跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴芳瑜
研究生(外文):Fang-Yu Lai
論文名稱:運用位勢理論構建車流模式之基礎研究
論文名稱(外文):A Fundamental Study of Traffic Dispersion Model by Potential Theory
指導教授:卓訓榮卓訓榮引用關係
指導教授(外文):Hsun-Jung Cho
學位類別:碩士
校院名稱:國立交通大學
系所名稱:運輸工程與管理系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:94
中文關鍵詞:車流模式位勢理論車流模擬
外文關鍵詞:dispersiontraffic flowpotential theorysimulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來由於經濟的快速成長、人口及國民所得的提高,使得車輛的擁有數及道路的使用率大幅增加。而台灣地區地狹人稠,道路容量在短期內無法大幅擴充,面對不斷升高的車輛數目,早已超出道路設計時的最大容量,造成了各地區交通壅塞的嚴重情況。交通壅塞除了用路者的時間損失外,更會發生能源損失、空氣污染及噪音的問題,所造成的社會成本十分龐大。因此,建立一良好的車流模擬模式,輔助交通工程師規劃運輸系統管理與設計相關的控制措施,以解決交通壅塞情況便顯得重要。
本研究提出一與空間及容量有關之車流模式,此模式允許當車流密度發生變化時,車流模式仍就受空間與容量之影響。並根據向量場理論,說明此模式為一保守場,運用位勢理論構建含容量變化之車流模式,並利用格林(Green)定理證明此模式在不同邊界條件下解之存在及唯一性,且對此模式討論在不同狀況下之一般解。
接著利用電子計算機來模擬車流模式之有限差分演算法數值解,並將結果透過電腦繪圖描繪出車流模式隨著空間及容量的變動情形。本趼究比較不同條件下的車流模式之數值解與解析解,研究的結果可以發現,數值解與解析解的結果近似,因此,可以利用數值解求解更複雜之車流模式。
  最後,本研究以一簡單的道路狀況來探討在不同容量下之車流量變化情形,以作為此車流模式於實際上的應用情形。

A new traffic flow model based on spatial and capacity has been proposed. By field theory, we have claimed the flow is conservation field. Furthermore an existence and uniqueness of the solution for the model has been also proved by Green's identity. Some general analytical solution formula has discussed for proposed model. In order to analyze for physical based model problem, numerical solutions are also given and compared with the analytical results.
Congestion is defined to be the breakdown of fluent traffic flow due to the inefficiency of the transport link to handle the volume of traffic. This is precipitated by a multitude of disruptive phenomena within the dynamics of traffic flow. Congestion and traffic flow will be dealt within a framework of three dimensions composed of geographic space (x, y), capacity(c) under steady state assumption. Capacity is measured as a third dimension orthogonal to the plane and is defined to be the ability to transfer traffic in space.
Conventional traffic flow model is widely used for studying some macroscopic traffic flow phenomena. The main property of that approach is based on mass, energy or momentum conservation law. In this thesis, a new traffic flow model so called traffic dispersion model is presented. And the main concept of this new model is that it takes the potential approach for the flow, density, and capacity relationships. We also proposed implantation solution approaches and algorithms for the proposed model and method in detail.

1. Introduction1
1.1 Motivation and Objective1
1.2 Methodology and Approach4
1.3 Study Flowchart5
1.4 Outline7
2. Historical Developments9
2.1 Traffic Flow Fundamentals9
2.2 Reviews on Microscopic Traffic Flow Models17
2.3 Reviews on Macroscopic Traffic Flow Models18
3. Mathematical Preliminaries21
3.1 Gradient21
3.2 Divergence24
3.3 Curl27
3.4 Partial Differential Equation(PDE)29
3.5 Boundary Conditions30
3.6 Potential Theory32
4. Traffic Dispersion Model Formulation35
4.1 Fundamental Assumptions35
4.2 Traffic Continuity equation in 3D space38
4.3 Main Theorem for Traffic Dispersion Model 42
4.4 Relations and Physical Meaning for New Model and Traffic Flow44
5. A Well-Posed Analysis of the Proposed Model45
5.1 Existence and Uniqueness for the Traffic Dispersion Model with Dirichlet Boundary-Value Problem 46
5.2 Existence and Uniqueness for the Traffic Dispersion Model with Numann Boundary-Value Problem 49
5.3 Existence and Uniqueness for the Traffic Dispersion Model with Robin Boundary-Value Problem 52
6. A Derivation of General Solution Formula55
6.1 Dirichlet Boundary-Value Problem56
6.2 Numann Boundary-Value Problem58
6.3 Robin Boundary-Value Problem59
7. Some Computed Model Problems and Related Comparisons61
7.1 A 2D-Traffic Model without Source Density 62
7.2 A 2D-Traffic Model with Source Density66
7.3 A 3D-Traffic Model without Source Density73
7.4 A Physical Based Traffic Model Problem with Source Density77
8. Conclusion and Remarks83
APPENDICES A
A.1 Maximum Principal85
A.2 Divergence Theorem88
A.3 Green's Identities89
REFERENCES92

[1]Anderson, R. L., R. Herman, and I. Prigogine, "On The Statistical Distribution Function Theory Of Traffic Flow", Operations Research, Vol. 10, 1962, pp.180-196.
[2]Angel S. and Hyman G. M., "Urban velocity fields", Environment and Planning, Vol. 2, 1970, pp. 211-224.
[3]Angel S. and Hyman G. M., Urban Fields, London, 1976.
[4]Robert G. V. Baker, "A Model of Traffic Dispersion From A Congested Road", Transportation Research Part B, Vol. 15, No. 5, 1981, pp.319-327.
[5]Boas M. L., Mathematical Methods in the Physical Sciences, John Wiley, New York, 1966.
[6]Chronopoulos, A. T., and C. M. Johnston, "A Real-Time Traffic Simulation System", IEEE Transactions on Vehicular Technology, Vol. 47, No. 1, 1998, pp.321-331.
[7]Daganzo, C. F., "A Finite Difference Approximation Of The Kinematic Wave Model Of Traffic Flow", Transportation Research Part B, Vol. 29, No. 4, 1995, pp.261-276.
[8]Daganzo, C. F., "A Continuum Of Traffic Dynamics For Freeways With Special Lanes", Transportation Research Part B, Vol. 31, No. 2, 1997, pp.83-102.
[9]Daganzo, C. F., "The Cell Transmission Model: A Dynamic Representation Of Highway Traffic Consistent With The Hydrodynamic Theory", Transportation Research Part B, Vol. 28, No. 4, 1994, pp.269-287.
[10]Del Castillo, J. M., and F. G. Benitez, "On The Functional Form Of The Speed-Density Relationship-I: General Theory", Transportation Research Part B, Vol. 29, No. 5, 1995, pp.373-389.
[11]Del Castillo, J. M., and F. G. Benitez, "On The Functional Form Of The Speed-Density Relationship-II: Empirical Investigation", Transportation Research Part B, Vol. 29, No. 5, 1995, pp.391-406.
[12]Drake J. S., Schofer J. L., and May Jr. A. D., A Statistical Analysis of Speed Density Hypotheses, in Third International Symposium on the Theory of Traffic Flow Proceedings, Elsevier North Holland, Inc., New York, 1967.
[13]DuChateau, P., and Zachmann D., Applied Partial Differential Equations, Harper & Row, Publishers, Inc., New York, 1989.
[14]Finney, R. L., and Thomas, G. B., Calculus, Addison-Wesley Publishing Company, 1994.
[15]Garbedian P. R., Partial Differential Equation, New York, 1963.
[16]Gazis, D. C., R. Herman, and R. B. Potts, "Car-Following Theory Of Steady-State Traffic Flow", Operations Research, Vol. 7, 1959, pp.499-505.
[17]Gerlough Daniel L. and Matthew J. Huber, A Monograph of Traffic Flow Theory, TRB Special Report 165, 1975.
[18]Giordano, F. R., and Weir, M. D., Differential Equations A Modeling Approach, Addison-Wesley Publishing Company Inc., 1991.
[19]Greenberg, H., "An Analysis Of Traffic Flow", Operations Research, Vol. 7, 1959, pp. 79-85.
[20]Grossman S. I., Calculus, fifth edition, Harcourt Brace Company, 1986.
[21]Haberman, R., Mathematical Models-Mechanical Vibrations, Population Dynamics, and Traffic Flow, New Jersey, Prentice-Hall Inc., 1977.
[22]Halliday David, Physics, John wiley & sons, inc., 1962.
[23]Highway Capacity Manual, Transportation Research Board National Research council, Washington D.C., 1994.
[24]Herman, R., E. W. Montroll, R. B. Potts, and R. W. Rothery, "Traffic Dynamics: Analysis Of Stability In Car Following", Operations Research, Vol. 7, 1959, pp.499-505.
[25]Herman, R., and I. Prigogine, "A-Two-Fluid Approach To Town Traffic", Science, Vol. 204, No. 13, 1979, pp.148-151.
[26]Hilliges, M.; Weidlich, W., "A phenomenological model for dynamic traffic flow in networks", Transportation Research Part B, Vol. 29, Issue: 6, 1995, pp. 407-484.
[27]Hirsch, M. W., and Smale, S., Differential Equations, Dynamical Systems, And Linear Algebra, University of California, Berkeley, 1970.
[28]Hopf L., Introduction to the differential equations of physics, Dover Publications, Inc., 1948.
[29]Leutzbach, W., Introduction to the Theory of Traffic Flow, Springer-Verlag, Berlin Heidelberg New York, 1972.
[30]Lighthill M. J., and Whitham, G. B., "On Kinematics Waves II. A Theory of Traffic Flow on Long Crowded Road", Proceedings Royal Society, A229, 1955, pp. 317-345.
[31]May, A. D., Traffic Flow Fundamentals, New Jersey, Prentice-Hall Inc., 1990.
[32]Newell, G.F., "Theory of Highway Traffic Flow", Transportation Research Part A, Vol. 30, Issue: 6, 1996, pp. 399-480.
[33]Payne, H. J., "Models of Freeway Traffic and Control", Simulation Council Proc, Vol. 1, 1971, pp. 51-61.
[34]Payne, H. J., "FREFLO : GA Macroscopic Simulation Model of Freeway Traffic", Transportation Research Board, Vol. 722, 1979, pp. 68-77.
[35]Protter M. H., Maximum Principles in Differential Equation, Prentice-Hall, Inc., 1967.
[36]Puu T., "A proposed definition of traffic flow in continuous transportation models", Environment and Planning, Vol. A9, 1977, pp. 559-567.
[37]Puu T., "On traffic equilibrium, congestion tolls, and the allocation of transportation, capacity in a congested urban area", Environment and Planning, Vol. A10, 1978, pp. 29-36.
[38]Puu T., "Towards a theory of optimal roads", Regional Science and Urban Economics, Vol. 8, 1978, pp. 225-248.
[39]Ross, P., "Traffic Dynamics", Transportation Research Part B, Vol. 22, No. 6, 1988, pp.421-435.
[40]Sheppard, E. S., "Geographic potentials", Annals of the Association of American Geographers, Vol. 69, 1979, pp. 438-448.
[41]Strauss, W. A., Partial Differential Equations: an introduction, John Wiley & Sons, Inc., New York, 1992.
[42]The Application of Traffic Simulation Model, Transportation Research Board Special Report 194, 1981.
[43]Ross, S. L., Differential Equation, John Wiley & Sons, Inc., Singapore, 1984.
[44]Whitham, G. B., Linear and Nonlinear Wave, New York, John Wiley and Sons Inc., 1974.
[45]Zhang, Y., and L. E. Owen, "An Advanced Traffic Simulation Approach for Modeling ITS Application", Proceedings of IEEE, 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊