跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/13 09:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠宇
研究生(外文):Kuan-Yu Chen
論文名稱:以改良型細菌搜尋最佳化設計適應性通道等化器
論文名稱(外文):Design of Adaptive Channel Equalizer Based on Modified Bacterial Foraging Optimization
指導教授:蘇德仁蘇德仁引用關係
指導教授(外文):Te-Jen Su
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:51
中文關鍵詞:符元干擾等化器細菌搜尋最佳化
外文關鍵詞:EqualizerInter-symbol InterferenceBacterial Foraging Optimization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在通訊系統中,由於訊號在傳輸過程中會有雜訊干擾,因此在接收端便需要對收到的信號來做處理,以便使接收者能獲得原先所傳送的資料,為了有效降低通道傳送過程中,產生的符元干擾現象所造成的訊號失真,在接收端裝置等化器是必須的。
符元干擾是影響通訊系統效能的一個重要因素,為了使一開始所傳送的訊號可以被接收端正確的接收到,利用適應性通道等化器可以有效地消除由通道頻寬或多重路徑所造成的符元干擾。
在本篇論文裡,我們提出了改良型細菌搜尋最佳化演算法,包含了自適應和自適應細菌搜尋結合粒子群最佳化等方法,適應性通道等化器的權重值更新,是由前置資訊的更新進而完成最佳化的調整。最後,經由電腦模擬的結果來說明並分析其特性以驗證我們所提出的方法有效性。
In the communication systems, due to noise interference of signal transmission through channel, so the signal will need to be handled at the receiver, applying an equalizer recovering the received signal should be considered. Inter-symbol interference (ISI) is an important factor which affects the performance of communication systems, so that the originally transmitted symbols can be recovered correctly at the receiver, an equalizer can effectively eliminate ISI caused by band-limited channel or multipath.
In this thesis, we propose a self adaptive bacterial foraging oriented by particle swarm optimization (SABF-PSO) approach, to update the adaptive channel equalizer weights which are optimized. Finally, from the simulation results are given to verify the effectiveness of the proposed method.
中文摘要 ---------------------------------------------------------------------------------- I
英文摘要 ---------------------------------------------------------------------------------- II
誌 謝 ---------------------------------------------------------------------------------- III
目 錄 ---------------------------------------------------------------------------------- IV
圖 目 錄 ---------------------------------------------------------------------------------- VI
表 目 錄 ---------------------------------------------------------------------------------- VII
符號說明 ---------------------------------------------------------------------------------- VIII

一、緒 論---------------------------------------------------------------------------------- 1
1.1 研究背景-------------------------------------------------------------------------- 1
1.2 研究動機---------------------------------------------------------------------- 2
1.3 論文架構---------------------------------------------------------------------- 3

二、相關演算法之研究-------------------------------------------------------------------- 5
2.1 細菌搜尋最佳化演算法-------------------------------------------------------- 5
2.1.1 趨化-------------------------------------------------------------------------------- 5
2.1.2 群聚-------------------------------------------------------------------------------- 6
2.1.3 繁殖-------------------------------------------------------------------------------- 7
2.1.4 環境變遷-------------------------------------------------------------------------- 7
2.1.5 細菌搜尋最佳化演算法運算流程-------------------------------------------- 8
2.2 自適應細菌搜尋最佳化演算法-------------------------------------------- 9
2.2.1 自適應細菌搜尋最佳化演算法特性------------------------- --------------- 9
2.2.2 自適應性的趨化----------------------------------------------------------------- 10
2.2.3 自適應細菌搜尋最佳化演算法運算流程-------------------------------- 11
2.3 自適應細菌搜尋結合粒子群最佳化演算法-------------------------------- 12
2.3.1 粒子群最佳化演算法----------------------------------------------------------- 12
2.3.2 自適應細菌搜尋結合粒子群最佳化演算法特性-------------------------- 15
2.3.3 自適應細菌搜尋結合粒子群最佳化演算法運算流程-------------------- 16
2.4 最小均方演算法----------------------------------------------------------------- 19
三、系統分析與研究方法----------------------------------------------------------------- 21
3.1 系統描述-------------------------------------------------------------------------- 21
3.1.1 有限脈衝響應濾波器----------------------------------------------------------- 21
3.1.2 均方誤差法------------------------------------------------------- 24
3.3.1 位元錯誤率----------------------------------------------------------------------- 25
3.2 研究方法-------------------------------------------------------------------------- 26
3.2.1 以最小均方演算法應用適應性通道等化器-------------------------------- 26
3.2.2 以細菌搜尋最佳化演算法應用適應性通道等化器----------------------- 27
3.2.3 以自適應細菌搜尋最佳化演算法應用適應性通道等化器-------------- 31
3.2.4 以自適應細菌搜尋結合粒子群最佳化應用適應性通道等化器-------- 35

四、模擬結果-------------------------------------------------------------------------------- 39
4.1 簡介-------------------------------------------------------------------------------- 39
4.2 結果-------------------------------------------------------------------------------- 40
4.2.1 實例一----------------------------------------------------------------------------- 39
4.2.2 實例二----------------------------------------------------------------------------- 43

五、結論與未來展望------------------------------------------------------------- 46

參考文獻 ---------------------------------------------------------------------------------- 47
發表論文 ---------------------------------------------------------------------------------- 50
自 述 ---------------------------------------------------------------------------------- 51
[1]Bernard Sklar, “DIGITAL COMMUNICATIONS Fundamental and Applications”, Prentice-Hall, Inc., 1988.
[2]S. U. H. Qureshi, “Adaptive Equalizer”, Proc. of the IEE, Vol. 73, No. 9, pp. 1349-1387, Sep., 1985.
[3]Horng, J. H. and Jinyu Zhang, “Signal circulation for adaptive equalizer in digital communication system ”, Processing on 2002 International Conference on Consumer Electronics, pp. 300-301, June, 2002.
[4]Simon Haykin, Adaptive Filter Theory, Prentice-Hall, Inc., 1996.
[5]J. G. Proakis, Digital Communication, 2nd ed., New York:McGraw Hill, 1989.
[6]K. M. Passino and M. A. Simaan, “Biomimircy of Social Foraging Bacteria for distributed Optimization:Models, Principles, and Emergent Behaviors”, Journal of Optimization Theory and Applications, Vol. 115, No. 3, pp. 603-628, December, 2002.
[7]S. Mishra, “A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation”, IEEE Trans. on Evolutionary Computation, Vol. 9, pp. 61-73, 2005.
[8]M. Tripathy et al., “Transmission Loss Reduction Based on ACTS and Bacteria Foraging Algorithm”, PPSN, pp. 222-231, 2006.
[9]B. Majhi and G. Panda, “On the Development of a New Adaptive Channel Equalizer using Bacterial Foraging Optimization Technique”, IEEE Conference, 2006.
[10]S. Mishra and C. N. Bhende, “Design of Optimum PID Controller by Bacterial Foraging Strategy”, IEEE Conference, pp. 601-605, 2006.
[11]R. C. Eberhart and Y. Shi, “Comparison between genetic algorithm and particle swarm optimization”, In.Proc. IEEE Int. Conf. Computt, pp. 611-616, 1998.
[12]J. Kennedy and R. C. Eberhart, “Particle swarm optimization”, Proc. IEEE International conference on neural networks, Piscataway, Vol. 4, pp. 1942-1948, 1995.
[13]彭仁威,調適性遠時程瑞雷衰退通道預測演算法設計與性能比較,國立中央大學,碩士論文,桃園,2002。
[14]K. M. Passino, “ Biomimicry of bacterial foraging for distributed optimization and control”, IEEE Control System Magazine, pp. 52-57, June, 2002.
[15]H. Chen, Y. Zhu and K. Hu, “Self-Adaptation in Bacterial Foraging Optimization Algorithm”, Proceedings of 2008 3rd International Conference on Intelligent System and Knowledge Engineering, pp. 1026-1031, 2008.
[16]黃明元,自適應粒子群最佳演算法應用於無限感測網路覆蓋率之最佳化,國立高雄用科技大學,碩士論文,高雄,2010。
[17]Arijit Biswas et al., “Synergy of PSO and Bacterial Foraging Optimization – A Comparative Study on Numerical Benchmarks”, Second International Symposium on Hybrid Artificial Intelligent Systems, pp. 255-263, 2007.
[18]鄭松寶,利用渦輪編碼輔助之線性迴授等化器來消除通道中的符際干擾效應之研究,朝陽科技大學,碩士論文,台中,2004。
[19]蒙以正,以MATLAB透視DPS,碁峰資訊股份有限公司,1999。
[20]陳德,模糊類神經網路結合進化演算法運用在基頻通道等化器上,國立中央大學,碩士論文,桃園,2001。
[21]呂月春,以粒子群最佳演算法設計通訊通道等化器,國立高雄應用科技大學,碩士論文,高雄,2009。
[22]林旻頡,沃特拉適應等化器的分析與設計,逢甲大學,碩士論文,台中,2008。
[23]余家榮,以改良型細菌搜尋最佳化設計模糊比例積分微分控制器,國立高雄應用科技大學,碩士論文,高雄,2010。
[24]Adel Boughelala et al., “An Adaptive Channel Equalier using Bacterial Foraging Oriented by Particle Swarm Optimization Strategy”, The 3rd International Conference on Computer Research and Development (ICCRD), pp. 24-29, 2011.
[25]翁萬德等編著,自建型模糊類神經通道等化器,民生電子研討會,2003。
[26]Y. Morishita et al., “An LMS Adaptive Equalizer using Threshold in Impulse Noise Environments”, Processing on 10th ICT, Vol. 1, pp. 578-582, 2003.
[27]Te-Jen Su, Chia-Jung Yu, “An Adaptive Channel Equalizer using Self-Adaption Bacterial Foraging Optimization”, Optics Communications 2010, Vol. 283, pp. 3911-3916, 2010.
[28]B. Wang et al., “Comparing RLS and LMS Adaptive Equalizer for Nonstationary Wireless Channels in Mobile Ad Hoc Network”, Processing on 13th IEEE Interational Symposium on indoor and Mobile Radio Communications, Vol. 3, pp. 1311-1135, Sep., 2002.
[29]Widrow B. et al., ”Stationary and nonstationary learning characteristics of the LMS adaptive filters”, IEEE Proc., pp. 1551-1162, 1976.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊