跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 09:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜靜如
研究生(外文):Tu, Jing-Ru
論文名稱:雷射捕陷控制溶菌酶晶體之成長
論文名稱(外文):Laser Trapping-Controlled Crystal Growth of Hen Egg White Lysozyme
指導教授:增原宏
指導教授(外文):Masuhara, Hiroshi
口試委員:李耀坤杉山輝樹劉瑞祥李明道
口試委員(外文):Li, Yaw-KuenSugiyama, TerukiLiu, Jui-HsiangLee, Ming-Tao
口試日期:2015-10-23
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:128
中文關鍵詞:雷射捕陷溶菌酶高濃度叢集區域蛋白質晶體成長線性偏振圓偏振去偏極
外文關鍵詞:Laser trappingHen egg white lysozymeHighly concentrated domain of clustersProtein crystal growthLinear polarizationCircular polarizationdepolarized polarization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:417
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文首次成功利用雷射捕陷誘發溶菌酶溶液高濃度叢集區域生成,並運用於控制其晶體之成長。在距離自發結晶之溶菌酶晶體邊緣10 微米之位置,聚焦近紅外光連續波雷射,當雷射捕陷焦點聚集溶液中的類液體溶菌酶叢集時,濃度將因此上升,同時引發液體-液體相分離,並且在焦點產生局部高濃度叢集區域;其中叢集間之相互作用力及排列通過叢集之間的氫鍵向焦點外擴展,最終誘發形成巨大高濃度叢集區域並且完全覆蓋包含溶菌酶晶體。此時晶體成長將完全取決於高濃度叢集區域中的叢集濃度以及排列。雷射捕陷侷限了初始高濃度叢集區域中的溶菌酶叢集之自由運動及排列方向,也因此抑制了晶體之成長。雷射捕陷焦點不斷捕捉初始叢集區域中的溶菌酶叢集,濃度持續增加使其結構及氫鍵聯結轉變。最終,初始高濃度叢集區域將轉變成具有較高濃度暨叢集排列性較低的叢集區域,晶體的成長速率也因此有顯著的提升。此外,叢集區域轉變前後均具有雷射極性依存之異相性特徵,此特性對於晶體成長具有密切關聯。本研究之成果不僅拓展了嶄新的蛋白質晶體成長控制方法,同時也發展了新的概念用於解釋雷射捕陷與蛋白質叢集間的交互作用。
We present the first demonstration of laser trapping-controlled crystal growth of protein, which is achieved for hen egg-white lysozyme (HEWL) through a highly concentrated cluster domain formation. A continuous-wave near-infrared laser beam is employed as a trapping light source and focused at a point 10 µm away from a target HEWL crystal formed spontaneously in solution. Laser trapping of HEWL liquid-like clusters in solution increases local concentration at the focus, where liquid-liquid phase separation should be considered to be triggered. The local association and orientation of the clusters expands from the focus to its outside through the hydrogen bonding network, and a large highly concentrated domain of the clusters is formed. The target HEWL crystal is totally covered with the domain and grown depending on orientation and concentration of the clusters in the domain. First, laser trapping restricts the free motion and reorientation of the clusters in the domain, which strongly suppresses crystal growth. Subsequent laser trapping of the clusters in the initial domain continuously increases local cluster concentration, leading to change in conformation of HEWL cluster structure and the hydrogen bonding network. Consequently, the domain is transformed into another domain with lower rigidity and ordering of the clusters, which surprisingly enhances crystal growth. Moreover, the clusters in both domains have anisotropic features reflecting laser polarization, which also contributes to crystal growth. These results will enable us not only to develop a new crystal growth method but also to understand novel interactions between focused laser light and protein clusters.
摘 要......i
Abstract......ii
Acknowledgements......iii
Table of Contents......iv
List of Figures......vii
List of Tables......xiii

Chapter 1. Introduction......1
1.1 Laser trapping......1
1.1.1 History of laser trapping......1
1.1.2 Principle of laser trapping......3
1.2 Protein crystallization......7
1.2.1 Structure of protein crystal......8
1.2.2 Phase diagram of protein crystallization......10
1.2.3 Crystallization theory......13
1.2.4 Crystal growth......18
1.2.4-1 Conventional methods......18
1.2.4-2 Dynamics and mechanism......21
1.2.4-3 Hen egg white lysozyme (HEWL) ......23
1.3 Light/laser-induced crystallization...... 29
1.3.1 Photochemical reaction-induced nucleation...... 29
1.3.2 Non-photochemical light-induced nucleation......31
1.3.3 Femtosecond laser-induced nucleation and crystal growth......33
1.4 Laser trapping-induced crystallization and liquid-liquid phase separation......37
1.4.1 Control of crystal nucleation and crystal polymorph......38
1.4.2 Assembling formation......45
1.4.3 Liquid-liquid phase separation......47
1.4.4 Control of crystal growth......54
1.4.5 Classification of laser trapping-induced phenomena......57
1.5 Motivation......59

Chapter 2. Experimental......62
2.1 Preparation of hen egg white lysozyme crystal......62
2.1.1 Hen egg white lysozyme solution...... 62
2.1.2 Chamber......63
2.1.3 Crystallization......64
2.2 Optical Setup......65
2.3 Conditions for laser trapping......66
2.3.1 Crystal growth......66
2.3.2 Liquid-liquid phase separation......69
2.4 Determination of crystal growth rate......70

Chapter 3. Results and discussion......71
3.1 Spontaneous crystal growth depending on solution concentration......71
3.2 Laser trapping-controlled crystal growth of hen egg white lysozyme......73
3.2.1 Irradiation position dependence......80
3.2.2 Effect of solution temperature and evaporation......80
3.2.3 Irradiation power dependence......85
3.3 Formation of laser trapping-induced highly concentrated domain......87
3.3.1 Formation of highly concentrated cluster domain......87
3.3.2 Laser trapping-induced liquid-liquid phase separation......89
3.3.3 Two different crystal growth behaviors......91
3.3.4 Two different highly concentrated domains......97
3.4 Laser polarization-dependent crystal growth of hen egg white lysozyme......99
3.5 Dynamics and mechanism......105

Chapter 4. Conclusion......109

References......111

1. Shen, Y. R., Principles of nonlinear optics. 1984, Wiley-Interscience. N.J.
2. Ashkin, A., Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 1970. 24(4): p. 156-159.
3. Ashkin, A. and Dziedzic, J. M., Optical levitation by radiation pressure. Appl. Phys. Lett., 1971. 19(8): p. 283-285.
4. Ashkin, A., Trapping of atoms by resonance radiation pressure. Phys. Rev. Lett., 1978. 40(12): p. 729-732.
5. Ashkin, A., Dziedzic, J., Bjorkholm, J., and Chu, S., Observation of a single beam gradient force optical trap for dielectric particles. Opt. Lett., 1986. 11(5): p. 288-290.
6. Ashkin, A., History of optical trapping and manipulation of small neutral particle, atoms, and molecules. IEEE J. Sel. Top. Quantum Electron., 2000. 6(6): p. 841-856.
7. Ashkin, A. and Dziedzic, J. M., Optical levitation in high vacuum. Appl. Phys. Lett., 1976. 28(6): p. 333-335.
8. Ashkin, A. and Dziedzic, J. M., Radiation pressure on a free liquid surface. Phys. Rev. Lett., 1973. 30(4): p. 139-142.
9. Ashkin, A. and Dziedzic, J. M., Optical levitation of liquid drops by radiation pressure. Science, 1975. 187(4181): p. 1073-1075.
10. Chu, S., Bjorkholm, J. E., Ashkin, A., Gordon, J. P., and Hollberg, L. W., Proposal for Optically Cooling Atoms to Temperatures of the Order of 10-6 K. Opt. Lett, 1986. 11(2): p. 73-75.
11. Chu, S., The manipulation of neutral particles. Rev. Mod. Phys, 1998. 70(3): p. 685-706.
12. Ashkin, A. and Dziedzic, J., Optical trapping and manipulation of viruses and bacteria. Science, 1987. 235(4795): p. 1517.
13. Ashkin, A., Dziedzic, J., and Yamane, T., Optical trapping and manipulation of single cells using infrared laser beams. Nature, 1987. 330(6150): p. 769-771.
14. Ashkin, A. and Dziedzic, J. M., Optical Trapping and Manipulation of Viruses and Bacteria. Science, 1987. 235(4795): p. 1517-1520.
15. Moffitt, J. R., Chemla, Y. R., Smith, S. B., and Bustamante, C., Recent advances in optical tweezers. Annu. Rev. Biochem., 2008. 77: p. 205-228.
16. Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R., and Rubinsztein-Dunlop, H., Optical alignment and spinning of laser-trapped microscopic particles. Nature, 1998. 394: p. 348-350.
17. Borowicz, P., Hotta, J., Sasaki, K., and Masuhara, H., Chemical and optical mechanism of microparticle formation of poly(N-vinylcarbazole) in N,N-dimethylformamide by photon pressure of a focused near-infrared laser beam. J. Phys. Chem. B, 1998. 102(11): p. 1896-1901.
18. Grier, D. G., A revolution in optical manipulation. Nature, 2003. 424(6950): p. 810-816.
19. Sugiyama, T., Adachi, T., and Masuhara, H., Crystallization of glycine by photon pressure of a focused CW laser beam. Chem. Lett., 2007. 36(12): p. 1480-1481.
20. Neuman, K. C. and Block, S. M., Optical trapping. Rev. Sci. Instrum. , 2004. 75(9): p. 2787-2809.
21. Harada, Y. and Asakura, T., Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun., 1996. 124(5-6): p. 529-541.
22. Ashkin, A., Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J., 1992. 61(2): p. 569-582.
23. P. Zemanek , A. J. b., L. Sramek , M. Liska, Optical trapping of rayleigh particles using a gaussian standard wave. Opt. Commun., 1998. 151: p. 273-285.
24. Tomlinson, I. M., Next-generation protein drugs. Nat. Biotechnol., 2004. 22(5): p. 521-522.
25. McPherson, A., Crystallization of Biological Macromolecules. 1999, Cold Spring Harbor Laboratory Press. N.Y.
26. Kirk, O., Borchert, T. V., and Fuglsang, C. C., Industrial enzyme applications. Curr. Opin. Biotechnol, 2002. 13(4): p. 345-351.
27. Liese, A. and Hilterhaus, L., Evaluation of immobilized enzymes for industrial applications. Chem. Soc. Rev., 2013. 42(15): p. 6236-6249.
28. Chernov, A. A., Protein crystals and their growth. J. Struct. Biol., 2003. 142(1): p. 3-21.
29. Vekilov, P. G. and Chernov, A. A., The physics of protein crystallization. Solid State Physics: Advances in Research and Applications, Vol 57, 2002. 57: p. 1-147.
30. McPherson, A. and Gavira, J. A., Introduction to protein crystallization. Acta Crystallographica Section F-Structural Biology and Crystallization Communications, 2014. 70: p. 2-20.
31. Sedzik, J., Riccio, P., institutet, K., and Network, M., Molecules: Nucleation, Aggregation and Crystallization : Beyond Medical and Other Implications. 2009, World Scientific, Singapore.
32. Ducruix, A. and Giegé, R (eds)., Crystallization of Nucleic Acids and Proteins: A Practical Approach. 2nd, 1999, Oxford University Press, N.Y.
33. ten Wolde, P. R. and Frenkel, D., Enhancement of protein crystal nucleation by critical density fluctuations. Science, 1997. 277(5334): p. 1975-1978.
34. Haas, C. and Drenth, J., Understanding protein crystallization on the basis of the phase diagram. J. Cryst. Growth, 1999. 196(2-4): p. 388-394.
35. Haas, C., Drenth, J., and Wilson, W. W., Relation between the solubility of proteins in aqueous solutions and the second virial coefficient of the solution. J. Phys. Chem. B, 1999. 103(14): p. 2808-2811.
36. Piazza, R., Interactions in protein solutions near crystallisation: a colloid physics approach. J. Cryst. Growth , 1999. 196(2-4): p. 415-423.
37. Kuznetsov, Y. G., Malkin, A. J., and McPherson, A., Atomic-force-microscopy studies of phase separations in macromolecular systems. Phys. Rev. B, 1998. 58(10): p. 6097-6103.
38. Erdemir, D., Lee, A. Y., and Myerson, A. S., Nucleation of Crystals from Solution: Classical and Two-Step Models. Acc. Chem. Res, 2009. 42(5): p. 621-629.
39. Berland, C. R., Thurston, G. M., Kondo, M., Broide, M. L., Pande, J., Ogun, O., and Benedek, G. B., Solid Liquid-Phase Boundaries of Lens Protein Solutions. Proc. Natl. Acad. Sci. U.S.A., 1992. 89(4): p. 1214-1218.
40. Broide, M. L., Tominc, T. M., and Saxowsky, M. D., Using phase transitions to investigate the effect of salts on protein interactions. Phys. Rev. E, 1996. 53(6): p. 6325-6335.
41. Muschol, M. and Rosenberger, F., Liquid-liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization. J. Chem. Phys., 1997. 107(6): p. 1953-1962.
42. Vekilov, P. G., Dense liquid precursor for the nucleation of ordered solid phases from solution. Cryst. Growth Des., 2004. 4(4): p. 671-685.
43. Myerson, A. S. and Trout, B. L., Nucleation from Solution. Science, 2013. 341(6148): p. 855-856.
44. Vekilov, P., The Two-Step Mechanism and The Solution-Crystal Spinodal for Nucleation of Crystals in Solution, in Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials: Advances in Chemical Physics Volume 151, Nicolis, G. and Maes, D.(eds), 2012, John Wiley &; Sons., N.J., p. 79-109.
45. Maes, D., Vorontsova, M. A., Potenza, M. A. C., Sanvito, T., Sleutel, M., Giglio, M., and Vekilov, P. G., Do protein crystals nucleate within dense liquid clusters? Acta Crystallogr. F-Struct. Biol. Cryst. Commun., 2015. 71: p. 815-822.
46. Vorontsova, M. A., Maes, D., and Vekilov, P. G., Recent advances in the understanding of two-step nucleation of protein crystals. Faraday Discuss., 2015. 179: p. 27-40.
47. Chayen, N. E. and Saridakis, E., Protein crystallization: from purified protein to diffraction-quality crystal. Nat. Methods, 2008. 5(2): p. 147-153.
48. Camara-Artigas, A., Palencia, A., Martinez, J. C., Luque, I., Gavira, J. A., and Garcia-Ruiz, J. M., Crystallization by capillary counter-diffusion and structure determination of the N114A mutant of the SH3 domain of Abl tyrosine kinase complexed with a high-affinity peptide ligand. Acta Crystallogr. Sect. D-Biol. Crystallogr., 2007. 63: p. 646-652.
49. Vekilov, P. G., Ataka, M., and Katsura, T., Laser michelson interferometry investigation of protein crystal growth. J. Cryst. Growth, 1993. 130(1-2): p. 317-320.
50. Sazaki, G., Kurihara, K., Nakada, T., Miyashita, S., and Komatsu, H., A novel approach to the solubility measurement of protein crystals by two-beam interferometry. J. Cryst. Growth, 1996. 169(2): p. 355-360.
51. Land, T. A., Malkin, A. J., Kuznetsov, Y. G., Mcpherson, A., and Deyoreo, J. J., Mechanisms of Protein Crystal-Growth - an Atomic-Force Microscopy Study of Canavalin Crystallization. Phys. Rev. Lett., 1995. 75(14): p. 2774-2777.
52. Kuznetsov, Y. G., Malkin, A. J., Lucas, R. W., and McPherson, A., Atomic force microscopy studies of icosahedral virus crystal growth. Colloids Surf., B, 2000. 19(4): p. 333-346.
53. McPherson, A., Malkin, A. J., and Kuznetsov, Y. G., Atomic force microscopy in the study of macromolecular crystal growth. Annu. Rev. Biophys. Biomol. Struct., 2000. 29: p. 361-410.
54. Chernov, A. A., Maximovsky, S. N., Vlasenko, L. A., Kholina, E. N., Martovitsky, V. P., and Levtov, V. L., Growth of germanium crystals with small dislocation densities under microgravitation conditions. Crystallogr. Rep. (Kristallografiya), 1984. 29(2): p. 370-375.
55. Chernov, A. A., Results and problems in crystal growth studies. Z. Phys. Chem, 1988. 269(5): p. 941-970.
56. McPherson, A., Introduction to protein crystallization. Methods, 2004. 34(3): p. 254-265.
57. McPherson, A., Kuznetsov, Y. G., Malkin, A., and Plomp, M., Macromolecular crystal growth as revealed by atomic force microscopy. J. Struct. Biol., 2003. 142(1): p. 32-46.
58. Rosenberger, F., Protein crystallization. J. Cryst. Growth, 1996. 166(1-4): p. 40-54.
59. Kuznetsov, Y. G., Malkin, A. J., Greenwood, A., and Mcpherson, A., Interferometric studies of growth kinetics and surface morphology in macromolecular crystal growth: canavalin, thaumatin, and turnip yellow mosaic virus. J. Struct. Biol., 1995. 114(3): p. 184-196.
60. Land, T. A., Malkin, A. J., Kutznesov, Y. G., McPherson, A., and DeYoreo, J. J., Mechanisms of protein and virus crystal growth: An atomic force microscopy study of canavalin and STMV crystallization. J. Cryst. Growth, 1996. 166(1-4): p. 893-899.
61. Pusey, M. L., Snyder, R. S., and Naumann, R., Protein crystal growth. Growth kinetics for tetragonal lysozyme crystals. J. Biol. Chem., 1986. 261(14): p. 6524-6529.
62. Durbin, S. D. and Feher, G., Crystal growth studies of lysozyme as a model for protein crystallization. J. Cryst. Growth, 1986. 76(3): p. 583-592.
63. Durbin, S. D. and Feher, G., Studies of crystal growth of lysozyme as a model system for protein crystallization. Biophys. J., 1986. 49(2): p. A439-A439.
64. Yip, C. M. and Ward, M. D., Atomic force microscopy of insulin single crystals: Direct visualization of molecules and crystal growth. Biophys. J., 1996. 71(2): p. 1071-1078.
65. Blake, C. C. F., Koenig, D. F., Mair, G. A., North, A. C. T., Phillips, D. C., and Sarma, V. R., Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 Å Resolution. Nature, 1965. 206(4986): p. 757-761.
66. Matthews, B. W. and Remington, S. J., The Three Dimensional Structure of the Lysozyme from Bacteriophage T4. Proc. Natl. Acad. Sci. U.S.A., 1974. 71(10): p. 4178-4182.
67. Li, M. R., Nadarajah, A., and Pusey, M. L., Growth of (101) faces of tetragonal lysozyme crystals: determination of the growth mechanism. Acta Crystallogr. Sect. D-Biol. Crystallogr., 1999. 55: p. 1012-1022.
68. Matagne, A. and Dobson, C. M., The folding process of hen lysozyme: a perspective from the 'new view'. Cell. Mol. Life Sci., 1998. 54(4): p. 363-371.
69. Nadarajah, A., Li, M. R., and Pusey, M. L., Growth mechanism of the (110) face of tetragonal lysozyme crystals. Acta Crystallogr. Sect. D-Biol. Crystallogr., 1997. 53: p. 524-534.
70. James D. Gunton, A. S., Pagan, D. L., Gunton, J. D., Andrey Shiryayev,, and Pagan., D. L., Lysozyme Protein Condensation. 2007, Cambridge University Press, U.K.
71. Jollès, P. and Berthou, J., High temperature crystallization of lysozyme: An example of phase transition. FEBS Lett., 1972. 23(1): p. 21-23.
72. Heijna, M. C. R., van Enckevort, W. J. P., and Vlieg, E., Growth inhibition of protein crystals: A study of lysozyme polymorphs. Cryst. Growth Des., 2008. 8(1): p. 270-274.
73. Pusey, M. L., Tetragonal lysozyme, from monomer to crystal. Abstracts of Papers of the American Chemical Society, 2002. 223: p. U653-U653.
74. Pusey, M. L., A proposed pathway for the nucleation and growth of the tetgragonal crystal form of lysozyme. Biophys. J., 2002. 82(1): p. 325a-325a.
75. Durbin, S. D. and Feher, G., Simulation of Lysozyme Crystal-Growth by the Monte-Carlo Method. J. Cryst. Growth, 1991. 110(1-2): p. 41-51.
76. Monaco, L. A. and Rosenberger, F., Growth and Etching Kinetics of Tetragonal Lysozyme. J. Cryst. Growth, 1993. 129(3-4): p. 465-484.
77. Nadarajah, A., Forsythe, E. L., and Pusey, M. L., The Averaged Face Growth-Rates of Lysozyme Crystals - the Effect of Temperature. J. Cryst. Growth, 1995. 151(1-2): p. 163-172.
78. Nadarajah, A., Li, H. Y., Konnert, J. H., and Pusey, M. L., New AFM techniques for investigating molecular growth mechanisms of protein crystals. P SOC PHOTO-OPT INS, 2000. 4098: p. 31-39.
79. Pusey, M. L., Gorti, S., Forsythe, E., and Konnert, J., AFM studies of salt concentration effects on the (110) surface structure of tetragonal lysozyme crystals. Biophys. J., 2003. 84(2): p. 43a-43a.
80. Li, H. B., Liu, B. B., Zhang, X., Gao, C. X., Shen, J. C., and Zou, G. T., Single-molecule force spectroscopy on poly(acrylic acid) by AFM. Langmuir, 1999. 15(6): p. 2120-2124.
81. Pusey, M. L., Estimation of the Initial Equilibrium-Constants in the Formation of Tetragonal Lysozyme Nuclei. J. Cryst. Growth, 1991. 110(1-2): p. 60-65.
82. Boue, F., Lefaucheux, F., Robert, M. C., and Rosenman, I., Small-Angle Neutron-Scattering Study of Lysozyme Solutions. J. Cryst. Growth, 1993. 133(3-4): p. 246-254.
83. Deslouis, C., Lefaucheux, F., Robert, M. C., and Rinaudo, C., Effect of added polymer traces in crystal growth: electrochemical simulation. J. Appl. Electrochem., 1993. 23(2): p. 141-150.
84. Minezaki, Y., Niimura, N., Ataka, M., and Katsura, T., Small angle neutron scattering from lysozyme solutions in unsaturated and supersaturated states (SANS from lysozyme solutions). Biophys. Chem. , 1996. 58(3): p. 355-363.
85. Durbin, S. D. and Feher, G., Studies of crystal growth mechanisms of proteins by electron microscopy. J. Mol. Biol., 1990. 212(4): p. 763-774.
86. Durbin, S. D. and Carlson, W. E., Lysozyme crystal growth studied by atomic force microscopy. J. Cryst. Growth, 1992. 122(1-4): p. 71-79.
87. Li, M. R., Nadarajah, A., and Pusey, M. L., Modeling the growth rates of tetragonal lysozyme crystals. J. Cryst. Growth, 1995. 156(1-2): p. 121-132.
88. Nanev, C. N. and Penkova, A., Nucleation of lysozyme crystals under external electric and ultrasonic fields. J. Cryst. Growth, 2001. 232(1-4): p. 285-293.
89. Al-haq, M. I., Lebrasseur, E., Tsuchiya, H., and Torii, T., Protein crystallization under an electric field. Crystallogr. Rev., 2007. 13(1): p. 29-64.
90. Singer, W., Nieminen, T. A., Gibson, U. J., Heckenberg, N. R., and Rubinsztein-Dunlop, H., Orientation of optically trapped nonspherical birefringent particles. Phys. Rev. E, 2006. 73(2).
91. Charron, C., Didierjean, C., Mangeot, J. P., and Aubry, A., The 'Octopus' plate for protein crystallization under an electric field. J. Appl. Crystallogr., 2003. 36: p. 1482-1483.
92. Sazaki, G., Moreno, A., and Nakajima, K., Novel coupling effects of the magnetic and electric fields on protein crystallization. J. Cryst. Growth, 2004. 262(1-4): p. 499-502.
93. Sazaki, G., Yoshida, E., Komatsu, H., Nakada, T., Miyashita, S., and Watanabe, K., Effects of a magnetic field on the nucleation and growth of protein crystals. J. Cryst. Growth, 1997. 173(1-2): p. 231-234.
94. Yanagiya, S., Sazaki, G., Durbin, S. D., Miyashita, S., Nakada, T., Komatsu, H., Watanabe, K., and Motokawa, M., Effect of a magnetic field on the orientation of hen egg-white lysozyme crystals. J. Cryst. Growth, 1999. 196(2-4): p. 319-324.
95. Sakurazawa, S., Kubota, T., and Ataka, M., Orientation of protein crystals grown in a magnetic field. J. Cryst. Growth, 1999. 196(2-4): p. 325-331.
96. Astier, J. P., Veesler, S., and Boistelle, R., Protein crystals orientation in a magnetic field. Acta Crystallogr. Sect. D-Biol. Crystallogr., 1998. 54: p. 703-706.
97. Sazaki, G., Crystal quality enhancement by magnetic fields. Prog. Biophys. Mol. Bio., 2009. 101(1-3): p. 45-55.
98. Wakayama, N. I., Effects of a strong magnetic field on protein crystal growth. Cryst. Growth Des., 2003. 3(1): p. 17-24.
99. Okutsu, T., Photochemically-induced crystallization of protein. J. Photoch. Photobio. C, 2007. 8(3): p. 143-155.
100. Okutsu, T., Isomura, K., Kakinuma, N., Horiuchi, H., Unno, M., Matsumoto, H., and Hiratsuka, H., Laser-induced morphology control and epitaxy of dipara-anthracene produced from the photochemical reaction of anthracene. Cryst. Growth Des., 2005. 5(2): p. 461-465.
101. Okutsu, T., Sugiyama, K., Furuta, K., Watanebea, I., Mori, H., Obi, K., Horota, K., Horiuchi, H., Azaki, G. S., Veesler, S., and Hiratsuka, H., Photochemically induced nucleation in supersaturated and undersaturated thaumatin solutions. J. Photoch. Photobio. A, 2007. 190(1): p. 88-93.
102. Veesler, S., Furuta, K., Horiuchi, H., Hiratsuka, H., Ferte, N., and Okutsu, T., Crystals from light: Photochemically induced nucleation of hen egg-white lysozyme. Cryst. Growth Des., 2006. 6(7): p. 1631-1635.
103. Okutsu, T., Furuta, K., Terao, M., Hiratsuka, H., Yamano, A., Ferte, N., and Veesler, S., Light-induced nucleation of metastable hen egg-white lysozyme solutions. Cryst. Growth Des., 2005. 5(4): p. 1393-1398.
104. Furuta, K., Horiuchi, H., Hiratsuka, H., and Okutsu, T., Photochemically induced nucleation of ribonuclease a enhanced by a stable protein dimer produced from the photochemical reaction of Tyr residual groups. Cryst. Growth Des., 2008. 8(6): p. 1886-1889.
105. Garetz, B. A., Aber, J. E., Goddard, N. L., Young, R. G., and Myerson, A. S., Nonphotochemical, polarization-dependent, laser-induced nucleation in supersaturated aqueous urea solutions. Phys. Rev. Lett., 1996. 77(16): p. 3475-3476.
106. Zaccaro, J., Matic, J., Myerson, A. S., and Garetz, B. A., Nonphotochemical, laser-induced nucleation of supersaturated aqueous glycine produces unexpected gamma-polymorph. Cryst. Growth Des., 2001. 1(1): p. 5-8.
107. Garetz, B. A., Matic, J., and Myerson, A. S., Polarization switching of crystal structure in the nonphotochemical light-induced nucleation of supersaturated aqueous glycine solutions. Phys. Rev. Lett., 2002. 89(17).
108. Matic, J., Sun, X. Y., Garetz, B. A., and Myerson, A. S., Intensity, wavelength, and polarization dependence of nonphotochemical laser-induced nucleation in supersaturated aqueous urea solutions. Cryst. Growth Des., 2005. 5(4): p. 1565-1567.
109. Aber, J. E., Arnold, S., Garetz, B. A., and Myerson, A. S., Strong dc electric field applied to supersaturated aqueous glycine solution induces nucleation of the gamma polymorph. Phys. Rev. Lett., 2005. 94(14).
110. Sun, X. Y., Garetz, B. A., and Myerson, A. S., Supersaturation and polarization dependence off polymorph control in the nonphotochemical laser-induced nucleation (NPLIN) of aqueous glycine solutions. Cryst. Growth Des., 2006. 6(3): p. 684-689.
111. Sun, X. Y., Garetz, B. A., and Myerson, A. S., Polarization switching of crystal structure in the nonphotochemical laser-induced nucleation of supersaturated aqueous L-histidine. Cryst. Growth Des., 2008. 8(5): p. 1720-1722.
112. Lee, I. S., Evans, J. M. B., Erdemir, D., Lee, A. Y., Garetz, B. A., and Myerson, A. S., Nonphotochemical Laser Induced Nucleation of Hen Egg White Lysozyme Crystals. Cryst. Growth Des., 2008. 8(12): p. 4255-4261.
113. Duffus, C., Camp, P. J., and Alexander, A. J., Spatial Control of Crystal Nucleation in Agarose Gel. J. Am. Chem. Soc., 2009. 131(33): p. 11676-11677.
114. Alexander, A. J. and Camp, P. J., Single Pulse, Single Crystal Laser-Induced Nucleation of Potassium Chloride. Cryst. Growth Des., 2009. 9(2): p. 958-963.
115. Fang, K., Arnold, S., and Garetz, B. A., Nonphotochemical Laser-Induced Nucleation in Levitated Supersaturated Aqueous Potassium Chloride Microdroplets. Cryst. Growth Des., 2014. 14(5): p. 2685-2688.
116. Sun, X. Y., Garetz, B. A., Moreira, M. F., and Palffy-Muhoray, P., Nonphotochemical laser-induced nucleation of nematic phase and alignment of nematic director from a supercooled thermotropic liquid crystal. Phys. Rev. E, 2009. 79(2).
117. Knott, B. C., Doherty, M. F., and Peters, B., A simulation test of the optical Kerr mechanism for laser-induced nucleation. J. Chem. Phys., 2011. 134(15).
118. Hosokawa, Y., Yashiro, M., Asahi, T., Fukumura, H., and Masuhara, H., Femtosecond laser ablation dynamics of amorphous film of a substituted Cu-phthalocyanine. Appl. Surf. Sci., 2000. 154: p. 192-195.
119. Hosokawa, Y., Yashiro, M., Asahi, T., and Masuhara, H., Photothermal conversion dynamics in femtosecond and picosecond discrete laser etching of Cu-phthalocyanine amorphous film analysed by ultrafast UV-VIS absorption spectroscopy. J. Photoch. Photobio. A, 2001. 142(2-3): p. 197-207.
120. Hosokawa, Y., Yashiro, M., Asahi, T., and Masuhara, H., Dynamics and mechanism of discrete etching of organic materials by femtosecond laser excitation. P. Soc. Photo-Opt. Ins., 2001. 4274: p. 78-87.
121. Hosokawa, Y., Yashiro, M., Asahi, T., Masuhara, H., Kadota, T., and Shirota, Y., Femtosecond multistep laser etching of transparent amorphous organic film. Jpn. J. Appl. Phys.-2, 2001. 40(10B): p. L1116-L1118.
122. Adachi, H., Takano, K., Hosokawa, Y., Inoue, T., Mori, Y., Matsumura, H., Yoshimura, M., Tsunaka, Y., Morikawa, M., Kanaya, S., Masuhara, H., Kai, Y., and Sasaki, T., Laser irradiated growth of protein crystal. Jpn. J. Appl. Phys.-2, 2003. 42(7B): p. L798-L800.
123. Hosokawa, Y., Matsumura, S., Yoshikawa, H. Y., Masuhara, H., Nakamura, R., Kanematsu, Y., Ikeda, K., Shimo-oka, A., and Mori, H., Fabrication and application of protein crystal microarrays. MRS Proceedings, 2002. 735 (2002 Symposium C - Bioinspired Nanoscale Hybrid Systems): p. 27-32.
124. Sugiyama, T., Asahi, T., Yuyama, K., Takeuchi, H., Jeon, H. G., Hosokawa, Y., and Masuhara, H., Laser fabrication and crystallization of nano materials. P. Soc. Photo-Opt. Ins., 2008. 6891.
125. Yoshikawa, H. Y., Murai, R., Sugiyama, S., Sazaki, G., Kitatani, T., Takahashi, Y., Adachi, H., Matsumura, H., Murakami, S., Inoue, T., Takano, K., and Mori, Y., Femtosecond laser-induced nucleation of protein in agarose gel. J. Cryst. Growth, 2009. 311(3): p. 956-959.
126. Vogel, A. and Venugopalan, V., Kinetics of phase transitions in pulsed IR laser ablation of biological tissues. P. Soc. Photo-Opt Ins., 2003. 4961: p. 66-74.
127. Boulnois, J. L., Time-Irradiance Reciprocity Relationship as a Model for Laser-Tissue Interactions. Laser Surg. Med., 1986. 6(2): p. 168-168.
128. Yoshikawa, H. Y., Murai, R., Adachi, H., Sugiyama, S., Maruyama, M., Takahashi, Y., Takano, K., Matsumura, H., Inoue, T., Murakami, S., Masuhara, H., and Mori, Y., Laser ablation for protein crystal nucleation and seeding. Chem. Soc. Rev., 2014. 43(7): p. 2147-2158.
129. Yoshikawa, H. Y., Hosokawa, Y., and Masuhara, H., Explosive crystallization of urea triggered by focused femtosecond laser irradiation. Jpn. J. Appl. Phys.-2, 2006. 45(1-3): p. L23-L26.
130. Hosokawa, Y., Adachi, H., Yoshimura, M., Mori, Y., Sasaki, T., and Masuhara, H., Femtosecond laser-induced crystallization of 4-(dimethylamino)-N-methyl-4-stilbazolium tosylate. Cryst. Growth Des., 2005. 5(3): p. 861-863.
131. Nakamura, K., Sora, Y., Yoshikawa, H. Y., Hosokawa, Y., Murai, R., Adachi, H., Mori, Y., Sasaki, T., and Masuhara, H., Femtosecond laser-induced crystallization of protein in gel medium. Appl. Surf. Sci. , 2007. 253(15): p. 6425-6429.
132. Murai, R., Yoshikawa, H. Y., Takahashi, Y., Maruyama, M., Sugiyama, S., Sazaki, G., Adachi, H., Takano, K., Matsumura, H., Murakami, S., Inoue, T., and Mori, Y., Enhancement of femtosecond laser-induced nucleation of protein in a gel solution. Appl. Phys. Lett., 2010. 96(4).
133. Jiang, Y. Q., Matsumoto, Y., Hosokawa, Y., Masuhara, H., and Oh, I., Trapping and manipulation of a single micro-object in solution with femtosecond laser-induced mechanical force. Appl. Phys. Lett., 2007. 90(6).
134. Noack, J., Hammer, D. X., Noojin, G. D., Rockwell, B. A., and Vogel, A., Influence of pulse duration on mechanical effects after laser-induced breakdown in water. J. Appl. Phys., 1998. 83(12): p. 7488-7495.
135. Frenz, M., Konz, F., Pratisto, H., Weber, H. P., Silenok, A. S., and Konov, V. I., Starting mechanisms and dynamics of bubble formation induced by a Ho : Yttrium aluminum garnet laser in water. J. Appl. Phys., 1998. 84(11): p. 5905-5912.
136. Yoshikawa, H. Y., Hosokawa, Y., Murai, R., Sazaki, G., Kitatani, T., Adachi, H., Inoue, T., Matsumura, H., Takano, K., Murakami, S., Nakabayashi, S., Mori, Y., and Masuhara, H., Spatially Precise, Soft Microseeding of Single Protein Crystals by Femtosecond Laser Ablation. Cryst. Growth Des., 2012. 12(9): p. 4334-4339.
137. Yoshikawa, H. Y., Hosokawa, Y., and Masuhara, H., Spatial control of urea crystal growth by focused femtosecond laser irradiation. Cryst. Growth Des., 2006. 6(1): p. 302-305.
138. Hofkens, J., Hotta, J., Sasaki, K., Masuhara, H., and Iwai, K., Molecular assembling by the radiation pressure of a focused laser beam: Poly(N-isopropylacrylamide) in aqueous solution. Langmuir, 1997. 13(3): p. 414-419.
139. Hofkens, J., Hotta, J., Sasaki, K., Masuhara, H., Taniguchi, T., and Miyashita, T., Molecular association by the radiation pressure of a focused laser beam: Fluorescence characterization of pyrene-labeled PNIPAM. J. Am. Chem. Soc., 1997. 119(11): p. 2741-2742.
140. Hosokawa, C., Yoshikawa, H., and Masuhara, H., Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection. Phys. Rev. E, 2004. 70(6).
141. Ito, S., Mizuno, T., Yoshikawa, H., and Masuhara, H., Laser patterning and fabrication of nano/microparticle systems in solution. P. Soc. Photo-Opt Ins, 2004. 5514: p. 608-615.
142. Ito, S., Yoshikawa, H., and Masuhara, H., Photochemical fixation of individual polymer nanoparticles on glass substrates in solution at room temperature. Jpn. J. Appl. Phys.-2, 2004. 43(7A): p. L885-L887.
143. Yoshikawa, H., Kurokawa, N., Yokote, Y., Namba, S., and Masuhara, H., Novel fabrication techniques for nanostructures of functional organic molecules. Nanophotonics: Integrating Photochemistry, Optics and Nano/Bio Materials Studies, 2004. 1: p. 237-249.
144. Yoshikawa, H., Matsui, T., and Masuhara, H., Reversible assembly of gold nanoparticles confined in an optical microcage. Phys. Rev. E, 2004. 70(6).
145. Tanaka, Y., Yoshikawa, H., and Masuhara, H., Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution. J. Phys. Chem. B, 2006. 110(36): p. 17906-17911.
146. Tanaka, Y., Yoshikawa, H., and Masuhara, H., Thiacarbocyanine dye J-aggregation in optical trapping potential. P. Soc. Photo-Opt Ins, 2006. 6326: p. U642-U649.
147. Rungsimanon, T., Yuyama, K., Sugiyama, T., and Masuhara, H., Crystallization in Unsaturated Glycine/D2O Solution Achieved by Irradiating a Focused Continuous Wave Near Infrared Laser. Cryst. Growth Des., 2010. 10(11): p. 4686-4688.
148. Yuyama, K., Sugiyama, T., and Masuhara, H., Millimeter-Scale Dense Liquid Droplet Formation and Crystallization in Glycine Solution Induced by Photon Pressure. J. Phys. Chem. Lett. , 2010. 1(9): p. 1321-1325.
149. Oxtoby, D. W., Materials chemistry : Crystals in a flash. Nature, 2002. 420(6913): p. 277-278.
150. Weissbuch, I., Lahav, M., and Leiserowitz, L., Toward stereochentical control, monitoring, and understanding of crystal nucleation. Cryst. Growth Des., 2003. 3(2): p. 125-150.
151. Rungsimanon, T., Yuyama, K., Sugiyama, T., Masuhara, H., Tohnai, N., and Miyata, M., Control of Crystal Polymorph of Glycine by Photon Pressure of a Focused Continuous Wave Near-Infrared Laser Beam. J. Phys. Chem. Lett., 2010. 1(3): p. 599-603.
152. Srinivasan, K., Crystal growth of alpha and gamma glycine polymorphs and their polymorphic phase transformations. J. Cryst. Growth, 2008. 311(1): p. 156-162.
153. Weissbuch, I., Torbeev, V. Y., Leiserowitz, L., and Lahav, M., Solvent effect on crystal polymorphism: Why addition of methanol or ethanol to aqueous solutions induces the precipitation of the least stable beta form of glycine. Angew. Chem. Int. Edit., 2005. 44(21): p. 3226-3229.
154. Boldyreva, E. V., Drebushchak, V. A., Drebushchak, T. N., Paukov, I. E., Kovalevskaya, Y. A., and Shutova, E. S., Polymorphism of glycine: Thermodynamic aspects. Part I. Relative stability of the polymorphs. J. Therm. Anal. Calorim., 2003. 73(2): p. 409-418.
155. Boldyreva, E. V., Drebushchak, V. A., Drebushchak, T. N., Paukov, I. E., Kovalevskaya, Y. A., and Shutova, E. S., Polymorphism of glycine: Thermodynamic aspects. Part II. Polymorphic transitions. J. Therm. Anal. Calorim, 2003. 73(2): p. 419-428.
156. Drebushchak, V. A., Kovalevskaya, Y. A., Paukov, I. E., and Boldyreva, E. V., Low-temperature heat capacity of alpha and gamma polymorphs of glycine. J. Therm. Anal. Calorim, 2003. 74(1): p. 109-120.
157. Yang, X., Lu, J., Wang, X. J., and Ching, C. B., Effect of sodium chloride on the nucleation and polymorphic transformation of glycine. J. Cryst. Growth, 2008. 310(3): p. 604-611.
158. Towler, C. S., Davey, R. J., Lancaster, R. W., and Price, C. J., Impact of molecular speciation on crystal nucleation in polymorphic systems: The conundrum of gamma glycine and molecular 'self poisoning'. J. Am. Chem. Soc., 2004. 126(41): p. 13347-13353.
159. Sugiyama, T. and Masuhara, H., Laser-Induced Crystallization and Crystal Growth. Chem.-Asian. J., 2011. 6(11): p. 2878-2889.
160. Yuyama, K., Rungsimanon, T., Sugiyama, T., and Masuhara, H., Selective Fabrication of α-and γ-Polymorphs of Glycine by Intense Polarized Continuous Wave Laser Beams. Cryst. Growth Des., 2012. 12(5): p. 2427-2434.
161. Masuhara, H., Sugiyama, T., Yuyama, K. I., and Usman, A., Optical trapping assembling of clusters and nanoparticles in solution by CW and femtosecond lasers. Opt. Rev., 2015. 22(1): p. 143-148.
162. Yuyama, K., Sugiyama, T., and Masuhara, H., Laser Trapping and Crystallization Dynamics of L-Phenylalanine at Solution Surface. J. Phys. Chem. Lett., 2013. 4(15): p. 2436-2440.
163. Mohan, R., Koo, K. K., Strege, C., and Myerson, A. S., Effect of additives on the transformation behavior of L-phenylalanine in aqueous solution. Ind. Eng. Chem. Res., 2001. 40(26): p. 6111-6117.
164. Kee, N. C. S., Arendt, P. D., Goh, L. M., Tan, R. B. H., and Braatz, R. D., Nucleation and growth kinetics estimation for L-phenylalanine hydrate and anhydrate crystallization., CrystEngComm , 2011. 13(4): p. 1197-1209.
165. Yuyama, K., Ishiguro, K., Sugiyama, T., and Masuhara, H., Laser trapping dynamics of L-alanine depending on the laser polarization. Proc.of SPIE, 2012. 8458.
166. Yuyama, K., Wu, C. S., Sugiyama, T., and Masuhara, H., Laser trapping-induced crystallization of L-phenylalanine through its high-concentration domain formation. Photoch. Photobio. Sci., 2014. 13(2): p. 254-260.
167. Misawa, H., Sasaki, K., Koshioka, M., Kitamura, N., and Masuhara, H., Laser tweezering and assembling of polymer latex-particles in solution. Abstracts of Papers of the American Chemical Society, 1992. 203: p. 362-POLY.
168. Misawa, H., Sasaki, K., Koshioka, M., Kitamura, N., and Masuhara, H., Laser manipulation and assembling of polymer latex-particles in solution. Macromolecules, 1993. 26(2): p. 282-286.
169. Borowicz, P., Hotta, J., Sasaki, K., and Masuhara, H., Laser-controlled association of poly(N-vinylcarbazole) in organic solvents: Radiation pressure effect of a focused near-infrared laser beam. J. Phys. Chem. B, 1997. 101(31): p. 5900-5904.
170. Masuo, S., Yoshikawa, H., Asahi, T., Masuhara, H., Sato, T., Jiang, D.-L., and Aida, T., Repetitive Contraction and Swelling Behavior of Gel-like Wire-type Dendrimer Assemblies in Solution Layer by Photon Pressure of a Focused Near-infrared Laser Beam. J. Phys. Chem. B, 2002. 106(5): p. 905-909.
171. Tsuboi, Y., Shoji, T., and Kitamura, N., Crystallization of lysozyme based on molecular assembling by photon pressure. Jpn. J. Appl. Phys.-2, 2007. 46(45-49): p. L1234-L1236.
172. Tsuboi, Y., Shoji, T., Nishino, M., Masuda, S., Ishimori, K., and Kitamura, N., Optical manipulation of proteins in aqueous solution. Appl. Surf. Sci., 2009. 255(24): p. 9906-9908.
173. Hosokawa, C., Yoshikawa, H., and Masuhara, H., Enhancement of biased diffusion of dye-doped nanoparticles by simultaneous irradiation with resonance and nonresonance laser beams. Jpn. J. Appl. Phys.-2, 2006. 45(12-16): p. L453-L456.
174. Kudo, T. and Ishihara, H., Theoretical study of nonlinear resonance radiation force exerted on nano-sized objects. P. Soc. Photo-Opt. Ins., 2011. 8097.
175. Tsuboi, Y., Shoji, T., and Kitamura, N., Optical Trapping of Amino Acids in Aqueous Solutions. J. Phys. Chem. C, 2010. 114(12): p. 5589-5593.
176. Masuhara, H., Sugiyama, T., Rungsimanon, T., Yuyama, K., Miura, A., and Tu, J. R., Laser-trapping assembling dynamics of molecules and proteins at surface and interface. Pure Appl. Chem., 2011. 83(4): p. 869-883.
177. Chattopadhyay, S., Erdemir, D., Evans, J. M. B., Ilavsky, J., Amenitsch, H., Segre, C. U., and Myerson, A. S., SAXS study of the nucleation of glycine crystals from a supersaturated solution. Cryst. Growth Des., 2005. 5(2): p. 523-527.
178. Sugiyama, T., Adachi, T., and Masuhara, H., Crystal growth of glycine controlled by a focused cw near-infrared laser beam. Chem. Lett., 2009. 38(5): p. 482-483.
179. Yuyama, K., Rungsimanon, T., Sugiyama, T., and Masuhara, H., Formation, dissolution, and transfer dynamics of a millimeter-scale thin liquid droplet in glycine solution by laser trapping. J. Phys. Chem. C, 2012. 116(12): p. 6809-6816.
180. Nabetani, Y., Yoshikawa, H., Grimsdale, A. C., Mullen, K., and Masuhara, H., Laser deposition of polymer micro- and nanoassembly from solution using focused near-infrared laser beam. Jpn. J. Appl. Phys. 1, 2007. 46(1): p. 449-454.
181. Nabetani, Y., Yoshikawa, H., Grimsdale, A. C., Müllen, K., and Masuhara, H., Effects of optical trapping and liquid surface deformation on the laser microdeposition of a polymer assembly in solution. Langmuir, 2007. 23(12): p. 6725-6729.
182. Louchev, O. A., Juodkazis, S., Murazawa, N., Wada, S., and Misawa, H., Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection. Opt. Express, 2008. 16(8): p. 5673-5680.
183. Ito, S., Sugiyama, T., Toitani, N., Katayama, G., and Miyasaka, H., Application of fluorescence correlation spectroscopy to the measurement of local temperature in solutions under optical trapping condition. J. Phys.Chem. B, 2007. 111(9): p. 2365-2371.
184. Vekilov, P. G., Pan, W., Gliko, O., Katsonis, P., and Galkin, O., Metastable mesoscopic phases in concentrated protein solutions. Lect. Notes Phys., 2008. 752: p. 65-95.
185. Bonnett, P. E., Carpenter, K. J., Dawson, S., and Davey, R. J., Solution crystallisation via a submerged liquid-liquid phase boundary: oiling out. Chem. Commun., 2003(6): p. 698-699.
186. He, G., Tan, R. B. H., Kenis, P. J. A., and Zukoski, C. F., Metastable states of small-molecule solutions. J. Phy. Chem. B, 2007. 111(51): p. 14121-14129.
187. Chayen, N. E., Methods for separating nucleation and growth in protein crystallisation. Prog. Biophys. Mol. Biol., 2005. 88(3): p. 329-337.
188. Hammadi, Z., Astier, J. P., Morin, R., and Veesler, S., Spatial and temporal control of nucleation by localized dc electric field. Cryst. Growth Des., 2009. 9(8): p. 3346-3347.
189. Hammadi, Z. and Veesler, S., New approaches on crystallization under electric fields. Prog. Biophys. Mol. Biol, 2009. 101(1-3): p. 38-44.
190. Tu, J. R., Miura, A., Yuyama, K., Masuhara, H., and Sugiyama, T., Crystal growth of lysozyme controlled by laser trapping. Cryst. Growth Des, 2014. 14(1): p. 15-22.
191. Bartkiewicz, S. and Miniewicz, A., Whirl-enhanced continuous wave laser trapping of particles. Phys. Chem. Chem. Phys., 2015. 17(2): p. 1077-1083.
192. Masuhara, H., Microchemistry by laser and microfabrication techniques. N-Holland D, 1994: p. 3-20.
193. Singer, W., Nieminen, T. A., Heckenberg, N. R., and Rubinsztein-Dunlop, H., Collecting single molecules with conventional optical tweezers. Phys. Rev. E, 2007. 75(1).
194. Masuo, S., Yoshikawa, H., Nothofer, H. G., Grimsdale, A. C., Scherf, U., Mullen, K., and Masuhara, H., Assembling and orientation of polyfluorenes in solution controlled by a focused near-infrared laser beam. J. Phys. Chem. B, 2005. 109(15): p. 6917-6921.
195. Usman, A., Uwada, T., and Masuhara, H., Optical reorientation and trapping of nematic liquid crystals leading to the formation of micrometer-sized domain. J. Phys. Chem. C, 2011. 115(24): p. 11906-11913.
196. Glasoe, P. K. and Long, F. A., Use of glass electrodes to measure acidities in deuterium oxide. J. Phys. Chem., 1960. 64(1): p. 188-190.
197. Schneider, C. A., Rasband, W. S., and Eliceiri, K. W., NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 2012. 9(7): p. 671-675.
198. Miller, D. C., Kempe, M. D., Kennedy, C. E., and Kurtz, S. R., Analysis of transmitted optical spectrum enabling accelerated testing of multijunction concentrating photovoltaic designs. Opt. Eng., 2011. 50(1): p. 013003.
199. Cacioppo, E. and Pusey, M. L., The solubility of the tetragonal form of hen egg-white lysozyme from ph 4.0 to 5.4. J. Cryst. Growth, 1991. 114(3): p. 286-292.
200. Sleutel, M. and Van Driessche, A. E. S., Role of clusters in nonclassical nucleation and growth of protein crystals. P. Natl. ACAD Sci. USA., 2014. 111(5): p. E546-E553.
201. Gliko, O., Pan, W., Katsonis, P., Neumaier, N., Galkin, O., Weinkauf, S., and Vekilov, P. G., Metastable liquid clusters in super- and undersaturated protein solutions. J. Phys. Chem. B, 2007. 111(12): p. 3106-3114.
202. Forsythe, E. and Pusey, M. L., The effects of temperature and nacl concentration on tetragonal lysozyme face growth-rates. J. Cryst. Growth, 1994. 139(1-2): p. 89-94.
203. Forsythe, E. L., Nadarajah, A., and Pusey, M. L., Growth of (101) faces of tetragonal lysozyme crystals: measured growth-rate trends. Acta. Crystallogr. D, 1999. 55: p. 1005-1011.
204. Judge, R. A., Jacobs, R. S., Frazier, T., Snell, E. H., and Pusey, M. L., The effect of temperature and solution pH on the nucleation of tetragonal lysozyme crystals. Biophys. J., 1999. 77(3): p. 1585-1593.
205. Li, H. Y., Nadarajah, A., and Pusey, M. L., Determining the molecular-growth mechanisms of protein crystal faces by atomic force microscopy. Acta. Crystallogr. D, 1999. 55: p. 1036-1045.
206. Pusey, M. L. and Nadarajah, A., A model for tetragonal lysozyme crystal nucleation and growth. Cryst. Growth Des., 2002. 2(6): p. 475-483.
207. Gorti, S., Forsythe, E. L., and Pusey, M. L., Kinetic roughening and energetics of tetragonal lysozyme crystal growth. Cryst. Growth Des., 2004. 4(4): p. 691-699.
208. Gorti, S., Forsythe, E. L., and Pusey, M. L., Growth modes and energetics of (101) face lysozyme crystal growth. Cryst. Growth Des., 2005. 5(2): p. 473-482.
209. Gorti, S., Konnert, J., Forsythe, E. L., and Pusey, M. L., Effects of kinetic roughening and liquid-liquid phase transition on lysozyme crystal growth velocities. Cryst. Growth Des., 2005. 5(2): p. 535-545.
210. Muschol, M. and Rosenberger, F., Interactions in undersaturated and supersaturated lysozyme solutions: Static and dynamic light scattering results. J. Chem. Phys., 1995. 103(24): p. 10424-10432.
211. Parmar, A. S., Gottschall, P. E., and Muschol, M., Pre-assembled clusters distort crystal nucleation kinetics in supersaturated lysozyme solutions. Biophys. Chem., 2007. 129(2-3): p. 224-234.
212. Nishimura, S., Fluorescence microscopic study on large higly concentrated domain of hen egg white lysozyme clusters formed by laser trapping, NCTU, Master thesis, 2015.
213. Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc., 2006. 1(6): p. 2876-2890.
214. Greenfield, N. and Fasman, G., Computed Circular-Dichroism Spectra for the Evaluation of Protein Conformation. Biochemistry, 1969. 8(10): p. 4108-4116.
215. Bradshaw, D. S. and Andrews, D. L., Chiral discrimination in optical trapping and manipulation. New J. Phys., 2014. 16. 103021.
216. Nadarajah, A. and Pusey, M. L., Growth mechanism and morphology of tetragonal lysozyme crystals. Acta. Crystallogr. D, 1996. 52: p. 983-996.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊