跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 23:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪澤安
研究生(外文):Tzer An, Hung
論文名稱:四族金氧半發光元件
論文名稱(外文):Group IV Element Metal-Oxide-Semiconductor Light Emitting Devices
指導教授:劉致為
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:64
中文關鍵詞:金氧半二極體發光元件六氫-碳化矽場致發熱截止
外文關鍵詞:MOSLED6H-SiCELthermal quenching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,製作了金氧半發光元件且探討其發光特性。製作的金氧半發光元件結構包括以二氧化矽為絕緣層的鍺金氧半發光元件、以氧化鋁為絕緣層的鍺金氧半發光元件以及六氫-碳化矽金氧半發光元件。
鍺金氧半發光元件激發出紅外光。發光頻譜以電子-電洞-電漿復合模型得到頻譜理論線。此理論線使用五個藉由聲子參與發光的頻譜,包括橫向光學聲子、縱向聲學聲子和橫向聲學聲子的激發,以及橫向聲學聲子和縱向聲學聲子的吸收。藉由吸收橫向聲學聲子發光的光強度會隨溫度上升而變強。場致發光比光激發光還要能壓制熱截止現象,是由於場致發光的多數載子濃度遠比少數載子濃度大,使得發光復合機率只受限於少數載子量的降低。
以氧化鋁為絕緣層的鍺金氧半發光元件比之以二氧化矽為絕緣層的鍺金氧半發光元件有了特性上的提升,包括更小的操作電壓、更小的漏電流、更強的發光強度,更低的非輻射緩解遷移以及在更高溫度的操作下有更高的發光強度的。六氫-碳化矽金氧半發光元件在逆偏壓至崩潰時激發出藍光。
In this thesis, various metal-oxide-semiconductor light-emitting-devices (MOS LED) were fabricated and investigated of their luminescence characteristics. The MOS LED structures include the Ge MOS LED with silicon dioxide (SiO2), Ge MOS LED with aluminum oxide (Al2O3) and the 6H-SiC MOS LED.

Infrared emission is observed from the Ge MOS LED. A spectral line fit is performed on the luminescence spectrum with the electron-hole-plasma (EHP) recombination model with 5 phonon assisted replica, including TO, LA, TA emission, and TA, LA absorption. Intensity of the TA phonon absorption is seen to increase at elevated temperatures. Reduced thermal quenching in electroluminescence compared to photoluminescence measurements is due to the large difference in concentration between the majority and minority carriers in EL, which limits the cause of the decrease of radiative recombination probability to only the lowering of the minority concentration. The Ge MOS LED with Al2O3 insulator shows improvements in performance that include smaller operating voltage, smaller leakage current, stronger light emission, reduced nonradiative radiation and an increase in light emission intensity at elevated operation temperatures. Blue luminescence at reverse bias is observed in the 6H-SiC MOS LED.
List of Figures X
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization 3
1.3 References 4
Chapter 2 Infrared Emission from Ge MOS LED 5
2.1 Introduction 5
2.2 Device Fabrication and Experimental Setup 5
2.3 Infrared Emission from Ge MOS LED 9
2.3.1 Electroluminescence of Ge MOS LED 9
2.3.2 Electron-Hole-Plasma Recombination Model 11
2.3.3 Theoretical Analysis of Electron-Hole-Plasma Recombination Model 13
2.3.4 Temperature Dependence of EL and PL 16
2.4 Summary 24
2.5 References 24
Chapter 3 Ge MOS LED with High-k Dielectric Insulator 27
3.1 Introduction 27
3.2 Device Fabrication and Experimental Setup 27
3.3 Characteristics Comparison Between Al2O3 and SiO2 as Insulator 28
3.3.1 Current-Voltage Characteristics Analysis 28
3.3.2 Current-Light Intensity Characteristic Analysis 31
3.3.3 Minority Carrier Lifetime Measurement by EL Method 33
3.3.4 Temperature dependence of EL and PL 35
3.4 Summary 45
3.5 References 46
Chapter 4 SiC MOS LED 48
4.1 Introduction 48
4.2 Device Fabrication and Experimental Setup 48
4.3 Results and Discussion 50
4.3.1 PL Characteristic Analysis 50
4.3.2 Current-Voltage Characteristic Analysis 55
4.3.3 EL Characteristic Analysis 57
4.4 Summary 61
4.5 References 61
Chapter 5 Summary and Future Work 63
5.1 Summary 63
5.2 Future Work 64
Chapter 1 Reference
[1] T. L. Worchesky, K. J. Ritter, R. Martin, and B. Lane, Appl. Opt., 35, 1180 (1996)
[2] A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, R. E. Leibenguth, S.P. Hui, C. J. Zydzik, K. W. Goossen, J. D. Wynn, B. J. Tseng, J. Lopata, J. A. Walker, J. E. Cunningham, and L. A. D’Asaro, IEEE Photon. Technol. Lett., 11, 128 (1999)
[3] K. W. Goossen, J. A. Walker, L. A. D’ Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L Lentine, and D. A. B. Miller, IEEE Photon. Technol. Lett., 7, 360 (1995)
[4] H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, Nature 433, 725 (2005)
[5] P. M. Fauchet, Mater. Today 8, 26 (2005)
[6] J. Edmond et al., "6H-Silicon Carbide Light Emitting Diodes and UV Photodiodes", phys. stat. sol. (a) 162, 481 (1997)

Chapter 2 Reference
[1] J.-S. Chou and S.-C. Lee, “Improved process for liquid phase deposition of silicon dioxide,” Appl. Phys. Lett. 64, 1971 (1994)
[2] H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating,” J. Electrochem. Soc. 135, 2013 (1988)
[3] B.-C. Hsu, C. W. Liu, W. T. Liu, and C.-H. Lin, “A PMOS Tunneling Photodetector,” IEEE TRANSACTIONS ON ELECTRON DEVICES 48, 8 (2001)
[4] M..H. Liao, T.-H. Cheng, C. W. Liu, Appl. Phys. Lett. 89, 261913 (2006)
[5]B.-C. Hsu, W.-C. Hua, C.-R. Shie, K.-F. Chen, C.W. Liu, “Growth and electrical characteristics of liquid-phase deposited SiO2 on Ge”, Electrochem. Solid-State Lett. 6, 9 (2003)
[6]C. W. Liu, J. C. Sturm, Y. R. J. Lacroix, M. L. Thewalt, and D. D. Perovic, Appl. Phys. Lett. 65, 76 (1994)
[7]X. Xiao, C. W. Liu, J. C. Sturm, L. C. Lenchyshyn, and M. L. Thewalt, Appl. Phys. Lett. 60, 1720 (1992)
[8]D. J. Robbins, P. Calcott, and W. Y. Leong, Appl. Phys. Lett. 59, 1350 (1991)
[9]C. W. Liu, M. H. Lee, Miin-Jang Chen, “Room-temperature electroluminescence from electron-hole plasmas in the metal–oxide–silicon tunneling diodes”, Appl. Phys. Lett. 76, 1516 (2000)
[10] James C. Strum, “High temperature (77-300K) Photo- and Electroluminescence in Si/Si1-xGex Heterostructures”, Jpn. J. Appl. Phys. 33, 2329 (1994)
[11] Carson D. Jeffries, “Electron-Hole Condensation in Semiconductors”, SCIENCE 189, 4207 (1975)
[12] N. Peyghambarian and H. M. Gibbs, “Optical nonlinearity, bistability, and signal processing in semiconductors”, J. Opt. Soc. Am. B 2, 7 (1985)
[13] A.H. Simon, “Excitonic phase diagram in unstressed Ge”, Physical Review B 46, 16 (1992)
[14] G.A. Thomas, “Indirect Recombination Mechanism in Ge”, Phys. Rev. B 19, 2 (1979)
[15] Angela E. Mayer, “Accurate Determination of the exciton gap energy and the LA and LO momentum-conserving phonon energies in Germanium”, J. Phys. C: Solid State Phys. 12, (1979)
[16] W. Klingenstein, “Recombination of donor bound-exciton in Germanium”, Phys. Rev. B 20, 8 (1979)
[17] J.R. Haynes, “Analysis of Intrinsic Recombination Radiation from Silicon and Germanium”, J. Phys. Chem. Solids 8, 392 (1959)
[18] S.M.Sze, Physics of Semiconductor Devices, 2nd ed. Wiley, (1981)
[19] T. Trupke, “Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon”, J. Appl. Phys. 94, 8 (2003)
[20] Antonio Luque, “Intermediate bands versus levels in non-radiative recombination”, Physica B 382, 320 (2006)
[21] M.J. Chen, “Electroluminescence and photoluminescence studies on carrier radiative and nonradiative recombinations in metal-oxide-silicon tunneling diodes”, J. Appl. Phs. 93, 7 (2003)
[22] C.F. Lin, “Reduced temperature dependence of luminescence from Si due to field-induces carrier confinement”, Appl. Phys. Lett., (2001)


Chapter 3 Reference
[1] T.C. Chen, “Light emission from Al/HfO2/Silicon diodes”, J. Appl. Phys. 95, 6486 (2004)
[2] Albert Chin, “Strong and Efficient Light Emission in ITO/Al2O3 Superlattice Tunnel Diode”, IEDM 1, 171 (2001)
[3] M.J. Chen, “Electroluminescence and photoluminescence studies on carrier radiative and nonradiative recombinations in metal-oxide-silicon tunneling diodes”, J. Appl. Phys. 93, 7 (2003)
[4] M.J. Chen, “Enhancement in the efficiency of light emission from silicon by a thin Al2O3 surface-passivating layer grown by atomic layer deposition at low temperature”, J. Appl. Phys. 101, 033130 (2007)
[5] M. Passlack, "In situ fabricated Ga2O3-GaAs structures with low interface recombination velocity", Appl. Phys. Lett. 66, (1995)
[6] J.M. Sun, "Origin of anomalous temperature dependence and high efficiency of Si LED", Appl. Phys. Lett., (2003)
[7] M.A. Lourenco, "Experimental and theoretical study of the EL temp dependence of iron disilicide LED", Thin Solid films, (2004)
[8] Cheng Li, "RT EL of a Si-based pin diode with B-FeSi2 particles embedded in the intrinsic Si", J. Appl. Phys. (2005)
[9] G. P. Srivastava, “The Physics of Phonons”, IOP, 1990


Chapter 4 Reference
[1] Henry F. Ivey, Electroluminescence and Related Effects, Academic Press, 1963
[2] Jacques I. Pankove, Optical Processes in Semiconductors, Prentice-Hall, 1971
[3] Paul Goldberg, Luminescence of Inorganic Solids, Academic Press, 1966
[4] Choyke, W.J., Pensi G., Mater. Res. Bull, 25 (1997)
[5] M. Ikeda et al., J. Appl. Phys. 50, 12 (1979)
[6] Evwaraye, A.O., S.R. Smith, W.C. Mitchel, H.McD. Hobgood, Appl. Phys. Lett. 71, 9 (1997)
[7] A. A. Lebedev, SEMICONDUCTORS 33,107 (1999)
[8] Van Daal, HJ., Knippenberg, W.F, Wasscher, J.D. J. Phys. Chem. Solids 24, 109 (1963)
[9] S. Kamiyama, J. Appl. Phys. 99, (2006)
[10] Humphreys, R.G., Bimberg, D., Choyke, WJ. Solid State Commun. 39,163 (1981)
[11] C.H. Lin, “A Comprehensive Study of Inversion Current in MOS Tunneling Diodes”, IEDM 48, 9 (2001)
[12] W. Haecker, “Infrared Radiation from Breakdown Plasmas in Si, GaSb, and Ge: Evidence for Direct Free Hole Radiation”, Phys. Stat. Sol. 25, 301 (1974)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊