跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 18:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:史義清
研究生(外文):I-Ching Shih
論文名稱:雷射構裝模組銲後位移之雷射鎚銲修正暨有限元素分析
論文名稱(外文):Correction and Simulation of Post-Weld-Shift by Laser Hammering for Laser Module Packaging
指導教授:侯光華
指導教授(外文):Kuang-Hua Hou
學位類別:碩士
校院名稱:長庚大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:108
中文關鍵詞:雷射銲接雷射鎚銲蝶式模組銲後位移有限元素
外文關鍵詞:laser weldinglaser hammeringbutterfly modulepost weld shiftfinite element
相關次數:
  • 被引用被引用:2
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係探討利用雷射鎚銲(Laser Hammering)技術修正蝶式雷射模組光纖銲後位移(Post-Weld-Shift;PWS)之方法。利用雷射銲接技術組合構裝雷射模組的優點是過程快速、可自動化,故可降低構裝成本及提升產品的可靠度。但是雷射銲接構裝製程存在有光纖銲後位移的問題,導致模組耦光功率下降而降低構裝後的模組良率,因此本研究目的乃是透過雷射鎚銲修正銲後位移的方式,提升光纖模組耦光功率,改進蝶式雷射模組之構裝良率。
本研究係以「雷射修正鎚銲」方法修正光纖銲後位移,並使用有限元素模擬雷射修正鎚銲。雷射修正鎚銲是利用雷射加熱蝶式模組鞍片的特定區域,使鞍片與光纖產生熱位移,以修正先前光纖因銲接而分別在X軸與Y軸產生的銲後位移。本研究所使用的材料包括304不銹鋼與低膨脹係數合金Invar,蝶式模組鞍片的型式包括L型與T型。實驗結果顯示,影響位移修正的因素包括:鞍片型式、鞍片材質、鞍片鎚銲位置、鎚銲能量、鎚銲次數與鎚銲順序等。實驗結果顯示,雷射修正鎚銲方法可有效修正光纖X軸與Y軸之銲後位移,且若光纖位移過度修正時,則可藉由鎚銲順序或位置進行反向修正。最後依照本研究所研擬之銲後位移修正流程,可將光纖銲後位移修正至1 μm以內,使其耦光效率回復95%以上;同時有限元素模擬結果趨勢與實驗結果吻合,可作為後續研究與實務應用之分析預測工具。
The objective of this study is to use laser hammering technique to correct the post-weld-shift (PWS) in laser module packaging joined by laser welding. Laser welding is known for its rapid and readily automatic process, as well as product reliability. However, the lost of coupling efficiency of laser packaging modules due to PWS after laser welding results in poor product yield. Therefore, in this study laser hammering technique was used to correct the PWS in order to improve the coupling efficiency of butterfly modules.
This study was to correct the PWS of fiber by laser hammering and simulate the laser hammering process by finite element method (FEM). In the laser hammering process, laser beam was directed and heated the specific areas of weldclips. Consequently, different degrees of thermal displacements of fiber and weldclips took place in the X and Y directions according to the locations of laser hammering. The materials of weldclips included type 304 stainless steel and low expansion alloy Invar, and the types of weldclips were type L and type T.
According to the experimental results, the primary factors influencing laser hammering included material and type of weldclip, and energy, sequence, and numbers of laser hammering. It was found that the laser hammering could successfully and effectively correct the PWS in both X and Y directions. In case of over-correction, reversal hammering was able to be carried out successfully by proper selection of subsequent hammering locations and energy/sequence.
In summary, a laser hammering procedure is proposed in this study which can significantly reduce the PWS to be less than 1 μm, and recover the coupling efficiency to be more than 95%. Simultaneously, the results of finite element analysis correspond well with the experimental results, and therefore the FEM models can be used in the future study and commercial applications.
指導教授推薦書
口試委員審定書
授權書 iii
誌謝 iv
中文摘要 v
英文摘要 vi
目錄 vii
表目錄 x
圖目錄 xi
第一章 研究背景與文獻回顧 1
1-1 前言 1
1-2 光通訊元件之雷射二級體模組型式 2
1-3 蝶式雷射模組之構裝簡介 5
1-3-1 蝶式雷射模組之內部構造 5
1-3-2 蝶式雷射模組之外觀尺寸 7
1-3-3 蝶式雷射模組之構裝流程 10
1-4 雷射銲接製程簡介 12
1-4-1 雷射基本原理 12
1-4-2 雷射的種類 13
1-4-3 雷射銲接之原理 15
1-4-4 雷射銲接之優缺點 16
1-5 銲後位移檢測 18
1-6 有限元素模擬 21
1-6-1 模型前處理與有限元素模擬簡介 21
1-6-2 前處理軟體ABAQUS/CAE 21
1-6-3 前處理軟體Pro/E 22
1-6-4 有限元素模擬軟體ABAQUS 23
1-7 文獻回顧 24
1-7-1 降低光纖銲後位移部份 24
1-7-2 銲後位移檢測部份 27
1-7-3 有限元素模擬部份 29
第二章 研究目的 30
第三章 研究方法 31
3-1 研究流程 31
3-2 實驗設備 32
3-2-1 Nd:YAG雷射銲接機 32
3-2-2 光功率計與光檢知器 36
3-2-3 銲接平台 36
3-3 鞍片型式與材料種類 38
3-4 雷射銲接構裝蝶式模組 41
3-4-1 雷射銲接參數與銲道熔深之關係 41
3-4-2 雷射銲接蝶式模組流程 45
3-5 有限元素模型與邊界條件設定 47
3-5-1 設定材料性質 47
3-5-2 模型建立與邊界條件設定 51
3-5-3 設定雷射能量輸入 54
3-5-4 初步驗證雷射鎚銲可行性 59
3-6 雷射修正鎚銲 60
第四章 結果與討論 62
4-1修正光纖Y軸位移量之結果與討論 62
4-1-1 修正Y軸位移:雷射鎚銲實驗結果 62
4-1-2 修正Y軸位移:雷射鎚銲模擬結果 76
4-2 雷射鎚銲順序對修正Y軸位移量之影響 82
4-2-1 鎚銲順序之影響:實驗結果 82
4-2-2 鎚銲順序之影響:模擬結果 85
4-3 修正光纖X軸位移量之結果與討論 87
4-3-1 修正X軸位移量:雷射鎚銲實驗結果 88
4-3-2 修正X軸位移量:雷射鎚銲模擬結果 89
4-5 光纖銲後位移之修正流程 91
第五章 結論 93
參考文獻 94
1. M. W. Park, J. R. Kim, S. Park, et al. ”Lensless Semiconductor Optical Amplifier (SOA) Modules Using Laser Welding Techniques”, IEEE Electronic Components and Technology Conference, pp.733-735 (2000).
2. S. Jang, “Automation Maunfacuring Systems Technology for Optoelectronic Device Packaging”, IEEE Electronic Components and Technology Conference, pp.10-14 (2000).
3. S. Jang. “Packaging of Photonic Devices Using Laser Welding”, Laser Diode Chip and Packaging Technology, pp.138-149, October 1995.
4. N. Kalonji, J. Tanniou and M. Foucher, ”Packaging Technology for Wide Bandwidth High Optical Coupling Pigtailed Optoelectronic Modules”, IEEE Electronic Components and Technology Conference, pp.777-779 (1995).
5. K. S. Mobarhan, S. Jang, and R. Heyler”, Laser Diode Packaging Technology: 980nm EDFA Pump Laser for Telecommunication Application” Application Note, NO.3 (2000).
6. 鄭木海博士,「雷射二極體構裝技術之近況與趨勢」,光訊,第69 期,民國86 年12 月。
7. 周長彬,蘇程裕,銲接學,全華出版社,台北,民國94年
8. 趙芝山,「雷射銲接於光通訊元件封裝之有限元素分析」,國立交通大學,碩士論文,民國91年。
9. P. Mueller, B. Valk, ” Automated fiber attachment for 980nm pump modules”, IEEE Electronic Components and Technology Conference, pp. 5-9, 2000.
10. Schmid, P., “Laser Module and Method of Coupling An Optical Fiber Thereto” , U.S. Patent 4837768, 1989.
11. 黃韋凱,「2.5-10Gb/s 高速蝶式半導體雷射模組銲後位移之研究」,國立中山大學,碩士論文,民國92年。
12. 施性坤,「雷射銲接技術構裝雷射模組之銲後位移研究」,國立中山大學,碩士論文,民國90年。

13. Yaomin Lin, W. N. Liu, and F. G. Shi, “Laser Welding Induced Alignment Distortion in Butterfly Laser Module Packages: Effect of Welding Sequence,” IEEE Transactions on Advanced Packaging, vol. 25, pp. 73-78, February 2002.
14. Yaomin Lin, “Effect of Welding Sequence on Welding-Induced-Alignment-Distortion in Packaging of Butterfly Laser Diode Modules:Simulation and Experiment”, Journal of Lightwave Technology, vol. 23, no. 2, pp.615-623, February 2005.
15. Y. C. Hsu, “A Novel Fiber Alignment Shift Measurement and Correction Technique in Laser-Welded Laser Module Packaging”, Journal of Lightwave Technology, vol. 23, no. 2, pp.486-494, February 2005.
16. Y. T. Tseng, H .C. Sung, “A Novel Inspection of Fiber Post-Weld-Shift in Butterfly Laser Module Packaging”, IEEE Transactions on Advanced Packaging, vol. 25, no. 1, pp. 73–78, February 2002.
17. D.-H. Kang. “Analysis of laser weldment distortion in the EDFA LD pump packaging”, Finite Elements in Analysis and Design, vol. 37, pp. 749~760, 2001.
18. Marko Labudovic. “Finite Element Analysis of Post-Weld Shift During Fiber Pigtail of 980 nm Pump Lasers”, IEEE Transactions on Advanced Packaging, vol. 26, no. 1, February 2003
19. Jeff Lu, Zhili Feng, “Laser Micro-Welding of 40G Optoelectronic Butterfly Package with Submicron Post Weld Shit,” Unpublished paper.
20. Y. Dong, J. K. Hong, C. L. Tsai, et all. “Finite Element Modeling of Residual Stresses in Austenitic Stainless Steel Pipe Girth Welds,” Welding Journal, vol. 76, no. 10, pp. 442-449, October 1997.
21. Frank P., David P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New Work, 2001.
22. A. Serfter, K. Boboridis, “Thermophysical properties of liquid Fe64/Ni36,” J. Chim Phys, vol. 94, pp. 1004-1008, 1997.
23. A. Gulyaev, E. L. Svistunova, “Anomalies in Temperature dependence of Mechanical Properties an Thermal Expansion of Age Hardenable Invar Alloy Fe-40%Ni-0.8%Be,” Scripta Materialia, vol. 35, no. 4, pp. 501-504, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊