|
[1]S. B. Cohn, “Parallel-coupled transmission-line-resonator filters,” IEEE Trans. Microw. Theory Tech, vol. MTT-6, no. 4, pp. 223-231, Apr. 1958. [2]E. G. Cristal and S. Frankel, “Hairpin-line and hybrid hairpin-line/half-wave parallel-coupled-line filters,” IEEE Trans. Microw. Theory Tech, vol. MTT-20, no. 11, pp. 719-728, Nov. 1972. [3]G. L. Matthaei, N. O. Fenzi, R. J. Forse, and S. M. Rohlfing, “Hairpin-comb filters for HTS and other narrow-band applications,” IEEE Trans. Microw. Theory Tech, vol. 45, no. 8, pp. 1226-1231, Aug. 1997. [4]J. S. Hong and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microw. Theory Tech, vol. 44, no. 12, pp. 2099-2109, Dec. 1996. [5]J. S. Hong and M. J. Lancaster, “Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies,” IEEE Trans. Microw. Theory Tech, vol. 48, no. 7, pp. 1098-1107, Jul. 2000. [6]D. C. Rebenaque, A. A. Melcon, and M. Guglielmi, “A new simple microstrip open-loop resonators filter for high selectivity applications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2003, pp.1603-1606. [7]G. L. Matthaei, “Interdigital bandpass filters,” IEEE Trans. Microw. Theory Tech, vol. MTT-10, no. 7, pp. 479-491, Jul. 1962. [8]J. S. Wong, “Microstrip tapped-line filter design,” IEEE Trans. Microw. Theory Tech, vol. MTT-27, no. 1, pp.44-50, Jan. 1979. [9]C. C. Chen, Y. R. Chen, and C. Y. Chang, “Miniaturized microstrip cross-coupled filters using quarter-wave or quasi-quarter-wave resonators,” IEEE Trans. Microw. Theory Tech, vol. 51, no. 1, pp. 120-131, Jan. 2003. [10]C. Y. Chang and C. C. Chen, “A novel coupling structure suitable for cross-coupled filters with folded quarter-wave resonators,” IEEE Trans. Microw. Wireless Compon. Lett., vol.13, no. 12, pp. 517-519, Dec. 2003. [11]R. J. Wenzel, “Synthesis of combline and capacitively loaded interdigital bandpass filters of arbitrary bandwidth,” IEEE Trans. Microw. Theory Tech, vol. MTT-19, no. 8, pp. 678-686, Aug. 1971. [12]J. T. Kuo, M. Jiang, and H. J. Chang, “Design of parallel-coupled microstrip filters with suppression of spurious resonances using substrate suspension,” IEEE Trans. Microw. Theory Tech, vol. 52, no. 1, pp. 83-89, Jan. 2004. [13]J. T. Kuo, S. P. Chen, and M. Jiang, “Parallel-coupled microstrip filters with over-coupled end stages for suppression of spurious responses,” IEEE Trans. Microw. Wireless Compon. Lett., vol.13, no. 10, pp. 440-442, Oct. 2003. [14]M. D. C. V. Ahumada, J. Martel, and F. Medina, “Parallel coupled microstrip filters with floating ground-plane conductor for spurious-band suppression,” IEEE Trans. Microw. Theory Tech, vol. 53, no. 5, pp. 1823-1828, May. 2005. [15]S. M. Wang, C. H. Chi, M. Y. Hsieh, and C. Y. Chang, “Miniaturized spurious passband suppression microstrip filter using meandered parallel coupled lines,” IEEE Trans. Microw. Theory Tech, vol. 53, no. 2, pp. 747-753, Feb. 2005. [16]T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M, Sorolla, and M. Guglielmi, “New microstrip “wiggly-line” filters with spurious passband suppression,” IEEE Trans. Microw. Theory Tech, vol. 49, no. 9, pp. 1593-1598, Sep. 2001. [17]T. Lopetegi, M. A. G. Laso, F. Falcone, F. Martin, J. Bonache, J. Garcia, L. Perez-Cuevas, M. Sorolla, M. Guglielmi, “Microstrip "wiggly-line" bandpass filters with multispurious rejection,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 11, pp. 531-533, Nov. 2004. [18]M. Jiang, M. H. Wu, and J. T. Kuo, “Parallel-coupled microstrip filters with over-coupled stages for multispurious suppression,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 687-690. [19]J. T. Kuo, U. H. Lok, and M. H. Wu, “Novel corrugated coupled-line stage with ideal frequency response and its application to bandpass filter design with multi-harmonic suppression,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 553-556. [20]M. Sagawa, M. Makinoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech, vol. 45, no. 7, pp. 1078-1085, Jul. 1997. [21]M. Makinoto, and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech, vol. MTT-28, no. 12, pp. 1413-1417, Dec. 1980. [22]C. F. Chen, T. Y. Huang, and R. B. Wu, “Compact microstrip cross-coupled bandpass filters using miniaturized stepped impedance resonators,” in Proc. Asia-Pacific Microw. Conf., Nov. 2005, pp. 494-496. [23]S. Y. Lee and C. M. Tsai, “New cross-coupled filter design using improved hairpin resonators,” IEEE Trans. Microw. Theory Tech, vol. 48, no. 12, pp. 2482-2490, Dec. 2000. [24]C. F. Chen, T. Y. Huang, and R. B. Wu, “Design of microstrip bandpass filters with multiorder spurious-mode suppression,” IEEE Trans. Microw. Theory Tech, vol. 53, no. 12, pp. 3788-3793, Dec. 2005. [25]S. C. Lin, P. H. Deng, Y. S. Lin, C. H. Wang, and C. H. Chen, “Wide-stopband microstrip bandpass filters using dissimilar quarter-wavelength stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 3, pp. 1011-1018, Mar. 2006. [26]P. H. Deng, S. C. Lin, Y. S. Lin, C. H. Wang, and C. H. Chen, “Microstrip bandpass filters with dissimilar resonators for suppression of spurious responses,” in proc. 35th Eur. Microw. Conf., 2005, pp. 1263-1266. [27]C. F. Chen, T. Y. Huang, and R. B. Wu, “A miniaturized net-type microstrip bandpass filter using λ/8 resonators,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 481-483, Jul. 2005. [28]C. F. Chen, T. Y. Huang, and R. B. Wu, “Novel compact net-type resonators and their applications to microstrip bandpass filters,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 2, pp. 755-762, Feb. 2006. [29]C. P. Wen, “Coplanar waveguide: asurface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microw. Theory Tech, vol. MTT-17, no. 12, pp. 1087-1090, Dec. 1969. [30]D. F. Williams and S. E. Schwarz, “Design and performance of coplanar waveguide bandpass filters,” IEEE Trans. Microw. Theory Tech, vol. MTT-31, no. 7, pp. 558-566, Jul. 1983. [31]T. Tsujiguchi, H. Matsumoto, and T. Nishikawa, “A miniaturized end-coupled bandpass filter using λ/4 hair-pin coplanar resonators,” in IEEE MTT-S Int. Microw. Symp. Dig., 1998, pp. 829-832. [32]A. Sanada, H. Takehara, T. Yamamoto,and I. Awai, “λ/4 stepped-impedance resonator bandpass filters fabricated on coplanar waveguide,” in IEEE MTT-S Int. Microw. Symp. Dig., 2002, pp. 385-388. [33]J. Zhou, M. J. Lancaster, and F. Huang, “Coplanar quarter-wavelength quasi-elliptic filters without bond-wire bridges,” IEEE Trans. Microw. Theory Tech, vol. 52, no. 4, pp. 1150-1156, Apr. 2004. [34]H. Zhang and K. J. Chen, “Miniaturized coplanar waveguide bandpass filters using multisection stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 3, pp. 1090-1095, Mar. 2006. [35]C. H. Wu, C. H. Wang, Y. S. Lin, and C. H. Chen, “Parallel-coupled coplanar-waveguide bandpass filter with multiple transmission zeros,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 118-120, Feb. 2007. [36]F. Aryanfar and K. Sarabandi, “Compact millimeter-wave filters using distributed capacitively loaded CPW resonators,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 3, pp. 1161-1165, Mar. 2006. [37]S. G. Mao and Y. Z. Chueh, “Coplanar waveguide bandpass filters with compact size and wide spurious-free stopband using electromagnetic bandgap resonators,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 181-183, Mar. 2007. [38]I. Wolff, “Microstrip bandpass filter using degenerate modes of a microstrip ring resonator,” Electron. Lett., vol. 8, no. 12, pp. 29-30, Jun. 1972. [39]L. H. Hsieh and K. Chang, “Compact dual-mode elliptic-function bandpass filter using a single ring resonator with one coupling gap,” Electron. Lett., vol. 36, no. 19, pp. 1626-1627, Sep. 2000. [40]J. S. Hong and M. J. Lancaster, “Microstrip bandpass filter using degenerate modes of a novel meander loop resonator,” IEEE Microw. Guided Wave Lett., vol. 5, no. 11, pp. 371-372, Nov. 1995. [41]J. S. Hong and M. J. Lancaster, “Bandpass characteristics of new dual-mode microstrip square loop resonators,” Electron. Lett., vol. 31, no. 11, pp. 891-892, May. 1995. [42]A. Gorur, “A novel dual-mode bandpass filter with wide stopband using the properties of microstrip open-loop resonator,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 12, no. 10, pp. 386-388, Oct. 2002. [43]X. D. Huang, “A novel microstrip dual-mode bandpass filter with harmonic suppression,”IEEE Trans. Microw. Wireless Compon. Lett., vol. 16, no. 7, pp. 404-406, Jul. 2006. [44]A. Gorur, “Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications,” IEEE Trans. Microw. Theory Tech, vol. 52, no. 2, pp. 671-677, Feb. 2004. [45]R. J. Mao and X. H. Tang, “Novel dual-mode bandpass filters using hexagonal loop resonators,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 9, pp. 3526-3533, Sep. 2006. [46]M. Matsuo, H. Yabuki, and M. Makimoto, “Dual-mode stepped-impedance ring resonator for bandpass filter applications,” IEEE Trans. Microw. Theory Tech, vol. 49, no. 7, pp. 1235-1240, Jul. 2001. [47]T. H. Huang, H. J. Chen, L. S. Chen, Y. H. Wang, and M. P. Houng, “A novel compact ring dual-mode filter with adjustable second-passband for dual-band applications,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 16, no. 6, pp. 360-362, Jun. 2006. [48]J. T. Kuo and C. Y. Tsai, “Periodic stepped-impedance ring resonator (PSIRR) bandpass filter with a miniaturized area and desirable upper stopband characteristics,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 3, pp. 1107-1112, Mar. 2006. [49]M. F. Lei and H. Wang, “An analysis of miniaturized dual-mode bandpass filter structure using shunt-capacitance perturbation,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 861-867, Mar. 2005. [50]B. T. Tan, J. J. Yu, S. T. Chew, M. S. Leong, and B. L. Ooi, ”A miniaturized dual-mode ring bandpass filter with a new perturbation,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 343-348, Jan. 2005. [51]H. Ishida and K. Araki, “Design and analysis of UWB bandpass filter with ring filter,” in IEEE MTT-S Int. Microw. Symp. Dig., 2004, pp. 1307-1310. [52]L. H. Hsieh and K. Chang, ”Compact, low insertion-loss, sharp-rejection, and wide-band microstrip bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1241-1246, Apr. 2003. [53]Y. S. Lin, W. C. Ku, C. H. Wang, and C. H. Chen, “Wideband coplanar-waveguide bandpass filters with good stopband rejection,” IEEE Microw. Wireless Compon. Lett., vol.14, no. 9, pp. 422-424, Sep. 2004. [54]P. Mondal, M. K. Mandal, A. Chaktabarty, and S. Sanyal, “Compact bandpass filters with wide controllable fractional bandwidth,” IEEE Microw. Wireless Compon. Lett., vol.16, no. 10, pp. 540-542, Oct. 2006. [55]M. K. Mandal and S. Sanyal, “Compact wideband bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol.16, no. 1, pp. 46-48, Jan. 2006. [56]C. L. Hsu, F. C. Hsu, and J. T. Kuo, “Microstrip bandpass filter for ultra-wideband (UWB) wireless communications,” in IEEE MTT-S Int. Microwave Symp. Dig., 2005, pp. 679-682. [57]W. T. Wong, Y. S. Lin, C. H. Wang, and C. H. Chen, “Highly selective microstrip bandpass filters for ultra-wideband (UWB) applications,” in Proc. Asia-Pacific Microw. Conf., Nov. 2005, pp. 2850-2853. [58]H. Shaman and J. S. Hong, “A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeroes,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 121-123, Feb. 2007. [59]J. G. Garcia, J. Bonache, and F. Martin, “Application of electromagnetic bandgaps to the design of ultra-wide bandpass filters with good out-of-band performance,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4136-4140, Dec. 2006. [60]P. Cai, Z. Ma, Xuehui, T. Anada, and G. Hagiwara, “Synthesis and realization of ultra-wideband bandpass filters using the Z-transform technique,” IEEE Trans. Microw. and optical Tech. Lett., vol. 48, no. 7, pp. 1398-1401, Jul. 2006. [61]J. S. Hong and M. J. Lancaster, Microstrip Bandpass Filters for RF/Microwave Applications, New York: Wiley, 2001. [62]P. K. Singh, S. Basu, and Y. H. Wang, “Planar ultra-wideband bandpass filter using edge coupled microstrip lines and stepped impedance open stub,” IEEE Microw. Wireless Compon. Lett., vol.17, no. 9, pp. 649-651, Sep. 2007. [63]C. Quendo, A. Manchec, Y. Clavet, E. Rius, J. F. Favennec, and C. Person, “General synthesis of N-band resonator based on N-order dual behavior resonator,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 337-339, May. 2007. [64]C. Quendo, E. Rius, and C. Person, “Narrow bandpass filters using dual-behavior resonators,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 734-743, Mar. 2003. [65]C. Quendo, E. Rius, and C. Person, “Narrow bandpass filters using dual-behavior resonators,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 1034-1044, Mar. 2004. [66]A. Manchec, C. Quendo, E. Rius, C. Person, and J. F. Favennec, “Synthesis of dual behavior resonator (DBR) filters with integrated low-pass structures for spurious responses suppression,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 4-6, Jan. 2006. [67]A. Manchec, C. Quendo, J. F. Favennec, E. Rius, and C. Person, “Synthesis of capacitive-coupled dual-behavior resonator (CCDBR) filters,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2346-2355, Jan. 2006. [68]Y. Horii, “A novel microstrip bandpass filter having plural transmission zeros using a capacitive-inductive-capacitive configuration,” in IEEE MTT-S Int. Microw. Symp. Dig., 2004, pp. 1967-1970. [69]B. C. Tseng and L. K. Wu, “Design of miniaturized common-mode filter by multilayer low-temperature co-fired ceramic,” IEEE Trans. Electromagnetic Compatibility., vol. 46, no. 4, pp. 571-579, Nov. 2004. [70]C. W. Tang, “Harmonic-suppression LTCC filter with the step-impedance quarter-wavelength open stub,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 617-624, Feb. 2004. [71]Y. S. Lin, C. C. Liu, K. M. Li, and C. H. Chen, “Design of an LTCC tri-band transceiver module for GPRS mobile applications,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2718-2724, Dec. 2004. [72]J. A. R. Cruz, M. A. E. Sabbagh, K. A. Zaki, J. M. Rebollar, and Y. Zhang, “Canonical ridge waveguide filters in LTCC or metallic resonators,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 174-182, Jan. 2005. [73]J. H. Lee, S. Pinel, J. Papapolymerou, J. Laskar, and M. M. Tentzeris, “Low-loss LTCC cavity filters using system-on-package technology at 60 GHz,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3817-3824, Dec. 2005. [74]Z. C. Hao, W. Hong, J. X. Chen, X. P. Chen, and K. Wu, “Compact super-wide bandpass substrate integrated waveguide (SIW) filters,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2968-2977, Sep. 2005. [75]M. M. Fahmi, J. A. R. Cruz, K. A. Zaki, and A. J. Piloto, “LTCC wide-band canonical ridge waveguide filters,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 249-252. [76]M. S. Hsu, Y. S. Lin, C. H. Wang, C. H. Chen, and P. Liao, “An LTCC coupled-line bandpass filter with multiple transmission zeros,” in proc. 34th Eur. Microw. Conf., 2004, pp. 405-408. [77]M. S. Kang, B. S. Kim, and M. S. Song, “End coupled stripline BPF using LTCC in millimeter-wave,” in proc. 4th Int. Microw. and Millimeter Wave. Conf., 2004, pp. 251-254. [78]K. Rambabu and J. Bornemann, “Simplified analysis technique for initial design of LTCC filters with all-capacitive coupling,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 5, pp. 1787-1791, May. 2005. [79]C. F. Chen, T. Y. Huang, C. H. Tseng, R. B. Wu, and T. W. Chen, “A miniaturized multilayer quasi-elliptic bandpass filter with aperture-coupled microstrip resonators,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2688-2692, Sep. 2005. [80]L. Zhu, H. Bu, and K. Wu, “Aperture compensation technique for innovative design of ultra-broadband microstrip bandpass filter,” in IEEE MTT-S Int. Microw. Symp. Dig., 2000, pp. 315-318. [81]W. Menzel, L. Zhu, K. Wu, and F. Bogelasck, “On the design of novel compact broad-band planar filters,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 364-370, Feb. 2003. [82]R. W. Jackson and D. W. Matolak, “Surface-to-surface transition via electromagnetic coupling of coplanar waveguide,” IEEE Trans. Microw. Theory Tech, vol. MTT-35, no, 11, pp. 1027-1032, Nov. 1987. [83]J. J. Burke and R. W. Jackson, “Surface-to-surface transition via electromagnetic coupling of microstrip and coplanar waveguide,” IEEE Trans. Microw. Theory Tech, vol. 37, no. 3, pp. 519-525, Mar. 1989. [84]L. Zhu and W. Menzel, “Broad-band microstrip-to-CPW transition via frequency-dependent electromagnetic coupling,” IEEE Trans. Microwave Theory Tech, vol. 52, no. 5, pp. 1517-1522, May. 2004. [85]K. Li, D. Kurita, and T. Matsui, “An ultra-wideband bandpass filter using broadside-coupled microstrip-coplanar waveguide structure,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005. [86]K. Li, “UWB bandpass filter: structure, performance and application to UWB pulse generation,” in Proc. Asia-Pacific Microwave Conf, Nov. 2005, pp.79-82. [87]H. Wang, L. Zhu, and W. Menzel, “Ultra-wideband bandpass filters with hybrid microstrip/CPW structure,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 844-846, Dec. 2005. [88]M. H. Ren, D. Chen, and C. H. Cheng, “A novel wideband bandpass filter using a cross-shaped multiple-mode resonator,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 13-15, Jan. 2008. [89]L. Zhu, S. Sun, and W. Menzel, “Ultra-wideband (UWB) bandpass filters using multiple-mode resonator,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 796-798, Nov. 2005. [90]Y. C. Chiou, J. T. Kuo, and E. Cheng, “Broadband quasi-Chebyshev bandpass filters with multimode stepped-impedance resonators (SIRs),” IEEE Trans. Microwave Theory Tech, vol. 54, no. 8, pp. 3352-3358, Aug. 2006. [91]P. H. Deng, C. H. Wang, and C. H. Chen, “Novel broadside-coupled bandpass filters using both microstrip and coplanar-waveguide resonators,” IEEE Trans. Microwave Theory Tech, vol. 54, no. 10, pp. 3746-3750, Oct. 2006. [92]M. K. Mandal and S. Sanyal, “Compact wide-band bandpass filter using microstrip to slotline broadside-coupling,” IEEE Microw. Wireless Compon. Lett., vol.17, no. 9, pp.640-642, Sep. 2006. [93]S. C. Lin, T. N. Kuo, Y. S. Lin, and C. H. Chen, “Novel coplanar-waveguide bandpass filters using loaded air-bridge enhanced capacitors and broadside-coupled transition structures for wideband spurious suppression,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 8, pp. 3359-3369, Aug. 2006. [94]S. C. Lin, C. H. Wang, and C. H. Chen, “Novel patch-via-spiral resonators for the development of miniaturized bandpass filters with transmission zeros,” IEEE Trans. Microw. Theory Tech, vol. 55, no. 1, pp. 137-146, Jan. 2007. [95]C. H. Wang, P. H. Deng, and C. H. Chen, “Coplanar-waveguide-fed microstrip bandpass filters with capacitively broadside-coupled structures for multiple spurious suppression,” IEEE Trans. Microw. Theory Tech, vol. 55, no. 4, pp. 768-775, Apr. 2007. [96]D. M. Pozar, Microwave Engineering, New York: Wiley, 1998. [97]R. J. Cameron, C. M. Kudsia, and R. R. Mansour, Microwave filters for communication systems, New York: Wiley, 2007. [98]M. Dishal, “Alignment and adjustment of synchronously tuned multiple-resonant-circuit filters,” Proc. IRE, vol. 39, pp. 1448-1455, Nov. 1951. [99]M. Dishal, “A simple design procedure for small percentage bandwidth round-rod interdigital filters,” IEEE Trans. Microw. Theory Tech, vol. 54, no. 8, pp. 3359-3369, Aug. 2006. [100]M. Makimoto and S. Yamashita, Microwave Resonators and Filters for Wireless Communication, Berlin: Springer, 2001. [101]Federal Communications Commission, “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” Tech. Rep., ET-Docket 98-153, FCC02-48, Feb. 2002. [102]A. W. Wong and L. Zhu, “Implementation of compact UWB bandpass filter with a notch-band,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 10-12, Jan. 2008. [103]H. Shaman and J. S. Hong, “Ultra-wideband (UWB) bandpass filter with embedded band notch structures,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 193-195, Mar. 2007. [104]K. Li, D. Kurita, and T. Matsui, “UWB bandpass filters with multi notched bands,” in proc. 36th Eur. Microw. Conf., 2006, pp. 591-594. [105]W. Menzel and P. Feil, “Ultra-wideband (UWB) filter with WLAN notch,” in proc. 36th Eur. Microw. Conf., 2006, pp. 595-598.
|