跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳博煜
研究生(外文):Bo-Yu Wu
論文名稱:還原氣氛下燒結的二氧化鈦及其微結構分析
論文名稱(外文):Microstructure analysis of TiO2 sintered in reducing atmospheres
指導教授:盧宏陽盧宏陽引用關係
指導教授(外文):Hong-Yang Lu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:96
中文關鍵詞:Magnèli相金紅石氧空缺晶體剪切結構
外文關鍵詞:oxygen vacancycrystallographic shear structuresMagnèli phaserutile
相關次數:
  • 被引用被引用:3
  • 點閱點閱:396
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究將二氧化鈦粉體經乾壓成型後,在1500oC/1hr還原氣氛燒結,並利用X-ray繞射儀 (XRD)、掃描式電子顯微鏡 (SEM)、穿透式電子顯微鏡 (TEM) 分析結晶相與微結構發展。
實驗結果顯示金紅石結構在pO2 = 10-25 atm還原氣氛下燒結時有氧空缺產生,使金紅石結構經滑移後以消除氧空缺達成穩定結構,而形成長程有序的晶體剪切結構,由X-ray繞射鑑定此結構為Magnèli相(Ti8O15),由穿透式電子顯微鏡以2πg‧R等於0或2nπ準則的影像對比分析(12 ̅1)晶體剪切面為α-boundary,位移向量R = 1/2[01 ̅1],最後利用選區繞射圖案 (SADP) 判斷金紅石相與Ti8O15具有晶向關係( [111]TiO2 // [010]Ti8O15及[012]TiO2 // [110]Ti8O15 ),且兩相間的晶向關係可用轉換矩陣來表示。
In this study, the samples are prepared from TiO2 intial powder via die pressing method, and then sintered at 1500oC/1h in reducing atmospheres. The crystalline phase and microstructure of the sintered samples are analyzed using X-ray diffractometry (XRD), scanning and transmission electron microscopy (SEM and TEM).
The experiment results show that rutile readily undergoes some loss of oxygen when it sinters in pO2 = 10-25 atm reducing atmospheres. It slips for removing oxygen vacancies in oder to reach stable structure, and then it forms long-range ordering crystallographic shear structures. These strucutures are identified as Magnèli phase (Ti8O15) by XRD. (12 ̅1) crystallographic shear plane is α-boundary and displacement vector R = 1/2[01 ̅1] by contrast analysis using the 2πg‧R= 0 or 2nπ criteria crystallographically via TEM. Finally the crystallographic orientation relationships of rutile and Ti8O15 ( [111]TiO2 // [010]Ti8O15及[012]TiO2 // [110]Ti8O15 ) are determined by selected area diffraction patterns (SADP) and described by transformation matrices.
摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 X
第一章 前言 1
第二章 文獻回顧 3
2.1 二氧化鈦簡介 3
2.1.1 金紅石晶體結構 (Crystal Structure of Rutile, TiO2) 4
2.1.2 銳鈦礦晶體結構 (Crystal Structure of Anatase, TiO2) 5
2.2 二氧化鈦的平衡相圖 9
2.3 二氧化鈦的缺陷化學 12
2.3.1 本質缺陷 (Intrinsic defects) 13
2.3.2 外質缺陷 (Extrinsic defects) 14
2.4 Magnèli相 17
2.4.1 晶體剪切結構 (Crystallographic Shear Structure) 17
2.5 燒結驅動力 21
2.6 晶域壁 (domain boundary)之條紋對比 22
2.6.1 α-晶界 (α-boundaries) 22
2.6.2 δ-晶界 (δ-boundaries) 23
2.6.3 π-晶界 (π-boundaries) 24
第三章 實驗步驟 26
3.1 二氧化鈦粉末 26
3.2 二氧化鈦試片製備 26
3.2.1 大氣下燒結未摻雜二氧化鈦試片 26
3.2.2 低氧分壓下燒結未摻雜二氧化鈦試片 27
3.3 燒結密度量測 30
3.4氧氣分壓量測 31
3.5 微結構觀察與分析 32
3.5.1 X-ray繞射分析 32
3.5.2 光學顯微鏡 (Optical Microscopy, OM) 33
3.5.4 穿透式電子顯微鏡 (Transmission electron microscopy, TEM) 34
第四章 實驗結果 36
4.1 X-ray繞射分析 36
4.2 顯微結構分析 43
4.2.1 光學顯微鏡觀察 43
4.2.2 掃描式電子顯微鏡觀察 46
4.2.3 穿透式電子顯微鏡顯觀察 52
4.3.2.2 晶體剪切結構之位移向量分析 56
4.3.2.3 晶體剪切面分析 59
4.3.2.4 金紅石相 (TiO2) 與Magnèli相 (Ti8O15) 之晶向關係分析 61
第五章 結果討論 65
5.1 1500oC大氣下燒結之二氧化鈦及其晶相鑑定與微結構分析 65
5.2 1500oC還原氣氛下燒結之二氧化鈦試片觀察 66
5.2.1 Magnèli相 (TinO2n-1)晶相鑑定決定其n值 66
5.2.3 Magnèli相 (TinO2n-1)之顯微結構 67
5.2.4 晶體剪切結構之位移向量R 68
5.2.5 金紅石相 (TiO2) 與Magnèli相 (Ti8O15) 之晶向關係 70
第六章 結論 75
第七章 未來工作 76
參考資料 77
附錄 82
[1] M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumath “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sust. Energ. Rev., 11 [3] 401-25 (2007)
[2] A. Fujishima, and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, 238 37-38 (1972)
[3] D. A. H. Hanaor, and C. C. Sorrell, “Review of the anatase to rutile phase transformation,” J. Master. Sci., 46 [4] 855-74 (2011)
[4] M.W. H. Barsoun, “Fundamentals of Ceramics,” pp. 54-57, Taylor &; Francis, London, UK (2003)
[5] W. G. Wyckoff, “Crystal Structure,” pp. 253-256, John Wiley &; Sons, Inc., New York, USA (1982)
[6] F. Dachille, P. Y. Simons,and R. Roy, “Pressure-temperature studies of anatase, brookite, rutile, and TiO2II” Am. Mineral., 53 1929-39 (1968)
[7] K. Okada, N. Yamamoto, Y. Kameshima, and A. Yasumori, “Effect of Silica Additive on the Anatase-to-Rutile Phase Transition,” J. Am. Ceram. Soc., 84 [7] 1591-96 (2001)
[8] P. I. Gouma, and M. J. Mills, “Review of the anatase to rutile phase transformation,” J. Am. Ceram. Soc., 84 [3] 619-22 (2001)
[9] J. L. Murray and H.A. Wriedt, “The O−Ti (Oxygen-Titanium) system” J. Phase Equilib., 8 [2] 148-65 (1987)
[10] J. C. Jamieson, and B. Olinger, “Pressure-temperature studies of anatase, brookite, rutile, and TiO2II:A disscussion ” Am. Mineral., 54 1477-81 (1968)
[11] Y. M. Chiang, D. BirnieⅢ, and W. D. Kingery, “Physical Ceramics”, pp.15-106, John Wiley &; Sons, Inc., New York, USA (1997)
[12] C. R. A. Catlow, and R. James, “Disorder in TiO2-x,” Proc. B. Soc. Lond. A, 384 157-73 (1982)
[13] T. Bak, J. Nowotny, M. Rekas, and C.C. Sorrell, “Defectchemistry and semiconductingproperties of titanium dioxide: I. Intrinsic electronic equilibrium,” J. Phys. Chem. Solid, 64 [7] 1043-56 (2003)
[14] M. K. Nowotny, L. R. Sheppard, T. Bak, and J. Nowotny, “Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts,” J. Phys. Chem. C, 112 [14] 5275-300 (2008)
[15] K. Hoshino, N. L. Peterson, and C.L. Wiley “Diffusion and point defects in TiO2-X,” J. Phys.Chem. Solids, 46 [12] 1397-1411 (1985)
[16] R.N. Blumenthal, J. Coburn, J. Baukus, and W.M. Hirthe, “Electricalconductivity of nonstoichiometric rutile single crystals from 1000oC to 1500oC,” J. Phys. Chem. Solids, 27 [4] 643-54 (1966)
[17] S. Andersson, B. Collén, U. Kuylenstierna, and A. Magnéli, “Phase Analysis Studies on the Titanium-Oxygen System,” Acta. Chem. Scand., 11 1641-52 (1957)
[18] F. C. Walsh, and R. G. A. Wills, “The continuingdevelopment of Magnéliphasetitanium sub-oxides and Ebonex® electrodes,” Electrochim. Acta, 55 [22] 6342-351 (2010)
[19] S. Siracusano, V. Baglio, C. D’Urso, V. Antonucci, and A.S. Aricò
, “Preparation and characterization of titanium suboxides as conductive supports of IrO2 electrocatalysts for application in SPE electrolysers,” Electrochim. Acta, 54 [26] 6292-299 (2009)
[20] A. R. D. Mohammad, Z. Guangqing, and O. Oleg, “Carbothermal Reduction of Titania in Different Gas Atmospheres,” Metall. Mater. Trans. B, 40 [1] 62-69 (2009)
[21] S.Andersson, and A. D. Wadsley, “Crystallographic shear and diffusion paths in certain higher oxides of Niobium, Tungsten, Molybdenum, and Titanium,” Nature, 211 [5049] 581-83 (1966)
[22] L. A. Bursill and B. G. Hyde, “Crystallographic shear in the higher titanium oxides: Structure, texture, mechanisms and thermodynamics”Prog. Solid St. Ceram., 7 177–253 (1972)
[23] J. W. Edington, Practical Electron Microscopy in Materials Science, pp. 109-204, N. V. Philips, Gloeilampenfabrieken, Eindhoven, The Netherlands, 1976
[24] S. Amelinckx, and J. V. Landuyt, “Contrast effects at planar interfaces,” pp. 68-112 in Electron Microscopy in Mineralogy. Edited by H. R. Wenk, P. E. Champness, J. M. Christie, J. M. Cowley, A. H. Heuer, G. Thomas, and N. J. Tighe, SSpringer-Verlag, Berlin, Germany, 1976
[25] J. W. Edington, Practical Electron Microscopy in Materials Science, pp. 109-204, N. V. Philips, Gloeilampenfabrieken, Eindhoven, The Netherlands, 1976
[26] ASTM C373, “Standard test method for water absorption, bulk density, apparent porosity and apparent specific gravity for fired whiteware products,” Annual Book of ASTM Standards, 15.02, 112-13 (1990)
[27] G. S. Kell, “Density, thermal expansivity, and compressibility of
liquid waterfrom 0 to 150°C: correlations and tables for atmospheric pressure and saturationreviewed and expressed on 1968 temperature scale,” J. Chem. Eng. Data, 20 [1] 97-105 (1975)
[28] S. Andersson, " The Crystal Structure of Ti5O9," Acta. Chem. Scand., 11 [14] 1161-172 (1960)
[29] S. Harada, K. Tanaka, and H. Inui, " Thermoelectric properties and crystallographic shear structures in titanium oxides of the Magnèli phases," J. Appl. Physics., 108 [8] 83703-09 (2010)
[30]L. A. Bursill and B. G. Hyde, "Crystallographic shear in the higher titanium oxides:structure, texture, mechanisms and thermodynamics," Prog. Solid State Chem., 7 [14] 177-253 (1972)
[31]A. Kelly, G. W. Groves, and P. Kidd, Crystallography and crystal defects, revised ed., pp.31528, J. Wiley, 2000
[32]Y. L. Page and P. Strobel, "Structural chemistry of the Magnéli phases TinO2n−1, 4 ≤ n ≤ 9: II. Refinements and structural discussion," J. Solid State Chem., 44 [2] 273-281 (1982)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top