跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/11/27 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許榮鈞
研究生(外文):Rong-Jiun Sheu
論文名稱:宇宙射線中子在界面附近的特性研究
論文名稱(外文):Characteristic Study of Cosmic-Ray Neutrons near Interfaces
指導教授:江祥輝江祥輝引用關係
指導教授(外文):S. H. Jiang
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:115
中文關鍵詞:宇宙射線中子中子遷移中子偵檢器劑量界面
外文關鍵詞:Cosmic-Ray neutronneutron transportneutron detectordoseinterface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究主要的探討對象是宇宙射線中子,特別強調其在 空氣/地 與 空氣/水 界面附近的能量與角度分佈。宇宙射線中子的能譜與角度分布在界面附近會有劇烈變化,這是因為界面的存在造成中子截面與中子射源的不連續,破壞了原本大氣層內中子產生與吸收的平衡狀態。海平面宇宙射線中子的強度主要視所在地磁緯度而定,其數量級約在10-3 cm-2s-1左右。因為宇宙射線中子的強度低於市面上一般中子偵檢器的靈敏度,為此我們發展了高靈敏度的波那氏圓柱中子能譜儀(Bonner Cylinders)與八頻道中子偵測儀(8CND),其中波那氏圓柱用來測量中子的能譜,八頻道中子偵測儀用來擷取中子輻射場角度分布的資訊。除了測量之外,我們也建立了一套完整模擬大氣層內宇宙射線中子的計算方法,經由測量與計算的搭配,我們可以得到宇宙射線中子在不同界面附近能譜與角度分佈變化的情形。另外,我們亦將這裡發展的儀器與技術應用於一些高能粒子加速器設施相關的中子輻射場研究。
因為台灣地區接近地磁赤道,有幾乎全球最強之地磁垂直截止剛性,因此宇宙射線強度最弱,但是其平均能量卻最高。儘管在文獻中宇宙射線中子隨高度與緯度的分布有相當多測量或計算的數據,但大多集中在歐美日等中高地磁緯度地區,對於低地磁緯度區域的數據較為缺乏,因此台灣地區的數據正可補其不足。在本研究中,透過計算與測量的搭配,我們決定了台灣地區海平面附近由於宇宙射線中子造成的有效劑量率為26 Sv/yr(空氣/地)與22 Sv/yr(空氣/水),它們對應的宇宙射線中子通率分別為5.610-3 cm-2 s-1(空氣/地)與3.710-3 cm-2 s-1(空氣/水);而且它們隨著高度的變化為exp(-d/174.5),d是從大氣層頂端算起的大氣厚度,以g cm-2為單位。除此之外,還有宇宙射線中子在界面附近能譜與角度分佈變動的情形,相較於高空的中子能譜,熱中子會因界面存在而大幅增加。空氣/水 界面附近的中子通率強度雖較 空氣/地 來得弱一些,但中子能譜卻較 空氣/地 來的硬,也就是平均中子能量較高。雖然由上往下與由下往上的宇宙射線中子有明顯不同的能量分佈,整體來說,宇宙射線中子的總通率在 空氣/地 界面附近則接近等向性,而在 空氣/水 界面附近則傾向由上往下。另外,由不同宇宙射線中子能量造成的劑量分佈來看,低能量中子的數目雖然可觀,但是高能量的中子才是其有效劑量的主要來源。
This study investigated the characteristics of the cosmic-ray neutron field near air/ground and air/water interfaces with emphases on the energy and angular distributions. The cosmic-ray neutron fluence rate at sea level has been reported at the order of 10-3 cm-2s-1. In order to properly measure the low intensity cosmic-ray neutrons, two sets of high-efficiency neutron detecting systems were developed. The first one, called the Bonner Cylinders, was used for measurements of the energy information. The other one, referred to as the 8CND (eight-channel neutron detector), was used to characterize the angular information of the neutron field. The measured results were used to normalize and confirm one-dimensional transport calculations for cosmic-ray neutrons near interfaces. According to these measurements and calculations, both energy spectra and angular distributions of cosmic-ray neutrons near interfaces were resolved. The neutron flux change near interface is owing to the discontinuity in both the neutron interaction and production cross sections. Besides, the instruments and methods developed here were also used to study the neutron field outside the shielding wall of high-energy electron accelerator.
In the present work, annual sea level neutron effective doses in Taiwan were determined to be 26 (air/ground) and 22 Sv (air/water), corresponding to the neutron fluence rates of 5.610-3 (air/ground) and 3.710-3 n cm-2 s-1 (air/water). The dependence of the cosmic-ray neutrons on the atmospheric depth can be represented well by the exponential function of exp(-d/L) with the effective attenuation length L = 175.4 g cm-2 in Taiwan. Since Taiwan is located near the geomagnetic equator, the vertical cutoff of geomagnetic rigidity is almost the highest in the world. The latitude effect, as compared with that reported elsewhere, results in appreciable differences both in absolute values and the altitude dependence. In addition, the energy spectra of cosmic-ray neutrons near air/ground and air/water interfaces were also unfolded. The results show that the neutron fluence rate near the air/ground interface is greater than that near the air/water interface, while the neutron spectrum near the air/water interface is somewhat harder than that near the air/ground interface. Although there is a clear distinction between energy distributions of upward neutrons and downward neutrons near interfaces, the angular distribution of the total neutrons near the air/ground interface is almost isotropic while near the air/water interface more neutrons come downward from the air than upward from the water. In comparison with the in-flight spectrum, the interface has a significant effect on the low-energy part of the spectrum, especially in the thermal region. However, these low-energy neutrons do not make significant contribution to the effective dose rate. On the contrary, high-energy neutrons dominate the effective dose rate from cosmic-ray neutrons.
中文摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 ix
1 緒論 1
引言 1
1.1 文獻回顧 2
1.2 研究方向 6
1.2.1 高靈敏度中子偵檢器的發展 6
1.2.2 界面附近宇宙射線中子的特性研究 6
2 中子偵檢器之發展與測試 8
2.1 波那氏圓柱(Bonner Cylinders) 8
2.1.1 偵檢器的構造 8
2.1.2 偵檢器的響應函數 10
2.1.3 偵檢器的校正 12
2.2 八頻道中子偵測儀8CND(8-Channel Neutron Detector) 13
2.2.1 偵檢器的構造 13
2.2.2 偵檢器的響應函數 14
2.2.3 偵檢器的校正 15
3 宇宙射線中子之計算模式 17
3.1 計算程式之簡介 17
3.1.1 FLUKA 17
3.1.2 MCNP 17
3.1.3 ANISN 18
3.1.4 MAXED 19
3.2 計算模式與步驟 21
3.2.1 射源項的計算 21
3.2.2 中子遷移計算 23
3.2.3 偵檢器的響應 24
3.2.4 能譜展開與劑量計算 25
4 結果與討論 26
4.1 宇宙射線中子隨高度之變化 26
4.2 宇宙射線中子之能量分布 29
4.3 宇宙射線中子之角度分布 33
4.4 宇宙射線中子之劑量評估 35
5 結論 39
5.1 主要的研究結果 39
5.2 未來研究方向的建議 40
6 其他應用: 同步輻射研究中心的中子輻射場 41
6.1 同步輻射研究中心之輻射場簡介 41
6.2 電子加速器屏蔽牆外中子輻射場之研究 44
6.3 電子儲存環氣體制動輻射引發中子之研究 50
6.4 高效率中子偵檢器監測場界中子天空散射 53
7 參考文獻 54
8 論文發表 58
8.1 Cosmic-Ray Induced Neutron Spectra and Effective Dose Rates near Air/Ground and Air/Water Interfaces in Taiwan 58
8.2 A Study of the Cosmic-Ray Neutron Field near Interfaces 89
8.3 Real-Time Radiation Monitoring System in SRRC 96
8.4 A Study of Neutron Field outside the Shielding Wall at SRRC 103
8.5 Determination of the Effective Z-number of the Residual Gas in the Vacuum Chamber of the Electron Storage Ring of the SRRC:Approach from the Detection of the Photoneutron Yield Produced by Gas Bremsstrahlung 109
1. International Commission on Radiological Protection, “1990 Recommendations of the International Commission on Radiological Protection”, ICRP Publication 60, Pergamon Press, Oxford, U.K. (1991)
2. 原子能委員會, “低放射性廢料貯存設施管制規範”, 行政院原子能委員會, (1996)
3. 原子能委員會, “游離輻射防護安全標準”, 行政院原子能委員會, (1991)
4. NCRP, “Environmental Radiation Measurements”, ICRP Report No.50, (1976)
5. United Nations, “Sources and Effects of Ionizing Radiation”, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 1993 Report.
6. United Nations, “Sources and Effects of Ionizing Radiation”, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report.
7. R. K. Soberman, “High-Altitude Cosmic-Ray Neutron Intensity Variations”, Phys. Rev. 102, 1399-1409, (1956)
8. W. N. Hess, H. W. Patterson, R. Wallace and E. L. Chupp, “Cosmic-Ray Neutron Energy Spectrum”, Phys. Rev. 116, 445-457, (1959)
9. W. N. Hess, E. H. Canfield and R. E. Lingenfelter, “Cosmic-Ray Neutron Demography”, J. Geophys. Res. 66, 665-677, (1961)
10. K. O’Brien, H. A. Sandmeier, G. E. Hansen and J. E. Campbell, “Cosmic-Ray Induced Neutron Background Sources and Flux for Geometries of Air over Water, Ground, Iron and Aluminum”, J. Geophys. Res. 83, 114-120, (1978)
11. M. Yamashita, L. D. Stephens, H. W. Patterson, “Cosmic-Ray-Produced Neutrons at Ground Level: Neutron Production Rate and Flux Distribution”, J. Geophys. Res. 71, 3817-3834, (1966)
12. International Commission on Radiological Protection, “Conversion Coefficients for Use in Radiological Protection against External Radiation”, ICRP Publication 74, Pergamon Press, Oxford, U.K. (1996)
13. Eberline Instruments, “Technical Description and Operating Instructions of BIOREM FHT751”, (1993)
14. Nuclear Research Corporation, “Operation and Maintenance Manual of NP-100 Neutron Detector”
15. N. Wood Counter Laboratory Inc., “BF3 Neutron Proportional Detector Model G-15-34A”
16. GE Reuter-Stokes, “Engineering Data Sheet 1.54 He-3 Filled Proportional Counter Model RS-P4-0818-202”
17. A. B. Chilton, J. K. Shultis and R. E. Faw, “Principles of Radiation Shielding”, (1984)
18. G. E. Hansen and H. A. Sandmeier, “Neutron Penetration Factors Obtained by Using Adjoint Transport Calculations”, Nucl. Sci. Eng. 22, 315-320, (1965)
19. 許榮鈞, “中子伴隨遷移計算之研究與應用”, 清華大學核子工程研究所, 碩士論文, (1993)
20. Precision Data Technology, Inc., “Operation and Maintenance Manual on Proper Use of PDT100, PDT110, PDT120/PDT122 Neutron Pulse Monitoring Modules”, (1998)
21. Oxford Instrument Inc., “Instruction Manual PCA Ranger”, (1994)
22. A. Fasso', A. Ferrari and P. Sala, “FLUKA99 manual”, (1999)
23. J. F. Briesmeister, “MCNP — A General Monte Carlo N-Particle Transport Code, Version 4A”, LANL Report LA-12625-M, (1993)
24. W. W. Engle, Jr., ”A User Manual for ANISN” K-1693, Union Carbide Corporation Computing Technology Center, Oak Ridge, Tennessee, (1979), ORNL, RSIC, CCC-254, (1991)
25. R. W. Roussin, “BUGLE-80 : Coupled 47 Neutron, 20 Gamma-Ray, P3 Cross Section Library for LWR Shielding Calculations”, (1980), ORNL, RSIC, DLC-75, (1991)
26. R. G. Alsmiller, Jr., J. M. Barnes and J. D. Drischler, “Neutron Photon Multigroup Cross sections for Neutron Energies Less Than or Equal to 400 MeV”, (1998), ORNL, RSIC, DLC-119, (1991)
27. M. Reginatto, P. Goldhagen, “MAXED, A Computer Code for Deconvolution of Multisphere Neutron Spectrometer Data Using the Maximum Entropy Method”, Environmental Measurements Laboratory, EML-595, (1998)
28. J. H. Adams, Jr., R. Silberberg, C. H. Tsao, “Cosmic Ray Effects on Microelectronics, Part I: The Near-Earth Particle Environment”, NRL Memorandum Report 4506, (1981)
29. S. Roesler, W. Heinrich, H. Schraube, “Calculation of Radiation Fields in the Atmosphere and Comparison to Experimental Data”, Radiation Research 149, 87-97, (1998)
30. I. A. Kurochkin, B. Wiege, B. R. L. Siebert, “Study of the Radiation Environment Caused by Galactic Cosmic Rays at Flight Altitudes, at the Summit of the Zugspitze and at PTB Braunschweig”, Radiation Protection Dosimetry, Vol. 83, No.4, pp.281-291 (1999)
31. American Nuclear Society, “Calculation and Measurement of Direct and Scattered Gamma Radiation from LWR Nuclear Power Plants”, ANSI/ANS-6.6.1-1987, (1987)
32. M. Florek, J. Masarik, I. Szarka, D. Nikodemova, A. Hrabovcova, “Natural Neutron Fluence Rate and the Equivalent Dose in Localities with Different Elevation and Latitude”, Radiat. Prot. Dosim. 67(3), pp.187-192, (1996)
33. H. Schraube, J. Jakes, A. Sannikov, E. Weitzenegger, S. Roesler, W. Heinrich, “The Cosmic Ray Induced Neutron Spectrum at the Summit of the Zugspitze (1963m), Radiat. Prot. Dosim. 70, pp.405-408 (1997)
34. S. Roesler, W. Heinrich, H. Schraube, “Neutron Spectra in the Atmosphere from Interactions of Primary Cosmic Rays”, Adv. Space Res. Vol.21, No.12, pp.1717-1726, (1998)
35. P. Goldhagen, “Overview of the Aircraft Radiation Exposure and Recent ER-2 Measurements”, Health Phys. 79(5), pp.526-544, (2000)
36. T. W. Armstrong, K. C. Chandler, J. Barish, “Calculation of neutron flux spectra induced in the earth’s atmosphere by galactic cosmic rays”, J. Geophys. Res. 78, pp.2715-2726, (1973)
37. K. O’Brien, “LUIN, a code for the calculation of cosmic ray propagation in the atmosphere (update of HASL-275)”, U.S. Department of Energy, Technical Report EML-338, (1978)
38. M. Merker, “The contribution of galactic cosmic rays to the atmosphere neutron maximum dose equivalent as a function of neutron energy and altitude”, Health Phys. 25, pp.524-527, (1973)
39. A. Ferrai, M. Pelliccioni, M. Pillon, “Fluence to effective dose conversion coefficients for neutron up to 10 TeV”, Radiat. Prot. Dosim. 71(3), pp.165-173, (1997)
40. H. Schraube, G. Leuthold, S. Roesler, W. Heinrich, “Neutron Spectra at Flight Altitudes and Their Radiological Estimation”, Adv. Space Res. 21(12), pp.1727-1738, (1998)
41. C. Chung, C. Y. Chen, “Cosmic-Ray Induced Neutron Intensity in Taiwan and its Variations during a Typhoon”, J. Geophys. Res. 102(D25), pp.29827-29832, (1997)
42. W. P. Swanson, “Radiological Safety Aspects of the Operation of Electron Linear Accelerators”, IAEA Technical Reports Series No. 188, (1979)
43. 江祥輝, 王昭平, “同步輻射研究中心屏蔽設計”, 行政院同步輻射研究中心籌建處, (1989)
44. A. Rindi, “Gas Bremsstrahlung from Electron Storage Rings”, Health Phys. 42(2), pp.187-193, (1982)
45. J. C. Liu, W. R. Nelson and K. R. Kase, “Gas Bremsstrahlung and Associated Photo-Neutron Shielding Calculation for Electron Storage Ring”, Health Phys. 68, 205-213, (1995)
46. W. R. Nelson, H. Hirayama, D. W. O. Rogers, “The EGS4 Code System”, Stanfold Linear Accelerator Center, SLAC-265, (1985)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top