跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 05:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃煒裕
研究生(外文):Wei-Yu Huang
論文名稱:包含水難溶性藥物之固態化自發性微乳化遞藥系統之處方開發與評估
論文名稱(外文):Formulation Development and Evaluation of Solidified Self-Microemulsifying Drug Delivery Systems Containing a Poorly Water-Soluble Drug
指導教授:許明照許明照引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:103
中文關鍵詞:微乳劑固型劑自發性微乳化遞藥系統奈米晶體
外文關鍵詞:microemulsionssolid carriersSMEDDSnanocrystals
相關次數:
  • 被引用被引用:0
  • 點閱點閱:532
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自發性微乳化遞藥系統(SMEDDSs)在胃腸道中接觸水相並且靠著輕微的攪動或蠕動後,會自然乳化成為澄清且均勻的微胞流體。自發性微乳化系統通常由油相、界面活性劑、助界面活性劑以及藥物所組成,相對於水難溶性化合物之傳統劑型是個具有發展潛力的替代劑型。在本研究中,fenofibrate為親脂性模式藥物,溶於正乳酸丁酯再以聚山梨酸酯(Tween 20與Tween 80)以及一些醇類(乙醇,正丙醇與聚乙二醇)混合後,以媒液(去離子水或醣類/固型劑水溶液)進行控速稀釋,再將溶液真空冷凍乾燥。初步目的為利用擬三成分相圖建立處方,然後分析凍乾前後系統粒子的大小,期望重行分散於水相後還有良好的微小粒徑(奈米層級),之後再評估並調整製程參數。
很多的藥學乾燥技術皆可被應用於製備固態化微乳劑。在乾燥過程前會先加入上述的親水性固型劑(抗凍劑),因為它能藉由立體障礙及斥力來防止粒子或微胞間的大量凝集,並且能維持原本液態自發性微乳化劑型的乳化效能。本實驗所用到的固型劑為lactose, mannitol, glucose, sucrose and trehalose。發展固態劑型主要的難度在於如何確保真空冷凍乾燥後粒子重行分散的安定性。因為凍乾後粒子彼此凝集的關係,許多固化系統的粒徑皆大於2μm,而當以0.5%(w/w) sodium lauryl sulfate(SLS)溶液進行分散,粒徑可以在凍乾後30分鐘到90分鐘維持穩定以及在許多實驗組中維持在500nm~2μm的粒徑範圍內。這在50%固型劑/Ethanol/Tween 80組別中為最明顯,平均從水相中的4800nm粒徑下降至SLS溶液中的1700nm粒徑左右,而該組中以Lactose當固型劑更能使各處方平均粒徑減至900nm ~ 1000nm。

最後還進行處方晶型的研究。而從上述研究中建立固態化水難溶性藥物之自發性微乳化遞藥系統的最佳製備方式,可在往後將此可稀釋的遞藥系統以奈米級包覆材質包覆的技術提供試驗基礎與模式。
Self-microemulsifying drug delivery systems (SMEDDSs), which can be self-emulsified into a translucent and isotropic fluid in aqueous medium under gentle digestive motility in the gastrointestinal tract, usually consisting of a mixture of oils, surfactants, cosurfactants and drugs, represent a promising alternative to traditional formulations of poorly water-soluble Compounds. In the present study, a model lipophilic drug, Fenofibrate, is formulated in n-butyl L-lactate, polysorbates (Tween 20 and Tween 80) and a number of alcohols (ethanol, 1-propanol and PEG 600) as well, then diluted with mediums (dH2O or solution of carbohydrates/solid carriers)at certain rate prior to the freeze drying process. Our initiative objective is to construct pseudo-ternary diagram phase for formulations and analyze the particle size of SMEDDS before/after lyophilization in hope of the smaller particle size (nanoscale) redispersed in aqueous phases following drying, then turn to evaluate the systems and adjust the procedural parameters.

A plenty of drying technology had been employed to prepare dry microemulsions by removing water from an ordinary microemulsions containing a water soluble solid carrier (or cryoprotectant) which could not only prevent particles or micelles from large aggregation by steric hindrance and repulsive force but preserve microemulsification performance the same as that of liquid self- microemulsifying drug delivery systems. On the study, solid carriers in use include lactose, mannitol, glucose, sucrose and trehalose. The main difficulties with a solidified formulation lied in the stability of particulate redispersibility after the drying step. As consequence of agglomeration, the particle size was much larger than 2μm though; when adding solution of 0.5%(w/w) SLS (sodium lauryl sulfate) to redisperse the solid systems, the particle could retain stable in size from 30mins to 90mins following drying and reach smaller size of 500nm~2μm in most experimental groups. In groups with 50% solid carrier/ethanol/Tween 80,it was most obvious that the range of size reduction could reach in average from 4800nm in water phase to about 1700nm in SLS solution;when it came to Lactose as a solid carrier, the system particles could even be reduced in mean size of 900nm ~ 1000nm in all formulas.
Furthermore, we proceed an observation of crystalline structures of formulations. Chances are that we can establish the most optimized preparation method of solidified self-microemulsifying drug delivery containing a poorly water-soluble compound from a set of the above evaluations. On the other hand, our study can provide a foundation and a model for pharmaceutical technology of the dilutable drug delivery systems combined with nanoparticulate polymers in the near future.
目錄 Ⅰ
附表目錄 Ⅲ
附圖目錄 Ⅶ
中文摘要 Ⅹ
英文摘要Abstract ⅩⅡ
第壹章 緒論 1
第一節 研究背景 1
一、 藥物奈米化研究 1
二、 微乳劑簡介 9
三、 自發性微乳劑系統(SMEDDS) 13
四、 微乳劑固態化 16
五、 模式藥物:Fenofibrate 18
第二節 研究動機 21
第貳章 實驗方法 22
第一節 分析方法之建立 22
一、 粒徑分析 22
二、 掃描式電子顯微影像 26
三、 粉末晶體Ⅹ光繞射 27
第二節 實驗材料與儀器 28
第三節 處方開發與製備 30
第參章 結果與討論 34
第一節 處方開發與製備 34
第二節 粒徑分析(1) 49
第三節 粒徑分析(2) 61
第四節 掃描式電子顯微影像 91
第五節 粉末晶體Ⅹ光繞射 93
第肆章 結論 98
參考文獻 100
[1]Aviram S., and Abraham A., Microemulsions as carriers for drugs and nutraceuticals, Advances in Colloid and Interface Science 128–130 (2006) 47–64.

[2]Lawrence J. M., and Rees G. D., Microemulsion-based media as novel drug delivery systems, Advanced Drug Delivery Reviews 45 (2000) 89–121.

[3]Anna K., Abraham A., and Nissim G., Improved solubilization of carbamazepine and structural transitions in nonionic microemulsions upon aqueous phase dilution, Journal of Colloid and Interface Science 315 (2007) 637–647.

[4]Shoshana R., Abraham A., Ellen W., and Nissim G., Competitive solubilization of cholesterol and phytosterols in nonionic microemulsions, Journal of Colloid and Interface Science 314 (2007) 718–726.

[5]Mi-Jin P., Shan R., and Beom-Jin L., In vitro and in vivo comparative study of itraconazole bioavailability when formulated in highly soluble self-emulsifying system and in solid dispersion, Biopharmaceutics and Drug Disposition 28 (2007) 199–207.

[6]Nissim G., Marganit A., and Abraham A., Improved solubilization of Celecoxib in U-type nonionic microemulsions and their structural transitions with progressive aqueous dilution, Journal of Colloid and Interface Science 299 (2006) 352–365.

[7]Ying C., Gao L., Xianggen W., Zhiyu C., Jiangeng H., Bei Q., Song C., and Ruihua W., Self-Microemulsifying drug delivery system (SMEDDS) of vinpocetine: Formulation development and in vivo assessment, Biological & Pharmaceutical Bulletin 31 (2008) 118–125.

[8]Rene´ H., Porter C. J. H., and Edwards G. A., Examination of oral absorption and lymphatic transport of halofantrine in a triple-cannulated canine model after administration in self-microemulsifying drug delivery systems (SMEDDS) containing structured triglycerides, European Journal of Pharmaceutical Sciences 20 (2003) 91–97.
[9]Pey C.M. et al., Optimization of nano-emulsions prepared by low-energy emulsification methods at constant temperature using a factorial design study, Colloids and Surfaces A: Physicochem. Eng. Aspects 288 (2006) 144–150.

[10]Bok Ki K., Jin Soo L., and Se Kang C., Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs, International Journal of Pharmaceutics 274 (2004) 65–73.

[11]Hai Rong S., and Ming Kang Z., Preparation and evaluation of self-microemulsifying drug delivery systems (SMEDDS) containing atorvastatin, Journal of Pharmacy and Pharmacology 58 (2006) 1183–1191.

[12]Tao Y., Jiangling W., Huibi X., and Xiangliang Y., A new solid self -microemulsifying formulation prepared by spray-drying to improve the oral bioavailability of poorly water soluble drugs, European Journal of Pharmaceutics and Biopharmaceutics 70 (2008) 439–444.

[13]Tao Y., Jiangling W., Huibi X., and Xiangliang Y., Controlled poorly soluble drug release from solid self-microemulsifying formulations with high viscosity hydroxypropylmethylcellulose, European Journal of Pharmaceutical Sciences 34 (2008) 274–280.

[14]Shicheng Y., and Gursoy N. R. et al., Enhanced oral absorption of paclitaxel in a novel self-microemulsifying drug delivery system with or without concomitant use of p-glycoprotein inhibitors, Pharmaceutical Research 21(2004)261–270.

[15]Grove M., and Müllertz A. et al., Bioavailability of seocalcitol III: Administration of lipid-based formulations to minipigs in the fasted and fed state, European Journal of Pharmaceutical Sciences 31 (2007) 8–15.

[16]Christensen K.L., and Pedersen G.P. et al., Preparation of redispersible dry emulsions by spray drying, International Journal of Pharmaceutics 212 (2001) 187–194.




[17]Tuleu C., and Newton M. et al., Comparative bioavailability study in dogs of a self-emulsifying formulation of progesterone presented in a pellet and liquid form compared with an aqueous suspension of progesterone, Journal of Pharmaceutical Sciences 93 (2004) 1495–1502.

[18]Lijuan Z., Lei L., Yu Q., and Yun C., The effects of cryoprotectants on the freeze-drying of ibuprofen-loaded solid lipid microparticles (SLM), European Journal of Pharmaceutics and Biopharmaceutics 69 (2008) 750–759.

[19]Sangkil L., Jaehwi L., and Young W. C., Design and evaluation of prostaglandin E1 (PGE1) intraurethral liquid formulation employing self-microemulsifying drug delivery system (SMEDDS) for erectile dysfunction treatment, Biological & Pharmaceutical Bulletin 31 (2008) 668–672.

[20]Abdalla A., Klein S., and Mäder K., A new self-emulsifying drug delivery system (SEDDS) for poorly soluble drugs: Characterization, dissolution, in vitro digestion and incorporation into solid pellets, European Journal of Pharmaceutical Sciences 35 (2008) 457–464.

[21]Mitchell D. J. et al., Micelles, vesicles and microemulsions, Journal of the Chemical Society 77 (1981) 601–629.

[22]Müller R.H. et al., Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN®) versus drug nanocrystals, International Journal of Pharmaceutics 317 (2006) 82–89.

[23]Filippos K., Santipharp P., and Yunhui W., Nanosizing — Oral formulation development and biopharmaceutical evaluation, Advanced Drug Delivery Reviews 59 (2007) 631–644.

[24]Edgar A., Bioavailability of nanoparticles in nutrient and nutraceutical delivery, Current Opinion in Colloid & Interface Science 14 (2009) 3–15.

[25]Jadwiga Najib, Fenofibrate in the treatment of dyslipidemia: A review of the data as they relate to the new suprabioavailable tablet formulation, Clinical Therapeutics 24 (2002) 2022–2050.


[26]Bawarski W. E. et al., Emerging nanopharmaceuticals, Nanomedicine: Nanotechnology, Biology, and Medicine 4 (2008) 273–282.

[27]Clary J. J., Feron V. J., and Van Velthuijsen J. A., Safety assessment of lactate esters, Regulatory Toxicology and Pharmacology 27 (1998) 88–97.

[28]Alex P., and Hans Z., Preservation mechanisms of trehalose in food and biosystems, Colloids and Surfaces B: Biointerfaces 40 (2005) 107–113.

[29]Wassim A., and Ghania D. et al., Freeze-drying of nanoparticles: Formulation, process and storage considerations, Advanced Drug Delivery Reviews 58 (2006) 1688–1713.

[30]Schwarz C., and Mehnert W., Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN), International Journal of Pharmaceutics 157 (1997) 171–179.

[31]Hongyou F., Nanocrystal-micelle: Synthesis, self-assembly and application, chemical communications 12 (2008) 1383–1394.

[32]談駿嵩, 超臨界流體的應用, 科學發展 359, 2002

[33]蘇育德, Fenofibrate自發性微乳化劑型之口服吸收探討, 2007
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top