Mallet, J.L. and Madariaga, R. (1996) 3-D seismic reflection tomography on top of the GOCAD depth modeler. Geophysics , 61, 1,499-1,510.
Hanks, T. C., and Kanamori, H. (1979) A monment magnitude scale, J. Geophys. Res., 84, 2,348-2,350.
Hung, J. H. (1995) Deformation of a thrust sheet over frontal-transverse ramps: a clay model study. Geol. Soc. China, 38, 37-48.
Jones, R. H., and Stewart, R. C. (1997) A method for determining significant structures in a cloud of earthquakes. J. Geophys. Res., 102, 8,245-8,254.
Kao, H. and Chen, W. P., Earthquakes along the Ryukyu-Kyushu arc: Strain segmentation, lateral compression, and the thermomechanical state of the plate interface, J. Geophys. Res., 96, 21,433-21,485, 1991.
Mallet, J. L. (1989) Discrete smooth interpolation. ACM transactions on Graphics, 8, 121-144.
Mallet, J. L. (1992) Discrete smooth interpolation in geometric modeling. Computer-aided-design, 24, 178-193.
Mori, J., and McKee, C. O. (1987) Outward-dipping ring-fault structure at Rabaul caldera as shown by earthquake locations. Science, 235, 193-195.
Pascal, G., Isacks, B. L., Barazangi, M., and Dubois, J. (1978) Precise relocations of earthquakes and seismotectonics of the New Hebrides island arc. J. Geophys. Res., 83, 4,957-4,973.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1986) Numerical Recipes: The Art of Scientific Computing. Cambridge Univ. Press, New York.
Seno, T. (1977) The instantaneous rotation vector of the Philippine Sea Plate relative to the Eurasian Plate. Tectonophysics, 42, 209-226.
Seno, T., Stein, S., and Gripp, A. E. (1993) A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data. J. Geophys. Res., 98, 17,941-17,948.
Suppe, J. (1976) Decollement folding in southwestern Taiwan. Petrol. Geol. Taiwan, 13, 25-35.
Teng, L. S. (1992) Geotectonic evolution of Tertiary continental margin basims of Taiwan. Petrol. Geol. Taiwan, 27, 1-19.
Teng, L. S., Lee, C.T., Tsai, Y.B., and Hsiao, L.Y. (2000) Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan. Geology, 28, 155-158.
Tsai, Y. B. (1986) Seismotectonics of Taiwan. Tectonophysics, 125, 17-37.
Utsu, T., and Seki, A. (1954) A relation between the area of aftershocks region and the energy of main shock. J. Seismol. Soc. Jpn., 7, 233-240.
Wang, C. Y., and Shin,T. C. (1998) Illustrating 100 years of Taiwan seismicity, TAO, 9, 589-614.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top