跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 04:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭恆嘉
研究生(外文):Heng-Chia Kuo
論文名稱:硼氫化鈉產氫之奈米白金/氧化物載體觸媒合成與特性研究
論文名稱(外文):Synthesis and Investigation of Nano-sized Platinum/Metal Oxide Catalystin Hydrogen Generation from Sodium-borohydride Solution Hydrolysis
指導教授:劉如熹劉如熹引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:91
中文關鍵詞:硼氫化鈉產氫系統鉑-四氧化三鈷
外文關鍵詞:sodium borohydridehydrogen generationcatalyst
相關次數:
  • 被引用被引用:1
  • 點閱點閱:405
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對於氫能經濟而言,目標之ㄧ即是用以取代汽油,成為運輸工具之最佳燃
料。其中氫氣來源與貯氫材料開發乃為將氫能應用於運輸工具之關鍵技術。硼氫
化鈉乃為氫能經濟重要之材料,其可穩定存在鹼性水溶液二至三個月,氫氣重量
密度高達10.8 wt.%,可克服貯氫材料單位重量中氫氣含量過低之問題;亦可藉
由觸媒水解即時產生氫氣,克服氫氣輸出之問題,且可藉由特定觸媒提升氫氣生
成速率,故乃為極重要氫能經濟之材料。
本研究乃著重於硼氫化鈉產氫之奈米金屬/氧化物載體觸媒之合成與特性研
究,探討白金與各類金屬氧化物為載體合成觸媒對於硼氫化鈉產生氫氣速率之影
響。其中白金扮演傳導電子之角色;載體方面,易接受電子能力將大幅影響觸媒
活性;能力高者,如鈷之氧化物,觸媒活性極佳;能力低者,觸媒活性差。以鈷
之氧化物為載體之觸媒活性極高,然而經一次產氫後觸媒結構崩解,導致觸媒活
性大幅下降。而研究結果亦顯示可以鈷金屬為硼氫化鈉產氫觸媒,此舉將有助於
開發更經濟之硼氫化鈉燃料電池系統。
本研究藉由多種分析技術探討硼氫化鈉水解產氫反應特性與觸媒結構探
討。分析方法包括:以X光粉末繞射法(X-ray diffraction;XRD) 鑑定觸媒晶體結
構;以穿透式電子顯微鏡(transmission electron microscopy;TEM)進行樣品形貌
與粒徑大小分布分析;以X光吸收光譜(X-ray absorption spectroscopy;XAS)之X
光吸收邊緣結構(X-ray absorption near edge structure;XANES)鑑定樣品元素之價
數與電子結構; 以感應耦合電漿原子發射光譜儀(inductively coupled
plasma-atomic emission spectrometer;ICP-AES)鑑定白金含量。
Hydrogen energy is being considered as an alternative energy source of the future
because of its advantages in overcoming the ongoing energy crisis. A hydrogen
economy is proposed to solve the growing shortage of easily obtainable fossil fuel,
and global warming due to the emission of greenhouse gases to the atmosphere. The
most common challenge for hydrogen fuel economy is the storage of hydrogen and
chemical hydrides are the best substitute of hydrogen storage system. One of the most
commonly used metal hydride is sodium borohydride, which has a storage density of
10.8 wt % for hydrogen and can be used in combination to yield practical generation
system with proper engineering. The alkaline hydrolysis of sodium borohydride is
accelerated by using a suitable catalyst such as platinum or ruthenium for achieving
higher efficiencies for hydrogen generation. The objective of the present dissertation
is to study the role of different heterogeneous catalysts to produce hydrogen from
alkaline solutions of sodium borohydride and to understand the kinetics of hydrogen
generation. The Pt supported on Co3O4 (Pt/Co3O4) was synthesized by impregnation
method using H2PtCl6 as precursor for Pt and different ratio of Co3O4/CoO as
precursors for support. During the synthesis process, the polyol reduction was used to
confirm the oxidation of cobalt (II) oxide by H2PtCl6. It was observed that different
Pt/Co3O4 catalysts show better hydrogen generation efficiencies than the well known
Pt/LiCoO2 catalyst since platinum in Pt/Co3O4 has more 5d band vacancies. The
hydrogen generation activity by using Pt/Co3O4 was decayed after first cycle,
however, it become stable after repeated cycles and can release hydrogen for longer
period. Among the different metal oxides used as a support, the cobalt oxide catalyst
has shown the best hydrogen generation activity since the catalyst has high electron
accepting activity from sodium borohydride. These results are also supported by XRD
measurements of catalysts before and after the hydrogen generation.
目錄.............................................................................................................................Ⅰ
圖目錄..........................................................................................................................Ⅳ
表目錄..................................................................................................................... Ⅷ
第一章 緒論................................................................................................................1
1.1. 氫能之介紹....................................................................................................1
1.1.1. 石化能源之歷史........................................................................................1
1.1.2. 氫能經濟與氫能之重要性........................................................................2
1.2. 製氫技術簡介................................................................................................5
1.2.1. 光伏達電池(Photovoltaic Cell)分解水產氫3, 13-18...................................5
1.2.2. 太陽熱化學循環法(Solar Thermochemical Cycles)3, 19 ...........................6
1.2.3. 生物觀點產氫3 .........................................................................................7
1.3. 貯氫系統發展之研究....................................................................................8
1.3.1. 高壓貯氫方式............................................................................................9
1.3.2. 液化貯氫....................................................................................................9
1.3.3. 碳材料......................................................................................................10
1.3.3.1. 活性碳..............................................................................................10
1.3.3.2. 奈米碳纖維......................................................................................10
1.3.3.3. 奈米碳管..........................................................................................11
1.3.4. 金屬(合金)貯氫材料...............................................................................12
1.3.4.1. AB5 型:(A 代表稀土金屬、B 代表其他金屬)............................12
1.3.4.2. AB2 型..............................................................................................13
1.3.4.3. AB 型...............................................................................................13
1.3.4.4. A2B 型..............................................................................................13
1.3.5. 複合氫化物與化學氫貯氫材料..............................................................14
1.3.5.1. 複合氫化物與化學氫之特性與重要性研究..................................14
1.3.5.2. 複合氫化物貯氫材料......................................................................17
1.3.5.3. 化學氫貯氫材料與硼氫化鈉之重要性..........................................17
1.3.6. 綜合比較..................................................................................................19
1.4. 文獻回顧......................................................................................................20
1.5. 本研究目的..................................................................................................22
第二章 實驗步驟與儀器分析原理.........................................................................24
2.1. 化學藥品......................................................................................................24
2.2. 產氫觸媒製備方式與產氫實驗之配置......................................................25
2.2.1. 產氫觸媒製備方式..................................................................................25
2.2.2. 產氫實驗之配置......................................................................................27
2.3. 樣品之鑑定與分析......................................................................................28
2.3.1. X 光粉末繞射儀(X-ray Powder Diffractometer;XRD) ........................28
2.3.2. 同步輻射光源..........................................................................................31
2.3.3. X 光吸收光譜簡介..................................................................................32
2.3.4. 感應耦合電漿-原子發射光譜儀 (Inductively Coupled Plasma-Atomic Emission Spectrometer;ICP-AES).....................................................................34
第三章 結果與討論...................................................................................................39
3.1. 氧化鈷與四氧化三鈷為載體材料合成之觸媒研究..................................39
3.1.1. 金屬材料與金屬氧化物活性之研究......................................................39
3.1.2. 中科院提供鈷之氧化混合物載體材料觸媒之研究..............................41
3.1.3. 不同比例氧化鈷與四氧化三鈷為載體材料合成觸媒之研究..............47
3.1.3.1. 不同比例載體前驅物合成觸媒之晶體結構鑑定與機制之研究..47
3.1.3.2. 不同比例載體前驅物合成觸媒之活性研究..................................54
3.1.3.3. 多次產氫鉑-四氧化三鈷觸媒之研究............................................55
3.1.3.3.1. 多次產氫觸媒晶體結構分析......................................................55
3.1.3.3.2. 多次產氫觸媒之電子結構分析..................................................58
3.1.3.3.3. 多次產氫觸媒穿透式電子顯微鏡分析......................................62
3.1.3.3.4. 多次產氫觸媒產氫活性分析......................................................65
3.1.4. 鉑-四氧化三鈷(載體前驅物為四氧化三鈷)觸媒反應動力學研究.....67
3.1.4.1. 鉑-四氧化三鈷與四氧化三鈷動力學研究....................................67
3.1.4.2. 硼氫化鈉濃度之影響......................................................................69
3.1.4.3. 白金含浸量之動力學研究..............................................................70
3.1.5. 活性鉑-四氧化三鈷與鉑-鈷酸鋰觸媒產氫活性研究...........................71
3.1.5.1. 白金5d 能帶空缺對觸媒活性之影響............................................71
3.1.5.2. BET 表面積對觸媒活性之影響.....................................................74
3.2. 不同載體材料為前驅物合成之觸媒研究..................................................75
3.2.1. 各類觸媒產氫活性比較..........................................................................75
3.2.2. 各類觸媒之結構分析..............................................................................76
3.2.3. 觸媒活性之研究......................................................................................81
3.2.3.1. 白金含浸量之研究..........................................................................81
3.2.3.2. 觸媒載體接受電子難易之探討......................................................82
3.2.3.3. 中等活性觸媒之探討......................................................................83
3.2.3.4. BET 表面積之影響研究.................................................................84
3.2.3.5. 觸媒電性對催化活性之研究..........................................................85
3.2.3.6. 活性因素之結論..............................................................................85
第四章 結論...............................................................................................................86
參考文獻.....................................................................................................................88
1. Chart of the Day http://www.chartoftheday.com/20060915.htm?
2. Carpenter, J. A.; Gibbs, J.; Pesaran, A. A.; Marlino, L. D.; Kelly, K., Road
transportation vehicles. Mrs Bulletin 2008, 33, (4), 439-444.
3. Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V., The hydrogen economy.
Physics Today 2004, 57, (12), 39-44.
4. Kojima, Y.; Suzuki, K.; Fukumoto, K.; Sasaki, M.; Yamamoto, T.; Kawai, Y.;
Hayashi, H., Hydrogen generation using sodium borohydride solution and metal catalyst
coated on metal oxide. International Journal of Hydrogen Energy 2002, 27, (10),
1029-1034.
5. Kojima, Y.; Suzuki, K.; Kawai, Y., Hydrogen generation from lithium borohydride
solution over nano-sized platinum dispersed on LiCoO2. Journal of Power Sources
2006, 155, (2), 325-328.
6. Krishnan, P.; Yang, T. H.; Lee, W. Y.; Kim, C. S., PtRu-LiCoO2 - an efficient
catalyst for hydrogen generation from sodium borohydride solutions. Journal of Power
Sources 2005, 143, (1-2), 17-23.
7. Liu, Z. L.; Guo, B.; Chan, S. H.; Tang, E. H.; Hong, L., Pt and Ru dispersed on
LiCoO2 for hydrogen generation from sodium borohydride solutions. Journal of Power
Sources 2008, 176, 306-311.
8. Chen, W.; Ermanoski, I.; Madey, T. E., Decomposition of Ammonia and Hydrogen
on Ir Surfaces: Structure Sensitivity and Nanometer-Scale Size Effects. J. Am. Chem.
Soc. 2005, 127, (14), 5014-5015.
9. Schlogl, R., Catalytic synthesis of ammonia - A "never-ending story"? Angewandte
Chemie-International Edition 2003, 42, (18), 2004-2008.
10. Grant, P. M., Hydrogen lifts off - with a heavy load - The dream of clean, usable
energy needs to reflect practical reality. Nature 2003, 424, (6945), 129-130.
11. Schlapbach, L.; Zuttel, A., Hydrogen-storage materials for mobile applications.
Nature 2001, 414, (6861), 353-358.
12. Logan, B. E., Extracting hydrogen electricity from renewable resources.
Environmental Science & Technology 2004, 38, (9), 160A-167A.
13. Khaselev, O.; Turner, J. A., A Monolithic Photovoltaic-Photoelectrochemical
Device for Hydrogen Production via Water Splitting. Science 1998, 280, (5362),
425-427.
14. Lewis, N. S., Light work with water. Nature 2001, 414, (6864), 589-590.
15. Service, R. F., CHEMISTRY: Catalyst Boosts Hopes for Hydrogen Bonanza.
Science 2002, 297, (5590), 2189a-2190.
16. Tan, M. S., Prog. Inorg. Chem. 1994, 41, 21-144.
17. Honda, K.; Fujishima, A., Nature 1972, 238, 37-38.
18. Finklea, H. A., Semiconductor Electrodes. In 1998.
19. Ni, M.; Leung, M. K. H.; Sumathy, K.; Leung, D. Y. C., Potential of renewable
hydrogen production for energy supply in Hong Kong. International Journal of
Hydrogen Energy 2006, 31, (10), 1401-1412.
20. 美國能源部 http://www.doe.gov/.
21. Delucchi, M. A., Hydrogen Fuel-Cell Vehicles 1992.
22. Chambers, A.; Park, C.; Baker, R. T. K.; Rodriguez, N. M., Hydrogen Storage in
Graphite Nanofibers. J. Phys. Chem. B 1998, 102, (22), 4253-4256.
23. Ahn, C. C.; Ye, Y.; Ratnakumar, B. V.; Witham, C.; Bowman, R. C.; Fultz, B.,
Hydrogen desorption and adsorption measurements on graphite nanofibers. Applied
Physics Letters 1998, 73, (23), 3378-3380.
24. Browning, D. J.; Gerrard, M. L.; Lakeman, J. B.; Mellor, I. M.; Mortimer, R. J.;
Turpin, M. C., Studies into the storage of hydrogen in carbon nanofibers: Proposal of a
possible reaction mechanism. Nano Letters 2002, 2, (3), 201-205.
25. Gupta, B. K.; Srivastava, O. N., Synthesis and hydrogenation behaviour of
graphitic nanofibres. International Journal of Hydrogen Energy 2000, 25, (9), 825-830.
26. Gupta, B. K.; Srivastava, O. N., Further studies on microstructural characterization
and hydrogenation behaviour of graphitic nanofibres. International Journal of
Hydrogen Energy 2001, 26, (8), 857-862.
27. Lueking, A. D.; Pan, L.; Narayanan, D. L.; Clifford, C. E. B., Effect of Expanded
Graphite Lattice in Exfoliated Graphite Nanofibers on Hydrogen Storage. J. Phys. Chem.
B 2005, 109, (26), 12710-12717.
28. Huang, C. W.; Wu, H. C.; Li, Y. Y., Hydrogen storage in platelet graphite
nanofibers. Separation and Purification Technology 2007, 58, 219-223.
29. Danilov, M. O.; Melezhyk, A. V.; Kolbasov, G. Y., Carbon nanofibers as hydrogen
adsorbing materials for power sources. Journal of Power Sources 2008, 176, (1),
320-324.
30. Iijima, S., HELICAL MICROTUBULES OF GRAPHITIC CARBON. Nature
1991, 354, (6348), 56-58.
31. Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben,
M. J., Storage of hydrogen in single-walled carbon nanotubes. Nature 1997, 386, (6623),
377-379.
32. Chen, P.; Wu, X.; Lin, J.; Tan, K. L., High H2 Uptake by Alkali-Doped Carbon
Nanotubes Under Ambient Pressure and Moderate Temperatures. Science 1999, 285,
(5424), 91-93.
33. Liu, C.; Fan, Y. Y.; Liu, M.; Cong, H. T.; Cheng, H. M.; Dresselhaus, M. S.,
Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature. Science
1999, 286, (5442), 1127-1129.
34. Shiraishi, M.; Takenobu, T.; Yamada, A.; Ata, M.; Kataura, H., Hydrogen storage in
single-walled carbon nanotube bundles and peapods. Chemical Physics Letters 2002,
358, (3-4), 213-218.
35. Gao, H.; Wu, X. B.; Li, J. T.; Wu, G. T.; Lin, J. Y.; Wu, K.; Xu, D. S., Hydrogen
adsorption of open-tipped insufficiently graphitized multiwalled carbon nanotubes.
Applied Physics Letters 2003, 83, (16), 3389-3391.
36. 胡子龍, 貯氫材料. 曉園: 2006.
37. Vanvucht, J. H.; Kuijpers, F. A.; Bruning, H. C. A., REVERSIBLE
ROOM-TEMPERATURE ABSORPTION OF LARGE QUANTITIES OF
HYDROGEN BY INTERMETALLIC COMPOUNDS. Philips Research Reports 1970,
25, (2), 133-&.
38. Pebler, A.; Gulbrans.Ea, THERMOCHEMICAL AND STRUCTURAL ASPECTS
OF REACTION OF HYDROGEN WITH ALLOYS AND INTERMETALLIC
COMPOUNDS OF ZIRCONIUM. Electrochemical Technology 1966, 4, (5-6), 211-&.
39. Pebler, A.; Gulbrans.Ea, EQUILIBRIUM STUDIES ON SYSTEMS ZRCR2-H2
ZRV2-H2 AND ZRMO2-H2 BETWEEN O DEGREES AND 900 DEGREES C.
Transactions of the Metallurgical Society of Aime 1967, 239, (10), 1593-&.
40. Grochala, W.; Edwards, P. P., Thermal Decomposition of the Non-Interstitial
Hydrides for the Storage and Production of Hydrogen. Chem. Rev. 2004, 104, (3),
1283-1316.
41. Zuttel, A.; Wenger, P.; Rentsch, S.; Sudan, P.; Mauron, P.; Emmenegger, C., LiBH4
a new hydrogen storage material. Journal of Power Sources 2003, 118, (1-2), 1-7.
42. Bogdanovic, B.; Schwickardi, M., Ti-doped alkali metal aluminium hydrides as
potential novel reversible hydrogen storage materials. Journal of Alloys and Compounds
1997, 253, 1-9.
43. Schlesinger, H. I.; Brown, H. C.; Finholt, A. E.; Gilbreath, J. R.; Hoekstra, H. R.;
Hyde, E. K., Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and
in the Generation of Hydrogen. J. Am. Chem. Soc. 1953, 75, (1), 215-219.
44. Holbrook, K. A.; Twist, P. J., HYDROLYSIS OF BOROHYDRIDE ION
CATALYSED BY METAL-BORON ALLOYS. Journal of the Chemical Society a
-Inorganic Physical Theoretical 1971, (7), 890-&.
45. Amendola, S. C.; Sharp-Goldman, S. L.; Janjua, M. S.; Kelly, M. T.; Petillo, P. J.;
Binder, M., An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions
and Ru catalyst. Journal of Power Sources 2000, 85, (2), 186-189.
46. Amendola, S. C.; Sharp-Goldman, S. L.; Janjua, M. S.; Spencer, N. C.; Kelly, M.
T.; Petillo, P. J.; Binder, M., A safe, portable, hydrogen gas generator using aqueous
borohydride solution and Ru catalyst. International Journal of Hydrogen Energy 2000,
25, (10), 969-975.
47. Xia, Z. T.; Chan, S. H., Feasibility study of hydrogen generation from sodium
borohydride solution for micro fuel cell applications. Journal of Power Sources 2005,
152, (1), 46-49.
48. http://www.energy.gov/.
49. 黃鎮江, 燃料電池. 全華書局: 台灣.
50. Kojima, Y.; Haga, T., Recycling process of sodium metaborate to sodium
borohydride. International Journal of Hydrogen Energy 2003, 28, (9), 989-993.
51. Li, Z. P.; Liu, B. H.; Arai, K.; Morigazaki, N.; Suda, S., Protide compounds in
hydrogen storage systems. Journal of Alloys and Compounds 2003, 356-357, 469-474.
52. Park, E. H.; Uk Jeong, S.; Ho Jung, U.; Kim, S. H.; Lee, J.; Woo Nam, S.; Hoon
Lim, T.; Jun Park, Y.; Ho Yu, Y., Recycling of sodium metaborate to borax.
International Journal of Hydrogen Energy 2007, 32, (14), 2982-2987.
53. Davis, W. D.; Mason, L. S.; Stegeman, G., The Heats of Formation of Sodium
Borohydride, Lithium Borohydride and Lithium Aluminum Hydride. J. Am. Chem. Soc.
1949, 71, (8), 2775-2781.
54. Brown, H. C.; Brown, C. A., New, Highly Active Metal Catalysts for the
Hydrolysis of Borohydride. J. Am. Chem. Soc. 1962, 84, (8), 1493-1494.
55. Kojima, Y.; Kawai, Y.; Nakanishi, H.; Matsumoto, S., Compressed hydrogen
generation using chemical hydride. Journal of Power Sources 2004, 135, (1-2), 36-41.
56. Liu, R. S.; Lai, H. C.; Bagkar, N. C.; Kuo, H. T.; Chen, H. M.; Lee, J. F.; Chung, H.
J.; Chang, S. M.; Weng, B. J., Investigation on Mechanism of Catalysis by Pt-LiCoO2
for Hydrolysis of Sodium Borohydride Using X-ray Absorption. J. Phys. Chem. B 2008,
112, (16), 4870-4875.
57. 王瑜 高等無機課程 94 年
58. 國家同步輻射中心, 同步加速器光源. 2005 年4 月.
59. 陳錦明, 科儀新知 1994, 82, 50.
60. 藍啟仁, 儀器總覽. 台北市, 民87.
61. 杜正恭, 儀器總覽. 1998.
62. 賴泓均, 奈米白金/金屬氧化物複合觸媒催化化學氫反應研究 臺灣大學化學
研究所: 台北, 民95.
63. Bock, C.; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R.,
Size-Selected Synthesis of PtRu Nano-Catalysts: Reaction and Size Control Mechanism.
J. Am. Chem. Soc. 2004, 126, (25), 8028-8037.
64. Rojas, T. C.; Sanchez-Lopez, J. C.; Sayagues, M. J.; Reddy, E. P.; Caballero, A.;
Fernandez, A., Preparation, characterization and thermal evolution of oxygen passivated
nanocrystalline cobalt. Journal of Materials Chemistry 1999, 9, (4), 1011-1017.
65. Huffman, G. P.; Shah, N.; Zhao, J. M.; Huggins, F. E.; Hoost, T. E.; Halvorsen, S.;
Goodwin, J. G., IN-SITU XAFS INVESTIGATION OF K-PROMOTED COCATALYSTS. Journal of Catalysis 1995, 151, (1), 17-25.
66. Liang, Y. M.; Zhang, H. M.; Zhong, H. X.; Zhu, X. B.; Tian, Z. Q.; Xu, D. Y.; Yi, B.
L., Preparation and characterization of carbon-supported PtRuIr catalyst with excellent
CO-tolerant performance for proton-exchange membrane fuel cells. Journal of Catalysis
2006, 238, (2), 468-476.
67. Liao, S. J.; Holmes, K. A.; Tsaprailis, H.; Birss, V. I., High performance PtRulr
catalysts supported on carbon nanotubes for the anodic oxidation of methanol. Journal
of the American Chemical Society 2006, 128, (11), 3504-3505.
68. Wilson, O. M.; Knecht, M. R.; Garcia-Martinez, J. C.; Crooks, R. M., Effect of Pd
Nanoparticle Size on the Catalytic Hydrogenation of Allyl Alcohol. J. Am. Chem. Soc.
2006, 128, (14), 4510-4511.
69. Bezemer, G. L.; Bitter, J. H.; Kuipers, H. P. C. E.; Oosterbeek, H.; Holewijn, J. E.;
Xu, X.; Kapteijn, F.; vanDillen, A. J.; deJong, K. P., Cobalt Particle Size Effects in the
Fischer-Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts. J. Am.
Chem. Soc. 2006, 128, (12), 3956-3964.
70. Narayanan, R.; El-Sayed, M. A., Shape-Dependent Catalytic Activity of Platinum
Nanoparticles in Colloidal Solution. Nano Lett. 2004, 4, (7), 1343-1348.
71. Ye, W.; Zhang, H.; Xu, D.; Ma, L.; Yi, B., Hydrogen generation utilizing alkaline
sodium borohydride solution and supported cobalt catalyst. Journal of Power Sources
2007, 164, (2), 544-548.
72. Pena-Alonso, R.; Sicurelli, A.; Callone, E.; Carturan, G.; Raj, R., A picoscale
catalyst for hydrogen generation from NaBH4 for fuel cells. Journal of Power Sources
2007, 165, (1), 315-323.
73. Levy, A.; Brown, J. B.; Lyons, C. J., A PRACTICAL CONTROLLED SOURCE
OF HYDROGEN - CATALYZED HYDROLYSIS OF SODIUM BOROHYDRIDE.
Industrial and Engineering Chemistry 1960, 52, (3), 211-214.
74. Liu, B. H.; Li, Z. P.; Suda, S., Nickel- and cobalt-based catalysts for hydrogen
generation by hydrolysis of borohydride. Journal of Alloys and Compounds 2006, 415,
(1-2), 288-293.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊