跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 15:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭宗男
研究生(外文):Tsung-Nan Kuo
論文名稱:新式寬頻微波帶通濾波器之設計
論文名稱(外文):Design of Novel Wideband Microwave Bandpass Filters
指導教授:陳俊雄陳俊雄引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:146
中文關鍵詞:微波帶通濾波器
外文關鍵詞:Microwave Bandpass Filters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:403
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於現今寬頻通訊系統蓬勃發展且已有文獻大多致力於窄頻微波濾波器的研究,本論文將著重於研究具有寬頻特性、縮小化面積、寬截止帶、高選擇度的微波濾波器。為了便利寬頻濾波器的設計,本論文所提出的濾波器採用了多種的雙金屬平面架構。
第一,本文首先提出使用雙金屬平面架構的新型共平面波導雙模濾波器。在這個設計中,為了避免使用鎊線,將使用高層的金屬片經由金屬聯通柱連結到金屬底,而當作空氣橋以及並聯的電容微擾;為了達到大耦合的饋入機制,微帶線至共平面波導的轉接也被採用。由適當的使用雙金屬平面架構,兩個頻寬分別為20.85 % 和 31 % 的雙模濾波器被設計並由實驗驗證。
第二,本研究繼而提出可調控耦合量的新型耦合機制,並進而設計可調整頻寬的微帶線濾波器。藉由調整導納倒轉器到兩個四分之一波長步接性阻抗共振器的位置,兩共振器間之耦合可以被控制並得到大的耦合量。而且再加入了傳統的磁耦合機制,可以增加設計此類濾波器的自由度。本文特設計三個頻寬皆大於30 % 的四階微帶線濾波器,並由此驗證了所提出的理論。
第三,本研究另亦製作出使用微帶線與共平面波導四分之一波長共振器的濾波器。藉由雙層架構的潛力和交錯耦合路徑,可以輕鬆地實現強耦合與傳輸零點。此外,由螺旋狀電感設計縮小化的共振器,可以更為縮減電路的尺寸。這些被製作的濾波器不但擁有高選擇度而且還具有小型的面積。
最後,為了滿足超寬頻架構的規格,本文特提出了具有寬頻大於100 % 且使用微帶線與共平面波導架構的新型超寬頻濾波器。基於使用集總式元件的高通濾波器原型,微帶線至共平面波導的轉接用來實現串聯電容,而短路的線段用於實現並聯到地的電感。由於在這設計中採用了準集總式元件,所提出的超寬頻濾波器比起大部分已發表的超寬頻濾波器具有較小的面積。另一種使用分裂模態共振器的技術也被提出並用於設計超寬頻的濾波器。由引入共平面波導短路殘段至兩個四分之一波長的步接性阻抗共振器中,可得到所需之分裂模態共振器。由此方法,所製作出的四階超寬頻濾波器,也具有良好的效能與小型的尺寸。另外,為了抑制在5.8 GHz不想要的訊號,所提出的五階與四階濾波器也加入了止帶結構,以達到抑制效果。
This dissertation is focused on the development of microwave filters with wide bandwidth, compact size, sharp selectivity, broad rejection band, and easy design procedure, since the wideband systems have received much attention and most reported works on filters are principally concentrated on narrow bandwidth design. To facilitate the wideband filter design, the dual-metal-plane configurations are adopted for the proposed filters.
Firstly, the new coplanar waveguide (CPW) dual-mode filters are proposed based on the dual-metal-plane structure. In this work, to avoid bond wires, the elevated metal patches connected to CPW ground by metal vias are adopted as the air-bridge and also used as the shunt-capacitance perturbations. Besides, to achieve the large couplings required by the feeding scheme, the microstrip-to-CPW transitions are applied. By making good utilization of dual-metal-plane configurations, two dual-mode filters with 3-dB fractional bandwidth of 20.85 % and 31 % are designed and measured.
Secondly, the microstrip bandpass filters using new coupling scheme for achieving a large coupling are presented. By designing the connecting position associated with an admittance-inverter which connects two λ/4 stepped-impedance resonators, one may achieve the coupling of two resonators with a large amount. Moreover, including the conventional magnetic coupling structure can increase the design flexibility. In this study, three demonstrated microstrip four-pole filters with their bandwidth larger than 30 % are carefully designed and implemented to verify the proposed concept.
Thirdly, wideband bandpass filters based on both microstrip and CPW λ/4 resonators are fabricated. With the dual-plane layout capability and the cross coupling path, the tight coupling and two transmission zeros near the passband are effortlessly realized. Moreover, by designing the spiral-shaped inductors to form the miniaturized resonators, the filter may further be made compact. These fabricated filters possess not only good frequency selectivity but also compact sizes.
Finally, in order to satisfy the ultra-wideband (UWB) criteria, novel bandpass filters with their bandwidth larger than 100 % are proposed using both microstrip and CPW structures. Based on the lumped-element highpass filter prototype, the microstrip-to-CPW transition structures are used to implement series capacitors; while the short-circuited stub structures are employed to realize the shunt inductors. Being adopting the quasi-lumped elements in the filter design, the proposed UWB filters have the sizes more compact than most of published UWB filters. Another technology using a split-mode resonator is also presented for developing the UWB filters. The split-mode resonator is formed by introducing a CPW short-circuited stub into two λ/4 CPW stepped-impedance resonators. By this approach, the fabricated four-pole UWB filter has good performance and compact size as well. In addition, to suppress the unwanted radio signals around 5.8 GHz, the proposed five-pole and four-pole UWB filters with notch-band structures included are also introduced.
CHAPTER 1 Introduction 1
1-1 Literature Overviews 2
1-2 Contributions 7
1-3 Dissertation Organization 9

CHAPTER 2 Fundamental Filter Theory and Design 12
2-1 Insertion Loss Method 12
2-2 Classical Prototype Filters 15
2-2.1 Butterworth Lowpass Prototype Filters 15
2-2.2 Chebyshev Lowpass Prototype Filters 17
2-2.3 Elliptic and Quasi-Elliptic Lowpass Prototype Filters 19
2-3 Filter Transformations 19
2-3.1 Lowpass Transformation 19
2-3.2 Highpass Transformation 20
2-3.3 Bandpass Transformation 21
2-4 Filters Based on Immittance-Inverters 23
2-4.1 Immittance-Inverters 23
2-4.2 Filters with Immittance-Inverters 25
2-4.3 Filters Using λ/4 Resonators 27
2-5 Coupled-Resonator Theory 28
2-5.1 Design Parameters for Coupled-Resonator Filters 28
2-5.2 External Quality Factor 32
2-5.3 Electric Coupling 34
2-5.4 Magnetic Coupling 37
2-5.5 Mixed Coupling 38
2-6 λ/4 Stepped-Impedance Resonator 40
2-7 Network Analysis (Even/Odd-Mode Analysis) 42

CHAPTER 3 New Dual-Mode Bandpass Filters Based on Dual-Metal-Plane Structure 45
3-1 Dual-Mode Filter 45
3-1.1 Dual-Mode Filter Structure 45
3-1.2 Dual-Mode Resonator 46
3-1.3 Dual-Mode Filter Design 49
3-3 Dual-Mode Filter A with Fractional Bandwidth of 20.85 % 50
3-4 Dual-Mode Filter B with Fractional Bandwidth of 31 % 52
3-5 Summary 55

CHAPTER 4 Microstrip Bandpass Filters Using Novel Coupling Scheme 56
4-1 Coupling Scheme Using an Admittance-Inverter 57
4-1.1 Equivalent Schematic of Proposed Coupling Scheme 57
4-1.2 Calculations of Proposed Coupling Scheme 59
4-2 Design Procedures and Realization of Two-Pole Filter with Fractional Bandwidth of 5 % 61
4-2.1 Design Procedures of Proposed Filters 61
4-2.2 Realization of Two-Pole Filter with Fractional Bandwidth of 5 % 62
4-3 Four-Pole Wideband Filter Using Proposed Coupling Scheme 66
4-4 Four-Pole Wideband Filter Using Both Proposed Coupling Scheme and Magnetic Coupling Structure 70
4-4.1 Realization of Four-Pole Filter with Fractional Bandwidth of 40 % 70
4-4.2 Realization of Four-Pole Filter with Fractional Bandwidth of 50 % 74
4-4 Summary 77

CHAPTER 5 Compact Bandpass Filters Using both Microstrip and Coplanar-Waveguide Quarter-Wavelength Resonators 78
5-1 Four-Pole Cross-Coupled Filter 79
5-1.1 Design of Four-Pole Cross-Coupled Filter 79
5-1.2 Results of Four-Pole Cross-Coupled Filter 82
5-2 Six-Pole Cross-Coupled Filter 84
5-2.1 Design of Six-Pole Cross-Coupled Filter 84
5-2.2 Results of Six-Pole Cross-Coupled Filter 86
5-3 Compact Dual-Plane Filter with Grounded Spiral-Shaped Resonators 88
5-3.1 Grounded Spiral-Shaped Resonators 88
5-3.2 Design of Compact Filter with Grounded Spiral-Shaped Resonators 89
5-3.3 Results of Compact Filter with Grounded Spiral-Shaped Resonators 93
5-4 Summary 95

CHAPTER 6 Novel Compact Ultra-Wideband Bandpass Filters Based on Dual-Metal-Plane Structures 97
6-1 Ultra-Wideband Technology 98
6-2 Highpass-Based Bandpass Filter 99
6-2.1 Lumped-Element Three-Pole Highpass Filter Prototype 99
6-2.2 Circuit Realization of Highpass Filter Prototype 102
6-3 Three-Pole UWB Bandpass Filter 106
6-3.1 Design of Three-Pole UWB Bandpass Filter 107
6-3.2 Responses of Three-Pole UWB Bandpass Filter 110
6-4 Five-Pole UWB Bandpass Filter 112
6-4.1 Design of Five-Pole UWB Bandpass Filter 112
6-4.2 Responses of Five-Pole UWB Bandpass Filter 118
6-5 Four-Pole UWB Bandpass Filter Based on Split-Mode Resonator 120
6-5.1 Split-Mode Resonator 120
6-5.2 Transition and Extra Electric Coupling 122
6-5.3 Measurement and Simulation Results 125
6-6 UWB Filters with a Notch-Band 127
6-7 Summary 131

CHAPTER 7 Conclusions and Suggestions for Future Works 132
7-1 Conclusions 132
7-2 Suggestions for Future Works 134

References 135
Publication List 146
[1]S. B. Cohn, “Parallel-coupled transmission-line-resonator filters,” IEEE Trans. Microw. Theory Tech, vol. MTT-6, no. 4, pp. 223-231, Apr. 1958.
[2]E. G. Cristal and S. Frankel, “Hairpin-line and hybrid hairpin-line/half-wave parallel-coupled-line filters,” IEEE Trans. Microw. Theory Tech, vol. MTT-20, no. 11, pp. 719-728, Nov. 1972.
[3]G. L. Matthaei, N. O. Fenzi, R. J. Forse, and S. M. Rohlfing, “Hairpin-comb filters for HTS and other narrow-band applications,” IEEE Trans. Microw. Theory Tech, vol. 45, no. 8, pp. 1226-1231, Aug. 1997.
[4]J. S. Hong and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microw. Theory Tech, vol. 44, no. 12, pp. 2099-2109, Dec. 1996.
[5]J. S. Hong and M. J. Lancaster, “Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies,” IEEE Trans. Microw. Theory Tech, vol. 48, no. 7, pp. 1098-1107, Jul. 2000.
[6]D. C. Rebenaque, A. A. Melcon, and M. Guglielmi, “A new simple microstrip open-loop resonators filter for high selectivity applications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2003, pp.1603-1606.
[7]G. L. Matthaei, “Interdigital bandpass filters,” IEEE Trans. Microw. Theory Tech, vol. MTT-10, no. 7, pp. 479-491, Jul. 1962.
[8]J. S. Wong, “Microstrip tapped-line filter design,” IEEE Trans. Microw. Theory Tech, vol. MTT-27, no. 1, pp.44-50, Jan. 1979.
[9]C. C. Chen, Y. R. Chen, and C. Y. Chang, “Miniaturized microstrip cross-coupled filters using quarter-wave or quasi-quarter-wave resonators,” IEEE Trans. Microw. Theory Tech, vol. 51, no. 1, pp. 120-131, Jan. 2003.
[10]C. Y. Chang and C. C. Chen, “A novel coupling structure suitable for cross-coupled filters with folded quarter-wave resonators,” IEEE Trans. Microw. Wireless Compon. Lett., vol.13, no. 12, pp. 517-519, Dec. 2003.
[11]R. J. Wenzel, “Synthesis of combline and capacitively loaded interdigital bandpass filters of arbitrary bandwidth,” IEEE Trans. Microw. Theory Tech, vol. MTT-19, no. 8, pp. 678-686, Aug. 1971.
[12]J. T. Kuo, M. Jiang, and H. J. Chang, “Design of parallel-coupled microstrip filters with suppression of spurious resonances using substrate suspension,” IEEE Trans. Microw. Theory Tech, vol. 52, no. 1, pp. 83-89, Jan. 2004.
[13]J. T. Kuo, S. P. Chen, and M. Jiang, “Parallel-coupled microstrip filters with over-coupled end stages for suppression of spurious responses,” IEEE Trans. Microw. Wireless Compon. Lett., vol.13, no. 10, pp. 440-442, Oct. 2003.
[14]M. D. C. V. Ahumada, J. Martel, and F. Medina, “Parallel coupled microstrip filters with floating ground-plane conductor for spurious-band suppression,” IEEE Trans. Microw. Theory Tech, vol. 53, no. 5, pp. 1823-1828, May. 2005.
[15]S. M. Wang, C. H. Chi, M. Y. Hsieh, and C. Y. Chang, “Miniaturized spurious passband suppression microstrip filter using meandered parallel coupled lines,” IEEE Trans. Microw. Theory Tech, vol. 53, no. 2, pp. 747-753, Feb. 2005.
[16]T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M, Sorolla, and M. Guglielmi, “New microstrip “wiggly-line” filters with spurious passband suppression,” IEEE Trans. Microw. Theory Tech, vol. 49, no. 9, pp. 1593-1598, Sep. 2001.
[17]T. Lopetegi, M. A. G. Laso, F. Falcone, F. Martin, J. Bonache, J. Garcia, L. Perez-Cuevas, M. Sorolla, M. Guglielmi, “Microstrip "wiggly-line" bandpass filters with multispurious rejection,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 11, pp. 531-533, Nov. 2004.
[18]M. Jiang, M. H. Wu, and J. T. Kuo, “Parallel-coupled microstrip filters with over-coupled stages for multispurious suppression,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 687-690.
[19]J. T. Kuo, U. H. Lok, and M. H. Wu, “Novel corrugated coupled-line stage with ideal frequency response and its application to bandpass filter design with multi-harmonic suppression,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 553-556.
[20]M. Sagawa, M. Makinoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech, vol. 45, no. 7, pp. 1078-1085, Jul. 1997.
[21]M. Makinoto, and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech, vol. MTT-28, no. 12, pp. 1413-1417, Dec. 1980.
[22]C. F. Chen, T. Y. Huang, and R. B. Wu, “Compact microstrip cross-coupled bandpass filters using miniaturized stepped impedance resonators,” in Proc. Asia-Pacific Microw. Conf., Nov. 2005, pp. 494-496.
[23]S. Y. Lee and C. M. Tsai, “New cross-coupled filter design using improved hairpin resonators,” IEEE Trans. Microw. Theory Tech, vol. 48, no. 12, pp. 2482-2490, Dec. 2000.
[24]C. F. Chen, T. Y. Huang, and R. B. Wu, “Design of microstrip bandpass filters with multiorder spurious-mode suppression,” IEEE Trans. Microw. Theory Tech, vol. 53, no. 12, pp. 3788-3793, Dec. 2005.
[25]S. C. Lin, P. H. Deng, Y. S. Lin, C. H. Wang, and C. H. Chen, “Wide-stopband microstrip bandpass filters using dissimilar quarter-wavelength stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 3, pp. 1011-1018, Mar. 2006.
[26]P. H. Deng, S. C. Lin, Y. S. Lin, C. H. Wang, and C. H. Chen, “Microstrip bandpass filters with dissimilar resonators for suppression of spurious responses,” in proc. 35th Eur. Microw. Conf., 2005, pp. 1263-1266.
[27]C. F. Chen, T. Y. Huang, and R. B. Wu, “A miniaturized net-type microstrip bandpass filter using λ/8 resonators,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 481-483, Jul. 2005.
[28]C. F. Chen, T. Y. Huang, and R. B. Wu, “Novel compact net-type resonators and their applications to microstrip bandpass filters,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 2, pp. 755-762, Feb. 2006.
[29]C. P. Wen, “Coplanar waveguide: asurface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microw. Theory Tech, vol. MTT-17, no. 12, pp. 1087-1090, Dec. 1969.
[30]D. F. Williams and S. E. Schwarz, “Design and performance of coplanar waveguide bandpass filters,” IEEE Trans. Microw. Theory Tech, vol. MTT-31, no. 7, pp. 558-566, Jul. 1983.
[31]T. Tsujiguchi, H. Matsumoto, and T. Nishikawa, “A miniaturized end-coupled bandpass filter using λ/4 hair-pin coplanar resonators,” in IEEE MTT-S Int. Microw. Symp. Dig., 1998, pp. 829-832.
[32]A. Sanada, H. Takehara, T. Yamamoto,and I. Awai, “λ/4 stepped-impedance resonator bandpass filters fabricated on coplanar waveguide,” in IEEE MTT-S Int. Microw. Symp. Dig., 2002, pp. 385-388.
[33]J. Zhou, M. J. Lancaster, and F. Huang, “Coplanar quarter-wavelength quasi-elliptic filters without bond-wire bridges,” IEEE Trans. Microw. Theory Tech, vol. 52, no. 4, pp. 1150-1156, Apr. 2004.
[34]H. Zhang and K. J. Chen, “Miniaturized coplanar waveguide bandpass filters using multisection stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 3, pp. 1090-1095, Mar. 2006.
[35]C. H. Wu, C. H. Wang, Y. S. Lin, and C. H. Chen, “Parallel-coupled coplanar-waveguide bandpass filter with multiple transmission zeros,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 118-120, Feb. 2007.
[36]F. Aryanfar and K. Sarabandi, “Compact millimeter-wave filters using distributed capacitively loaded CPW resonators,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 3, pp. 1161-1165, Mar. 2006.
[37]S. G. Mao and Y. Z. Chueh, “Coplanar waveguide bandpass filters with compact size and wide spurious-free stopband using electromagnetic bandgap resonators,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 181-183, Mar. 2007.
[38]I. Wolff, “Microstrip bandpass filter using degenerate modes of a microstrip ring resonator,” Electron. Lett., vol. 8, no. 12, pp. 29-30, Jun. 1972.
[39]L. H. Hsieh and K. Chang, “Compact dual-mode elliptic-function bandpass filter using a single ring resonator with one coupling gap,” Electron. Lett., vol. 36, no. 19, pp. 1626-1627, Sep. 2000.
[40]J. S. Hong and M. J. Lancaster, “Microstrip bandpass filter using degenerate modes of a novel meander loop resonator,” IEEE Microw. Guided Wave Lett., vol. 5, no. 11, pp. 371-372, Nov. 1995.
[41]J. S. Hong and M. J. Lancaster, “Bandpass characteristics of new dual-mode microstrip square loop resonators,” Electron. Lett., vol. 31, no. 11, pp. 891-892, May. 1995.
[42]A. Gorur, “A novel dual-mode bandpass filter with wide stopband using the properties of microstrip open-loop resonator,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 12, no. 10, pp. 386-388, Oct. 2002.
[43]X. D. Huang, “A novel microstrip dual-mode bandpass filter with harmonic suppression,”IEEE Trans. Microw. Wireless Compon. Lett., vol. 16, no. 7, pp. 404-406, Jul. 2006.
[44]A. Gorur, “Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications,” IEEE Trans. Microw. Theory Tech, vol. 52, no. 2, pp. 671-677, Feb. 2004.
[45]R. J. Mao and X. H. Tang, “Novel dual-mode bandpass filters using hexagonal loop resonators,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 9, pp. 3526-3533, Sep. 2006.
[46]M. Matsuo, H. Yabuki, and M. Makimoto, “Dual-mode stepped-impedance ring resonator for bandpass filter applications,” IEEE Trans. Microw. Theory Tech, vol. 49, no. 7, pp. 1235-1240, Jul. 2001.
[47]T. H. Huang, H. J. Chen, L. S. Chen, Y. H. Wang, and M. P. Houng, “A novel compact ring dual-mode filter with adjustable second-passband for dual-band applications,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 16, no. 6, pp. 360-362, Jun. 2006.
[48]J. T. Kuo and C. Y. Tsai, “Periodic stepped-impedance ring resonator (PSIRR) bandpass filter with a miniaturized area and desirable upper stopband characteristics,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 3, pp. 1107-1112, Mar. 2006.
[49]M. F. Lei and H. Wang, “An analysis of miniaturized dual-mode bandpass filter structure using shunt-capacitance perturbation,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 861-867, Mar. 2005.
[50]B. T. Tan, J. J. Yu, S. T. Chew, M. S. Leong, and B. L. Ooi, ”A miniaturized dual-mode ring bandpass filter with a new perturbation,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 343-348, Jan. 2005.
[51]H. Ishida and K. Araki, “Design and analysis of UWB bandpass filter with ring filter,” in IEEE MTT-S Int. Microw. Symp. Dig., 2004, pp. 1307-1310.
[52]L. H. Hsieh and K. Chang, ”Compact, low insertion-loss, sharp-rejection, and wide-band microstrip bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1241-1246, Apr. 2003.
[53]Y. S. Lin, W. C. Ku, C. H. Wang, and C. H. Chen, “Wideband coplanar-waveguide bandpass filters with good stopband rejection,” IEEE Microw. Wireless Compon. Lett., vol.14, no. 9, pp. 422-424, Sep. 2004.
[54]P. Mondal, M. K. Mandal, A. Chaktabarty, and S. Sanyal, “Compact bandpass filters with wide controllable fractional bandwidth,” IEEE Microw. Wireless Compon. Lett., vol.16, no. 10, pp. 540-542, Oct. 2006.
[55]M. K. Mandal and S. Sanyal, “Compact wideband bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol.16, no. 1, pp. 46-48, Jan. 2006.
[56]C. L. Hsu, F. C. Hsu, and J. T. Kuo, “Microstrip bandpass filter for ultra-wideband (UWB) wireless communications,” in IEEE MTT-S Int. Microwave Symp. Dig., 2005, pp. 679-682.
[57]W. T. Wong, Y. S. Lin, C. H. Wang, and C. H. Chen, “Highly selective microstrip bandpass filters for ultra-wideband (UWB) applications,” in Proc. Asia-Pacific Microw. Conf., Nov. 2005, pp. 2850-2853.
[58]H. Shaman and J. S. Hong, “A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeroes,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 121-123, Feb. 2007.
[59]J. G. Garcia, J. Bonache, and F. Martin, “Application of electromagnetic bandgaps to the design of ultra-wide bandpass filters with good out-of-band performance,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4136-4140, Dec. 2006.
[60]P. Cai, Z. Ma, Xuehui, T. Anada, and G. Hagiwara, “Synthesis and realization of ultra-wideband bandpass filters using the Z-transform technique,” IEEE Trans. Microw. and optical Tech. Lett., vol. 48, no. 7, pp. 1398-1401, Jul. 2006.
[61]J. S. Hong and M. J. Lancaster, Microstrip Bandpass Filters for RF/Microwave Applications, New York: Wiley, 2001.
[62]P. K. Singh, S. Basu, and Y. H. Wang, “Planar ultra-wideband bandpass filter using edge coupled microstrip lines and stepped impedance open stub,” IEEE Microw. Wireless Compon. Lett., vol.17, no. 9, pp. 649-651, Sep. 2007.
[63]C. Quendo, A. Manchec, Y. Clavet, E. Rius, J. F. Favennec, and C. Person, “General synthesis of N-band resonator based on N-order dual behavior resonator,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 337-339, May. 2007.
[64]C. Quendo, E. Rius, and C. Person, “Narrow bandpass filters using dual-behavior resonators,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 734-743, Mar. 2003.
[65]C. Quendo, E. Rius, and C. Person, “Narrow bandpass filters using dual-behavior resonators,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 1034-1044, Mar. 2004.
[66]A. Manchec, C. Quendo, E. Rius, C. Person, and J. F. Favennec, “Synthesis of dual behavior resonator (DBR) filters with integrated low-pass structures for spurious responses suppression,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 4-6, Jan. 2006.
[67]A. Manchec, C. Quendo, J. F. Favennec, E. Rius, and C. Person, “Synthesis of capacitive-coupled dual-behavior resonator (CCDBR) filters,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2346-2355, Jan. 2006.
[68]Y. Horii, “A novel microstrip bandpass filter having plural transmission zeros using a capacitive-inductive-capacitive configuration,” in IEEE MTT-S Int. Microw. Symp. Dig., 2004, pp. 1967-1970.
[69]B. C. Tseng and L. K. Wu, “Design of miniaturized common-mode filter by multilayer low-temperature co-fired ceramic,” IEEE Trans. Electromagnetic Compatibility., vol. 46, no. 4, pp. 571-579, Nov. 2004.
[70]C. W. Tang, “Harmonic-suppression LTCC filter with the step-impedance quarter-wavelength open stub,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 617-624, Feb. 2004.
[71]Y. S. Lin, C. C. Liu, K. M. Li, and C. H. Chen, “Design of an LTCC tri-band transceiver module for GPRS mobile applications,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2718-2724, Dec. 2004.
[72]J. A. R. Cruz, M. A. E. Sabbagh, K. A. Zaki, J. M. Rebollar, and Y. Zhang, “Canonical ridge waveguide filters in LTCC or metallic resonators,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 174-182, Jan. 2005.
[73]J. H. Lee, S. Pinel, J. Papapolymerou, J. Laskar, and M. M. Tentzeris, “Low-loss LTCC cavity filters using system-on-package technology at 60 GHz,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3817-3824, Dec. 2005.
[74]Z. C. Hao, W. Hong, J. X. Chen, X. P. Chen, and K. Wu, “Compact super-wide bandpass substrate integrated waveguide (SIW) filters,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2968-2977, Sep. 2005.
[75]M. M. Fahmi, J. A. R. Cruz, K. A. Zaki, and A. J. Piloto, “LTCC wide-band canonical ridge waveguide filters,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 249-252.
[76]M. S. Hsu, Y. S. Lin, C. H. Wang, C. H. Chen, and P. Liao, “An LTCC coupled-line bandpass filter with multiple transmission zeros,” in proc. 34th Eur. Microw. Conf., 2004, pp. 405-408.
[77]M. S. Kang, B. S. Kim, and M. S. Song, “End coupled stripline BPF using LTCC in millimeter-wave,” in proc. 4th Int. Microw. and Millimeter Wave. Conf., 2004, pp. 251-254.
[78]K. Rambabu and J. Bornemann, “Simplified analysis technique for initial design of LTCC filters with all-capacitive coupling,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 5, pp. 1787-1791, May. 2005.
[79]C. F. Chen, T. Y. Huang, C. H. Tseng, R. B. Wu, and T. W. Chen, “A miniaturized multilayer quasi-elliptic bandpass filter with aperture-coupled microstrip resonators,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2688-2692, Sep. 2005.
[80]L. Zhu, H. Bu, and K. Wu, “Aperture compensation technique for innovative design of ultra-broadband microstrip bandpass filter,” in IEEE MTT-S Int. Microw. Symp. Dig., 2000, pp. 315-318.
[81]W. Menzel, L. Zhu, K. Wu, and F. Bogelasck, “On the design of novel compact broad-band planar filters,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 364-370, Feb. 2003.
[82]R. W. Jackson and D. W. Matolak, “Surface-to-surface transition via electromagnetic coupling of coplanar waveguide,” IEEE Trans. Microw. Theory Tech, vol. MTT-35, no, 11, pp. 1027-1032, Nov. 1987.
[83]J. J. Burke and R. W. Jackson, “Surface-to-surface transition via electromagnetic coupling of microstrip and coplanar waveguide,” IEEE Trans. Microw. Theory Tech, vol. 37, no. 3, pp. 519-525, Mar. 1989.
[84]L. Zhu and W. Menzel, “Broad-band microstrip-to-CPW transition via frequency-dependent electromagnetic coupling,” IEEE Trans. Microwave Theory Tech, vol. 52, no. 5, pp. 1517-1522, May. 2004.
[85]K. Li, D. Kurita, and T. Matsui, “An ultra-wideband bandpass filter using broadside-coupled microstrip-coplanar waveguide structure,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005.
[86]K. Li, “UWB bandpass filter: structure, performance and application to UWB pulse generation,” in Proc. Asia-Pacific Microwave Conf, Nov. 2005, pp.79-82.
[87]H. Wang, L. Zhu, and W. Menzel, “Ultra-wideband bandpass filters with hybrid microstrip/CPW structure,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 844-846, Dec. 2005.
[88]M. H. Ren, D. Chen, and C. H. Cheng, “A novel wideband bandpass filter using a cross-shaped multiple-mode resonator,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 13-15, Jan. 2008.
[89]L. Zhu, S. Sun, and W. Menzel, “Ultra-wideband (UWB) bandpass filters using multiple-mode resonator,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 796-798, Nov. 2005.
[90]Y. C. Chiou, J. T. Kuo, and E. Cheng, “Broadband quasi-Chebyshev bandpass filters with multimode stepped-impedance resonators (SIRs),” IEEE Trans. Microwave Theory Tech, vol. 54, no. 8, pp. 3352-3358, Aug. 2006.
[91]P. H. Deng, C. H. Wang, and C. H. Chen, “Novel broadside-coupled bandpass filters using both microstrip and coplanar-waveguide resonators,” IEEE Trans. Microwave Theory Tech, vol. 54, no. 10, pp. 3746-3750, Oct. 2006.
[92]M. K. Mandal and S. Sanyal, “Compact wide-band bandpass filter using microstrip to slotline broadside-coupling,” IEEE Microw. Wireless Compon. Lett., vol.17, no. 9, pp.640-642, Sep. 2006.
[93]S. C. Lin, T. N. Kuo, Y. S. Lin, and C. H. Chen, “Novel coplanar-waveguide bandpass filters using loaded air-bridge enhanced capacitors and broadside-coupled transition structures for wideband spurious suppression,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 8, pp. 3359-3369, Aug. 2006.
[94]S. C. Lin, C. H. Wang, and C. H. Chen, “Novel patch-via-spiral resonators for the development of miniaturized bandpass filters with transmission zeros,” IEEE Trans. Microw. Theory Tech, vol. 55, no. 1, pp. 137-146, Jan. 2007.
[95]C. H. Wang, P. H. Deng, and C. H. Chen, “Coplanar-waveguide-fed microstrip bandpass filters with capacitively broadside-coupled structures for multiple spurious suppression,” IEEE Trans. Microw. Theory Tech, vol. 55, no. 4, pp. 768-775, Apr. 2007.
[96]D. M. Pozar, Microwave Engineering, New York: Wiley, 1998.
[97]R. J. Cameron, C. M. Kudsia, and R. R. Mansour, Microwave filters for communication systems, New York: Wiley, 2007.
[98]M. Dishal, “Alignment and adjustment of synchronously tuned multiple-resonant-circuit filters,” Proc. IRE, vol. 39, pp. 1448-1455, Nov. 1951.
[99]M. Dishal, “A simple design procedure for small percentage bandwidth round-rod interdigital filters,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 8, pp. 3359-3369, Aug. 2006.
[100]M. Makimoto and S. Yamashita, Microwave Resonators and Filters for Wireless Communication, Berlin: Springer, 2001.
[101]Federal Communications Commission, “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” Tech. Rep., ET-Docket 98-153, FCC02-48, Feb. 2002.
[102]A. W. Wong and L. Zhu, “Implementation of compact UWB bandpass filter with a notch-band,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 10-12, Jan. 2008.
[103]H. Shaman and J. S. Hong, “Ultra-wideband (UWB) bandpass filter with embedded band notch structures,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 193-195, Mar. 2007.
[104]K. Li, D. Kurita, and T. Matsui, “UWB bandpass filters with multi notched bands,” in proc. 36th Eur. Microw. Conf., 2006, pp. 591-594.
[105]W. Menzel and P. Feil, “Ultra-wideband (UWB) filter with WLAN notch,” in proc. 36th Eur. Microw. Conf., 2006, pp. 595-598.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文