|
1. Chart of the Day http://www.chartoftheday.com/20060915.htm? 2. Carpenter, J. A.; Gibbs, J.; Pesaran, A. A.; Marlino, L. D.; Kelly, K., Road transportation vehicles. Mrs Bulletin 2008, 33, (4), 439-444. 3. Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V., The hydrogen economy. Physics Today 2004, 57, (12), 39-44. 4. Kojima, Y.; Suzuki, K.; Fukumoto, K.; Sasaki, M.; Yamamoto, T.; Kawai, Y.; Hayashi, H., Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. International Journal of Hydrogen Energy 2002, 27, (10), 1029-1034. 5. Kojima, Y.; Suzuki, K.; Kawai, Y., Hydrogen generation from lithium borohydride solution over nano-sized platinum dispersed on LiCoO2. Journal of Power Sources 2006, 155, (2), 325-328. 6. Krishnan, P.; Yang, T. H.; Lee, W. Y.; Kim, C. S., PtRu-LiCoO2 - an efficient catalyst for hydrogen generation from sodium borohydride solutions. Journal of Power Sources 2005, 143, (1-2), 17-23. 7. Liu, Z. L.; Guo, B.; Chan, S. H.; Tang, E. H.; Hong, L., Pt and Ru dispersed on LiCoO2 for hydrogen generation from sodium borohydride solutions. Journal of Power Sources 2008, 176, 306-311. 8. Chen, W.; Ermanoski, I.; Madey, T. E., Decomposition of Ammonia and Hydrogen on Ir Surfaces: Structure Sensitivity and Nanometer-Scale Size Effects. J. Am. Chem. Soc. 2005, 127, (14), 5014-5015. 9. Schlogl, R., Catalytic synthesis of ammonia - A "never-ending story"? Angewandte Chemie-International Edition 2003, 42, (18), 2004-2008. 10. Grant, P. M., Hydrogen lifts off - with a heavy load - The dream of clean, usable energy needs to reflect practical reality. Nature 2003, 424, (6945), 129-130. 11. Schlapbach, L.; Zuttel, A., Hydrogen-storage materials for mobile applications. Nature 2001, 414, (6861), 353-358. 12. Logan, B. E., Extracting hydrogen electricity from renewable resources. Environmental Science & Technology 2004, 38, (9), 160A-167A. 13. Khaselev, O.; Turner, J. A., A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting. Science 1998, 280, (5362), 425-427. 14. Lewis, N. S., Light work with water. Nature 2001, 414, (6864), 589-590. 15. Service, R. F., CHEMISTRY: Catalyst Boosts Hopes for Hydrogen Bonanza. Science 2002, 297, (5590), 2189a-2190. 16. Tan, M. S., Prog. Inorg. Chem. 1994, 41, 21-144. 17. Honda, K.; Fujishima, A., Nature 1972, 238, 37-38. 18. Finklea, H. A., Semiconductor Electrodes. In 1998. 19. Ni, M.; Leung, M. K. H.; Sumathy, K.; Leung, D. Y. C., Potential of renewable hydrogen production for energy supply in Hong Kong. International Journal of Hydrogen Energy 2006, 31, (10), 1401-1412. 20. 美國能源部 http://www.doe.gov/. 21. Delucchi, M. A., Hydrogen Fuel-Cell Vehicles 1992. 22. Chambers, A.; Park, C.; Baker, R. T. K.; Rodriguez, N. M., Hydrogen Storage in Graphite Nanofibers. J. Phys. Chem. B 1998, 102, (22), 4253-4256. 23. Ahn, C. C.; Ye, Y.; Ratnakumar, B. V.; Witham, C.; Bowman, R. C.; Fultz, B., Hydrogen desorption and adsorption measurements on graphite nanofibers. Applied Physics Letters 1998, 73, (23), 3378-3380. 24. Browning, D. J.; Gerrard, M. L.; Lakeman, J. B.; Mellor, I. M.; Mortimer, R. J.; Turpin, M. C., Studies into the storage of hydrogen in carbon nanofibers: Proposal of a possible reaction mechanism. Nano Letters 2002, 2, (3), 201-205. 25. Gupta, B. K.; Srivastava, O. N., Synthesis and hydrogenation behaviour of graphitic nanofibres. International Journal of Hydrogen Energy 2000, 25, (9), 825-830. 26. Gupta, B. K.; Srivastava, O. N., Further studies on microstructural characterization and hydrogenation behaviour of graphitic nanofibres. International Journal of Hydrogen Energy 2001, 26, (8), 857-862. 27. Lueking, A. D.; Pan, L.; Narayanan, D. L.; Clifford, C. E. B., Effect of Expanded Graphite Lattice in Exfoliated Graphite Nanofibers on Hydrogen Storage. J. Phys. Chem. B 2005, 109, (26), 12710-12717. 28. Huang, C. W.; Wu, H. C.; Li, Y. Y., Hydrogen storage in platelet graphite nanofibers. Separation and Purification Technology 2007, 58, 219-223. 29. Danilov, M. O.; Melezhyk, A. V.; Kolbasov, G. Y., Carbon nanofibers as hydrogen adsorbing materials for power sources. Journal of Power Sources 2008, 176, (1), 320-324. 30. Iijima, S., HELICAL MICROTUBULES OF GRAPHITIC CARBON. Nature 1991, 354, (6348), 56-58. 31. Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J., Storage of hydrogen in single-walled carbon nanotubes. Nature 1997, 386, (6623), 377-379. 32. Chen, P.; Wu, X.; Lin, J.; Tan, K. L., High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures. Science 1999, 285, (5424), 91-93. 33. Liu, C.; Fan, Y. Y.; Liu, M.; Cong, H. T.; Cheng, H. M.; Dresselhaus, M. S., Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature. Science 1999, 286, (5442), 1127-1129. 34. Shiraishi, M.; Takenobu, T.; Yamada, A.; Ata, M.; Kataura, H., Hydrogen storage in single-walled carbon nanotube bundles and peapods. Chemical Physics Letters 2002, 358, (3-4), 213-218. 35. Gao, H.; Wu, X. B.; Li, J. T.; Wu, G. T.; Lin, J. Y.; Wu, K.; Xu, D. S., Hydrogen adsorption of open-tipped insufficiently graphitized multiwalled carbon nanotubes. Applied Physics Letters 2003, 83, (16), 3389-3391. 36. 胡子龍, 貯氫材料. 曉園: 2006. 37. Vanvucht, J. H.; Kuijpers, F. A.; Bruning, H. C. A., REVERSIBLE ROOM-TEMPERATURE ABSORPTION OF LARGE QUANTITIES OF HYDROGEN BY INTERMETALLIC COMPOUNDS. Philips Research Reports 1970, 25, (2), 133-&. 38. Pebler, A.; Gulbrans.Ea, THERMOCHEMICAL AND STRUCTURAL ASPECTS OF REACTION OF HYDROGEN WITH ALLOYS AND INTERMETALLIC COMPOUNDS OF ZIRCONIUM. Electrochemical Technology 1966, 4, (5-6), 211-&. 39. Pebler, A.; Gulbrans.Ea, EQUILIBRIUM STUDIES ON SYSTEMS ZRCR2-H2 ZRV2-H2 AND ZRMO2-H2 BETWEEN O DEGREES AND 900 DEGREES C. Transactions of the Metallurgical Society of Aime 1967, 239, (10), 1593-&. 40. Grochala, W.; Edwards, P. P., Thermal Decomposition of the Non-Interstitial Hydrides for the Storage and Production of Hydrogen. Chem. Rev. 2004, 104, (3), 1283-1316. 41. Zuttel, A.; Wenger, P.; Rentsch, S.; Sudan, P.; Mauron, P.; Emmenegger, C., LiBH4 a new hydrogen storage material. Journal of Power Sources 2003, 118, (1-2), 1-7. 42. Bogdanovic, B.; Schwickardi, M., Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. Journal of Alloys and Compounds 1997, 253, 1-9. 43. Schlesinger, H. I.; Brown, H. C.; Finholt, A. E.; Gilbreath, J. R.; Hoekstra, H. R.; Hyde, E. K., Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen. J. Am. Chem. Soc. 1953, 75, (1), 215-219. 44. Holbrook, K. A.; Twist, P. J., HYDROLYSIS OF BOROHYDRIDE ION CATALYSED BY METAL-BORON ALLOYS. Journal of the Chemical Society a -Inorganic Physical Theoretical 1971, (7), 890-&. 45. Amendola, S. C.; Sharp-Goldman, S. L.; Janjua, M. S.; Kelly, M. T.; Petillo, P. J.; Binder, M., An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst. Journal of Power Sources 2000, 85, (2), 186-189. 46. Amendola, S. C.; Sharp-Goldman, S. L.; Janjua, M. S.; Spencer, N. C.; Kelly, M. T.; Petillo, P. J.; Binder, M., A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. International Journal of Hydrogen Energy 2000, 25, (10), 969-975. 47. Xia, Z. T.; Chan, S. H., Feasibility study of hydrogen generation from sodium borohydride solution for micro fuel cell applications. Journal of Power Sources 2005, 152, (1), 46-49. 48. http://www.energy.gov/. 49. 黃鎮江, 燃料電池. 全華書局: 台灣. 50. Kojima, Y.; Haga, T., Recycling process of sodium metaborate to sodium borohydride. International Journal of Hydrogen Energy 2003, 28, (9), 989-993. 51. Li, Z. P.; Liu, B. H.; Arai, K.; Morigazaki, N.; Suda, S., Protide compounds in hydrogen storage systems. Journal of Alloys and Compounds 2003, 356-357, 469-474. 52. Park, E. H.; Uk Jeong, S.; Ho Jung, U.; Kim, S. H.; Lee, J.; Woo Nam, S.; Hoon Lim, T.; Jun Park, Y.; Ho Yu, Y., Recycling of sodium metaborate to borax. International Journal of Hydrogen Energy 2007, 32, (14), 2982-2987. 53. Davis, W. D.; Mason, L. S.; Stegeman, G., The Heats of Formation of Sodium Borohydride, Lithium Borohydride and Lithium Aluminum Hydride. J. Am. Chem. Soc. 1949, 71, (8), 2775-2781. 54. Brown, H. C.; Brown, C. A., New, Highly Active Metal Catalysts for the Hydrolysis of Borohydride. J. Am. Chem. Soc. 1962, 84, (8), 1493-1494. 55. Kojima, Y.; Kawai, Y.; Nakanishi, H.; Matsumoto, S., Compressed hydrogen generation using chemical hydride. Journal of Power Sources 2004, 135, (1-2), 36-41. 56. Liu, R. S.; Lai, H. C.; Bagkar, N. C.; Kuo, H. T.; Chen, H. M.; Lee, J. F.; Chung, H. J.; Chang, S. M.; Weng, B. J., Investigation on Mechanism of Catalysis by Pt-LiCoO2 for Hydrolysis of Sodium Borohydride Using X-ray Absorption. J. Phys. Chem. B 2008, 112, (16), 4870-4875. 57. 王瑜 高等無機課程 94 年 58. 國家同步輻射中心, 同步加速器光源. 2005 年4 月. 59. 陳錦明, 科儀新知 1994, 82, 50. 60. 藍啟仁, 儀器總覽. 台北市, 民87. 61. 杜正恭, 儀器總覽. 1998. 62. 賴泓均, 奈米白金/金屬氧化物複合觸媒催化化學氫反應研究 臺灣大學化學 研究所: 台北, 民95. 63. Bock, C.; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R., Size-Selected Synthesis of PtRu Nano-Catalysts: Reaction and Size Control Mechanism. J. Am. Chem. Soc. 2004, 126, (25), 8028-8037. 64. Rojas, T. C.; Sanchez-Lopez, J. C.; Sayagues, M. J.; Reddy, E. P.; Caballero, A.; Fernandez, A., Preparation, characterization and thermal evolution of oxygen passivated nanocrystalline cobalt. Journal of Materials Chemistry 1999, 9, (4), 1011-1017. 65. Huffman, G. P.; Shah, N.; Zhao, J. M.; Huggins, F. E.; Hoost, T. E.; Halvorsen, S.; Goodwin, J. G., IN-SITU XAFS INVESTIGATION OF K-PROMOTED COCATALYSTS. Journal of Catalysis 1995, 151, (1), 17-25. 66. Liang, Y. M.; Zhang, H. M.; Zhong, H. X.; Zhu, X. B.; Tian, Z. Q.; Xu, D. Y.; Yi, B. L., Preparation and characterization of carbon-supported PtRuIr catalyst with excellent CO-tolerant performance for proton-exchange membrane fuel cells. Journal of Catalysis 2006, 238, (2), 468-476. 67. Liao, S. J.; Holmes, K. A.; Tsaprailis, H.; Birss, V. I., High performance PtRulr catalysts supported on carbon nanotubes for the anodic oxidation of methanol. Journal of the American Chemical Society 2006, 128, (11), 3504-3505. 68. Wilson, O. M.; Knecht, M. R.; Garcia-Martinez, J. C.; Crooks, R. M., Effect of Pd Nanoparticle Size on the Catalytic Hydrogenation of Allyl Alcohol. J. Am. Chem. Soc. 2006, 128, (14), 4510-4511. 69. Bezemer, G. L.; Bitter, J. H.; Kuipers, H. P. C. E.; Oosterbeek, H.; Holewijn, J. E.; Xu, X.; Kapteijn, F.; vanDillen, A. J.; deJong, K. P., Cobalt Particle Size Effects in the Fischer-Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts. J. Am. Chem. Soc. 2006, 128, (12), 3956-3964. 70. Narayanan, R.; El-Sayed, M. A., Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution. Nano Lett. 2004, 4, (7), 1343-1348. 71. Ye, W.; Zhang, H.; Xu, D.; Ma, L.; Yi, B., Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst. Journal of Power Sources 2007, 164, (2), 544-548. 72. Pena-Alonso, R.; Sicurelli, A.; Callone, E.; Carturan, G.; Raj, R., A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells. Journal of Power Sources 2007, 165, (1), 315-323. 73. Levy, A.; Brown, J. B.; Lyons, C. J., A PRACTICAL CONTROLLED SOURCE OF HYDROGEN - CATALYZED HYDROLYSIS OF SODIUM BOROHYDRIDE. Industrial and Engineering Chemistry 1960, 52, (3), 211-214. 74. Liu, B. H.; Li, Z. P.; Suda, S., Nickel- and cobalt-based catalysts for hydrogen generation by hydrolysis of borohydride. Journal of Alloys and Compounds 2006, 415, (1-2), 288-293.
|