跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李鈞翔
研究生(外文):Jyun-Siang Li
論文名稱:自行車安全帽新型內襯材料之分析
論文名稱(外文):Analysis of New Liner Material for Bicycle Helmet
指導教授:鄧作樑鄧作樑引用關係林海平林海平引用關係
指導教授(外文):Teng,Tso-LiangLin,Hai-Ping
口試委員:梁卓中徐慶瑜史建中林海平鄧作樑
口試委員(外文):Liang,Cho-ChungHsu,Ching-YuShih,Chien-JongLin,Hai-PingTeng,Tso-Liang
口試日期:2014-07-29
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:133
中文關鍵詞:自行車安全帽安全帽撞擊測試EN 1078標準CPSC標準SNELL B95標準內襯LS-DYNA
外文關鍵詞:Bicycle helmetHelmet impact testEN 1078 standardCPSC standardSNELL B95 standardLinerLS-DYNA
相關次數:
  • 被引用被引用:1
  • 點閱點閱:661
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
自行車在台灣是極為普遍之交通工具,與國人之日常生活關係極為密切。騎乘自行車發生事故時,嚴重的頭部外傷是常見主因之一,每年在美國造成約800人死亡及17,000人住院,在台灣則平均每年有304件頭部外傷案例,故配戴安全帽防止頭部損傷對騎乘自行車是重要的。為評估安全帽吸收撞擊能量的性能,自行車安全帽必須進行相關的撞擊測試,並量測頭模加速度值以評估撞擊吸收的性能,確保安全帽符合安全標準。本論文首先使用LS-DYNA軟體依據歐盟EN 1078:2006、美國CPSC及澳大利亞SNELL B95自行車安全帽標準所規範的條件建構安全帽撞擊測試有限元素模型及模擬分析,並且為確認所建構有限元素模型的正確性,模擬分析結果並與實驗測試結果進行比較,結果顯示所建構的安全帽衝擊測試模型可應用於安全帽安全性能的評估。由於自行車安全帽主要係由內襯吸收大部份的撞擊能量,為設計高防護性的安全帽內襯結構,本論文針對新型內襯材料依據三種標準規範使用數值模擬進行安全帽性能比較,研究結果顯示發泡聚丙烯(EPP)內襯材料安全帽的防護性高於其他形式的內襯。本論文提出的安全帽新型內襯材料顯示具高能量吸收的特性,可提供國內自行車廠商參考,並且所建構的安全帽撞擊測試數值模型可提供為自行車安全帽安全性評估的工具。
Bicycle is extremely popular and provides a very important means of transportation in Taiwan. The biggest threat to bicyclist is the head injury in a bicycle accident. Annually, there were 800 deaths and 17 000 hospitalizations resulting from bicycle accidents in USA. In Taiwan, there were around 304 head injury cases related to bicycle accidents every year. Bicyclists are urged to protect themselves in the event of a bicycle accident by wearing helmets. A bicycle helmet should maintain the desirable performance, which is reducing the head acceleration during impacts. Therefore, bicycle helmets are tested to ensure a minimum level of performance by the helmet for a range of criteria that affect safety. To test the energy absorbing capabilities of helmet, the results of the linear acceleration of the headform is measured during the impact test. Firstly, this study constructs a finite element model of helmet impact test using LS-DYNA software based on the EN 1078:2006、CPSC and SNELL B95 standard. To verify the accuracy of the proposed numerical model to simulate impact test, simulation results are compared with those obtained from experimental tests. The comparison results indicate that the proposed numerical model of impact test has considerable potential for evaluating the performance and safety effectiveness of helmet. During an accident, the main part of a helmet responsible for shock absorption is the energy absorbing liner. To determine a structure of liner that reaches high effective protection, helmet models with new liner material were considered. A comparative study of different liner materials on the impact performance has been performed using FE simulation based on three standards. The analyzed results indicated that the Expanded Polypropylene(EPP) liner material dominates over other liner materials. This new helmet liner material demonstrated high energy-absorbing capabilities. The design guideline obtained in this study may serve as a useful reference for designers on future development of helmet safety technologies. Furthermore, the finite element model of helmet impact test can be useful to evaluate the shock-absorption abilities.
封面內頁
簽名頁
中文摘要…………………………………………………………………………………………………………………iii
ABSTRACT…………………………………………………………………………………………………………………iv
誌謝…………………………………………………………………………………………………………………………vi
目錄………………………………………………………………………………………………………………………viii
圖目錄……………………………………………………………………………………………………………………xii
表目錄……………………………………………………………………………………………………………………xvi

第一章 前言……………………………………………………………………………………………………….……1
1.1 研究動機 ………………………………………………………………………………………………….………1
1.2 文獻回顧 ………………………………………………………………………………………….………………3
1.3 論文目的 ………………………………………………………………………………………………………..10
1.4 論文架構 ………………………………………………………………………………………………………..12
第二章 自行車安全帽標準 …………………………………………………………………………………13
2.1 歐盟 EN 1078:2006標準…………………………………………………………………………………14
2.1.1 安全帽撞擊測試程序…………………………………………………………………………………..15
2.1.2 安全帽撞擊測試規範……………………………………………………………..……………………16
2.1.3 安全帽撞擊測試標準………………………………………………………..…………………………17
2.2 美國CPSC:16 CFR Part 1203標準……………………………………………………………………17
2.2.1 安全帽撞擊測試程序…………………………………………………………………………………..18
2.2.2 安全帽撞擊測試規範 …………………………………………………………………………………18
2.2.3 安全帽撞擊測試標準 …………………………………………………………………………………19
2.3 澳大利亞SNELL B95標準………………………………………………………………………………..20
2.3.1 安全帽撞擊測試程序 …………………………………………………………………………………20
2.3.2 安全帽撞擊測試規範 …………………………………………………………………………………21
2.3.3 安全帽撞擊測試標準 …………………………………………………………………………………22
第三章 自行車安全帽數值分析之理論基礎………………………………………………………..34
3.1 自行車安全帽碰撞之數值分析理論…………………………………………………………….…35
3.1.1 運動方程式…………………………………………………………………………………………………..35
3.1.2 時間積分(Time Integration) …………………………………………………………………………36
3.2 數值分析流程與設定………………………………………………………………………………………37
3.2.1 前處理………………………………………………………………………………………………………….37
3.2.2 LS-DYNA3D主程式處理…………………………………………………………………………………42
3.2.3 後處理………………………………………………………………………………………………………….42
第四章 EN 1078自行車安全帽撞擊測試有限元素模型………………………………………47
4.1 安全帽有限元素模型………………………………………………………………………………………48
4.1.1 內襯………………………………………………………………………………………………………………49
4.1.2 外殼………………………………………………………………………………………………………………49
4.1.3 下巴繫帶………………………………………………………………………………………………………49
4.2 頭模有限元素模型…………………………………………………………………………………….……50
4.3 鋼鉆有限元素模型…………………………………………………………………………………….……50
4.3.1 平鉆(flat anvil) ……………………………………………………………………………………………..51
4.3.2 路邊石鉆(curbstone) …………………………………………………………………………….……..51
4.4 EN 1078標準之安全帽撞擊測試模型…………………………………………………….……….51
4.5 安全帽撞擊測試模擬結果……………………………………………………………….……………..52
4.6 安全帽撞擊測試模型驗證………………………………………………………………………………52
4.6.1 撞擊測試步驟………………………………………………………………………………………………53
4.6.2 撞擊測試結果………………………………………………………………………………………………55
4.6.3 安全帽撞擊測試數值模擬驗證……………………………………………………………………56
第五章 CPSC及SNELL B95自行車安全帽撞擊測試有限元素模型………………………71
5.1 CPSC標準安全帽撞擊測試數值模型………………………………………………………………71
5.1.1 安全帽有限元素模型…………………………………………………………………………………..71
5.1.2 半頭模有限元素模型…………………………………………………………………………………..72
5.1.3 鋼鉆有限元素模型…………………………………………………………………………….………..72
5.1.4 安全帽撞擊測試模型…………………………………………………………………………………..73
5.2 CPSC標準安全帽撞擊測試模擬結果……………………………………………………………….74
5.3 SNELL B95標準安全帽撞擊測試數值模型……………………………………………….……..75
5.3.1 安全帽有限元素模型…………………………………………………………………………………..75
5.3.2 半頭模有限元素模型…………………………………………………………………………………..75
5.3.3 鋼鉆有限元素模型……………………………………………………….……………………………..76
5.3.4 安全帽撞擊測試模型…………………………………………………………………………………..77
5.4 SNELL B95標準安全帽撞擊測試模擬結果…………………….………………………………..78
第六章 自行車安全帽新型內襯材料之分析………………………………………………………..90
6.1 發泡聚丙烯(EPP)內襯材料分析……………………………………………………………………..91
6.1.1 EPP材料特性………………………………………………………….……………………………………..91
6.1.2 EPP內襯材料安全帽撞擊測試模型…………………….………………………………………..91
6.1.3 EPP內襯材料安全帽撞擊測試模擬結果…………………….………………………………..92
6.2 發泡聚氨酯(EPU)內襯材料分析…………………….………………………………………..……..93
6.2.1 EPU材料特性…………………….…………………………………………………………..……………..94
6.2.2 EPU內襯材料安全帽撞擊測試模型……………………………………………………………..94
6.2.3 EPU內襯材料安全帽撞擊測試模擬結果…………………….………………………………..95
6.3 新型內襯材料安全帽撞擊測試模擬結果之比較 …………………….………….………..96
6.3.1 EN1078標準 …………………….…………………………………………………..……………………..97
6.3.2 CPSC標準…………………….……………………………………………………..………………………..97
6.3.3 SNELL B95標準……………………………………………………..………………………………………99
6.3.4 撞擊測試模擬結果之比較…………………………………….………………..…………………100
第七章 結論與未來展望……………………………………………………..……………………………..110
參考文獻……………………………………………………..………………………………………………………113

[1].交通部統計處http://www.motc.gov.tw/ch/home.jsp?id=850&parentpath=0,1&unitid=8
[2].陳祥和、吳志富,”自行車安全帽對騎乘者頭部防護功能之研究(I) ”,國科會成果報告,NSC 98-2221-E-038-006,2010。
[3].BS EN 1078:2006 Helmets for pedal cyclists andfor users of skateboards and roller skates, 2006.
[4].16 CFR Part 1203:Safety Standard for Bicycle Helmet,Consumer Product Safety Commission,Federal Register.Vol.63,No.46 , 1998.
[5].SNELL B95 Standard For Protective Headgear, Revision ,Snell Memorial Foundation, 1998.
[6].H. Kostner, U.W. Stocker,“Improvements of the protective effects of motorcycle helmets based on a mathematical approach”,IRCOBI Biomechanics of Impacts Conference,Bergisch Gladbach,Germany,pp. 195-213, 1998.
[7].P.D. Hopes, B.P. Chinn,“A new look at design and possible protection”,IRCOBI Biomechanics of Impacts Conference,Stockholm, pp. 39-54, 1989.
[8].N.J. Mills, A. Gilchrist,“The effectiveness of foams in bicycle and motorcycle helmets”,Accident Analysis & Prevention 23(2/3): pp. 153-163, 1991.
[9].A.L. Yettran, N.P. M. Godfrey, B.P. Chinn,“Materials for motorcycle crash helmets – a finite element parametric study”, Plastics and Rubber Processing and Applications, 22: pp. 215-221, 1994.
[10].范志銘,”應用數值模擬探討機車安全帽防衝擊之設計原理”,國立中正大學機械工程研究所碩士論文,1996。
[11].張立東,”機車安全帽與頭部配合度及護顎於頭臉部撞擊傷害之研究”,國立成功大學博士論文”,2000。
[12].張嘉原,”建立耦合式衝擊模型以研究機車頭盔的保護效果”,國立中正大學機械工程研究所碩士論文,2000。
[13].V. Kostopoulos, Y.P. Markopoulos, G.Giannopoulos, D.E. Vlachos,“Finite element analysis of impact damage response of composite motorcycle safety helmets”,Elsevier,Composite:Part B 33,pp.99-107 ,2002.
[14].Li-Tung Chang, Guan-Liang Chang, Ji-Zhen Huang, Shyh-Chour Huang, De-Shin Liu and Chih-Han Chang,“Finite element analysis of the effect of motorcycle helmet materials against impact velocity”,Joumal of the Chinese institute of engineers,Vol.26,No.6,pp.835-843,2003.
[15].De-Shin Liu, Chia-Yuan Chang, Chin-Ming Fan, Shu-Lin Hsu,“Influence of environmental factors on energy absorption degradation of polystyrene foam in protective helmets”,Engineering Failure Analysis 10,pp.581–591,2003.
[16].Asiminei A.G., Van der Perre G., Verpoest. I., Goffin J.,“A transient finite element study reveals the importance of the bicycle helmet material properties on head protection during an impact”Proceedings of the IRCOBI Conference, York, United Kingdom, pages 357‐360,2009.
[17].F.M. Shuaeib, A.M.S. Hamouda, S.V. Wong, R.S. Radin Umar and M.M.H. Megat Ahmed,“A New Motorcycle Helmet Liner Material: The finite element simulation and design of experi-ment optimization”,Materials and Design 28, pp. 182-195,2007.
[18].M.A. Forero Rueda, L. Cui、M.D. Gilchrist,“Optimisation of energy absorbing liner for equestrian helmets. Part I: Layered foam liner ”,Journal of Materials and Design, pp. 3405–3413, 30 ,2009.
[19].P.K. Pinnoji, P. Mahajan, N. Bourdet, C. Deck, R. Willinger,“Impact dynamics of metal foam shells for motorcycle helmets: experiments & numerical modelling”,Int J Impact Eng, pp. 274–284, 37 ,2010.
[20].V.Tinard, C.Deck, R.Willinge,“New methodology for improvement of helmet performances during impacts with regards to biomechanical data ”,Mater Des, pp. 79–86, 37 ,2012.
[21].Blanco D.H.、Cernicchi A. and Galvanetto U. “FE Modeling of innovative helmet liners”,In: Proceedings of the 11th international LS-Dyna users conference, Dearborn, MI, USA, pp.9-1–9-12, 6–8 June 2010.
[22].顏重岳,“機車安全帽之有限元素動態模擬”,國立陽明大學醫學工程研究所碩士論文,1995。
[23].王秋華,“機車安全帽護顎之有限元素分析”,國立成功大學醫學工程研究所碩士論文,1998。
[24].Van der Bosch E, Leensen MWBM.,”Development of an improved dummy head for use in helmet certification tests”,In: Proceedings of the ASME symposium on crashworthiness, ASME: Orlando, 2000.
[25].曾文龍,”多體動力人偶應用於腳踏車碰撞之探討”,國立成功大學醫學工程研究所碩士論文,2003。
[26].洪興林,廖培凱,陳世昇,陳永偉,蔡佳宏,李曜宏,機車頭盔之撞擊模擬與分析,第二十四屆中國機械學術研討會,2007。
[27].Afshari A., Rajaai S.M.,”Finite element simulations investigating the role of the helmet in reducing head injuries”,International Journal of Simulation Modelling, Vol. 7, No. 1, 42-51,2008.
[28].洪興林、李曜宏、陳世昇、黃翰仁、陳勇丞,”頭盔墊料受撞擊時之能量吸收力分析及對超輕量強化機車安全帽開發之研究”,第二十五屆中國機械學術研討會,2008。
[29].L. Cui, M.A. Forero Rueda, M.D. Gilchrist,”Optimisation of energy absorbing liner for equestrian helmets. Part II: Functionally graded foam liner”,Journal of Materials and Design, pp. 3414–3419, 30 ,2009.
[30].洪興林、李曜宏、黃翰仁、陳勇丞、廖培凱,”頭盔帽殼之形狀最佳化對機車安全帽撞擊能量吸收力之影響”,第二十六屆中國機械學術研討會,2009。
[31].N.J. Mills, A. Gilchrist,”Finite element analysis of bicycle helmet oblique impacts”,Int J Impact Eng, pp. 1087–1101, 35 ,2008.
[32].龔純、吳忠鳴,”自行車用頭盔跌落仿真分析”,Altair HyperWorks 技術大會,2009。
[33].Cernicchi A., Galvanetto U., Iannucci L.,”Virtual modelling of motorcycle safety helmets: practical problems”,In: Sixth European LS-DYNA user’s conference, Gothenburg, Sweden, 2007.
[34].F. Hansen, M.Dau, N.Deck, C.Feist, K.Madey, S.M. Willinger,” Angular Impact Mitigation system for bicycle helmets to reduce head acceleration and risk of traumatic brain injury”,Elsevier,59, pp.109– 117,2013.
[35].O.Fanta, J.Boucek, D.Hadraba, K.Jelen,” Influence of the front part of the vehicle and cyclist’s sitting position on the severity of head injury in side collision”,Acta of Bioengineering and Biomechanics Original paper Vol. 15, No. 1, 2013.
[36].美國LS-DYNA公司http://www.ls-dyna.com/
[37].自行車安全帽安全研究所http://www.bhsi.org/index.htm
[38].BS EN 960:2006, Headforms for use in the testing of protective helmets,2006.
[39].CADEX安全帽撞擊測試公司http://www.cadexinc.com/index.php
[40].ISO DIS 6220-1983 Headforms for Use in the Testing of Protective Helmets. International Standards Organization, 1983.
[41].LS-DYNA THEORETICAL MANUAL,V971,2007.
[42].S. Y. Soong, R. E. Cohen, M. C. Boyce and W. Chen,“The effects of thermomechanical history and strain rate on antiplasticization of PVC”, Polymer, vol. 49, no. 6, pp. 1440–1443, 2008.
[43].合肥會通材料集團http://wenku.baidu.com/view/d1ba723c67ec102de2bd89ea.html
[44].捷安特自行車 http://www.giantcyclingworld.com/web/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top