|
[1] A. K. Geim and K. S. Novoselov. The rise of graphene. Nature Mater, 6:183, 2007. [2] 呂俊頡.以化學氣相控制單層與雙層石墨於圖文化矽基板之成長. Master’s thesis, 國立清華大學, 2009. [3] Hiroki Hibino, Hiroyuki Kageshima, and Masao Nagase. Growth and electronic transport properties of epitaxial graphene on sic. Appl. Phys, 45:154008, 2012. [4] H.M Wang, Y.H Wu, Z.H Ni, and Z.X Shen. Electronic transport and layer engineering in multilayer graphene structures. Appl. Phys. Lett, 92:053504, 2008. [5] Hidekazu Tsuchida, Isaho Kamata, and Kunikazu Izumi. Si-h bonds on the 6h- sic(0001) surface after hydrogen annealing. Jpn. J. Appl. Phys, 36:699, 1997. [6] C.D. Lee S. Nie, R.M. Feenstra, Y. Keb, R.P. Devaty, W.J. Choyke, C.K. Inoki, T.S. Kuan, and Gong Gu. Step formation on hydrogen-etched 6h-sic0001 surfaces. Surf. Sci, 602:2936, 2008. [7] M. Hupalo, E. H. Conrad, , and M. C. Tringides. Growth mechanism for epitax- ial graphene on vicinal 6h-sic(0001) surfaces: A scanning tunneling microscopy study. Phys. Rev. B, 80:041401, 2009. [8] Siew Wai Poon, Wei Chen, Andrew T. S. Wee, and Eng Soon Tok. Growth dynamics and kinetics of monolayer and multilayer graphene on a 6h-sic(0001) substrate. Phys. Chem. Chem. Phys, 12:13522, 2010. [9] Rahul Rao, Derek Tishler, Jyoti Katoch, , and Masa Ishigami. Multiphonon raman scattering in graphene. Phys. Rev .B, 84:113406, 2011. [10]林鶴男, 許如宏, 原子力顯微術於奈米加工之應用, 物理雙月刊, 廿五卷五期: 620, 2003. [11] A. Nakajima, H. Yokoya, Y. Furukawa, and H. Yonezu. Step control of vicinal 6h–sic(0001) surface by h2 etching. J. Appl. Phys, 97:104919, 2005. [12] H. Kakiuchi, H. Ohmi, M. Harada, H. Watanabe, and K. Yasutake. Forma- tion of silicon dioxide layers at low temperatures (150–400 °c) by atmospheric pressure plasma oxidation of silicon. Sci. Tech. Adv. Mater, 8:137, 2007. [13] and Dirk Sander Wulf Wulfheke, Serge Nitsche, Frederic Dulot, Andre Leycuras, and Margrit Hanbücken. Structural reorganisation of vicinal surfaces on 6h- sic(0001) induced by hot hydrogen etching. Appl Surf Sci, 234:251, 2004. [14] Kenjiro Hayashi, Kouhei Morita, Seigi Mizuno, Hiroshi Tochihara, and Satoru Tanaka. Stable surface termination on vicinal 6h–sic(0001) surfaces. Surf. Sci, 603:566, 2009. [15] L.M. Malard, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus. Raman spectroscopy in graphene. Phys. Rep, 473:5187, 2009. [16] Yongwei Song and Frederick W. Smith. Effects of low-pressure oxidation on the surface composition of singlecrystal silicon carbide. J. Am. Ceram. Soc, 88:1864, 2005. [17] P. R. Wallace. The band theory of graphite. Phys. Rev, 71:622, 1947. [18] Jannik C. Meyer. The structure of suspended graphene sheets. Nature, 446:60, 2007. [19] Phaedon Avouris, Zhihong Chen, and Vasili Perebeinos. Carbon-based elec- tronics. Nat. Nanotechnol., 2:605, 2007. 91[20] Zhang. irect observation of a widely tunable bandgap in bilayer graphene. Nature, 11:820, 2009. [21] Dmitriy A. Dikin, Sasha Stankovich, Eric J. Zimney, Richard D. Piner, Geoffrey H. B. Dommett, Guennadi Evmenenko, SonBinh T. Nguyen, and Rodney S. Ruoff. Preparation and characterization of graphene oxide paper. Nature, 448:457, 2007. [22] Bockstedte M, Mattausch A, and Pankratov O. A theoretical study of carbon clusters in sic: a sink and a source of carbon interstitials. Mater. Sci. Forum, 457:449, 2003. [23] F. J .Ferrer, E .Moreau, D. Vignaud, S. Godey, and X. Wallart. Atomic scale flattening, step formation and graphitization blocking on 6h-sic( 0 0 0 1) and 4h-sic( 0 0 0 1) surfaces under si flux. Semicond.Sci. Technol, 24:125014, 2009. [24] M. Grodzicki, R. Wasielewski, S.A. Surma, and A. Ciszewski. Formation of excess silicon on 6h-sic(0001) during hydrogen etching. ACTA PHYSICA POLONICA A, 116:82, 2009. [25] Markus Ostler, Florian Speck, Markus Gick, and Thomas Seyller. Automated preparation of highquality epitaxial graphene on 6h–sic(0001). Phys. Status Solidi B, 247:2924, 2010. [26] A. Kawasuso, K. Kojima, M. Yoshikawa, and H. Itoh. Effect of hydrogen etching on 6h sic surface morphology studied by reflection high-energy positron diffraction and atomic force microscopy. Appl. Phys. Lett, 76:1119, 2000. [27] Konstantin V. Emtsev, Aaron Bostwick, Karsten Horn, Johannes Jobst, Gary L. Kellogg, Lothar Ley, Jessica L. McChesney, Taisuke Ohta, Sergey A. Reshanov, Jonas Rohrl, Eli Rotenberg, Andreas K. Schmid, Daniel Waldmann, Heiko . 92Weber, and Thomas Seyller. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater, 8:203, 2009. [28] G Placzek. Rayleigh-Streuung und Raman-Effekt. Akademische Verlagsge- sellschaft, 1934. [29] Zhenhua Ni, Lei Liu, Yingying Wang, Zhe Zheng, Lain-Jong Li, Ting Yu, , and Zexiang Shen. G-band raman double resonance in twisted bilayer graphene: Evidence of band splitting and folding. Phys. Rev. B, 80:125404, 2009. [30] Andrea C. Ferrari. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Com- munications, 143:47, 2007. [31] Joseph Goldstein, Dale Newbury, David Joy, Charles Lyman, Patrick Echlin, Eric Lifshin, Linda Sawyer, and Joseph Michael. Scanning Electron Microscopy and X-ray Microanalysis. Springer, 2003. [32] abd C. Hallin Fredrik Owman, Per Mrtensson, and E. Janzn. Removal of polishing-induced damage from 6h-sic(0001)substrates by hydrogen etching. J. Cryst. Growth, 167:391, 1996. [33] J. Anthony Powell, Philip G. Neudeck, Andrew J. Trunek, and Phillip B. Abel. Step structures produced by hydrogen etching of initially step-free (0001) 4h-sic mesas. Materials Science Forum, 483:753, 2005. [34] Xian Ning Xie, Roderick Lim, Jun Li, Sam F.Y. Li, and Kian Ping Loh. Atomic hydrogen beam etching of carbon superstructures on 6h-sic 0001 studied by rec- tion high-energy electron diffraction. Diamond and Related Materials, 10:1218, 2001. 93[35] C. Virojanadara, M. Syväjarvi, R. Yakimova, and L. I. Johansson. Homo- geneous large-area graphene layer growth on 6h-sic(0001). Phys. Rev. B, 78:245403, 2008. [36] Qizhen Xue, Y. Hasegawa, and T. Sakurai. Two-step preparation of 6h–sic ( 0001) surface for epitaxial growth of gan thinlm. Appl. Phys. Lett., 74:2468, 1999. [37] Luxmi, N. Srivastava, R. M. Feenstra, , and P. J. Fisher. Formation of epitax- ial graphene on sic(0001) using vacuum or argon environments. J. Vac. Sci. Technol. B, 28:C5C1, 2010. [38] J. L. Tedesco, G. G. Jernigan, J. C. Culbertson, J. K. Hite, Y. Yang, K. M. Daniels, R. L. Myers-Ward, C. R. Eddy, J. A. Robinson, K. A. Trumbull, M. T. Wetherington, P. M. Campbell, and D. K. Gaskill1. Morphology characteri- zation of argon-mediated epitaxial graphene on c-face sic. Appl. Phys. Lett, 96:222103, 2010. [39] Christian Held, Thomas Seyller, and Roland Bennewitz. Quantitative multi- channel nc-afm data analysis of graphene growth on sic(0001). Beilstein J. Nanotechnol., 3:179, 2012. [40] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett, 97:187401, 2006. [41] Zhenhua Ni, Yingying Wang, Ting Yu, and Zexiang Shen. Raman spectroscopy and imaging of graphene. Phys. Rep, 1:273, 2008. [42] Andrea C. Ferrari and Denis M. Basko. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol, 8:235, 2013.
|