跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許倍誠
研究生(外文):Hsu Pei Cheng
論文名稱:電鍍鎳組織與機械性質之研究
論文名稱(外文):Structure and Mechanical Properties of Nickel Electrodeposits
指導教授:林招松林招松引用關係
指導教授(外文):C. S. lin
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:206
中文關鍵詞:胺基磺酸鎳浴穿透式電子顯微鏡纖維晶再結晶與晶粒成長柱狀晶優選方位
相關次數:
  • 被引用被引用:12
  • 點閱點閱:830
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由建立電鍍鎳“製程-鍍層微結構-機械性質”的關係,瞭解鍍鎳層經高溫受熱後的微結構與機械性質。實驗中使用胺基磺酸鎳浴,電鍍操作條件分別為鍍液溫度(40℃∼50℃)、電流密度(0.5A/dm2∼4.0A/dm2)、pH值(3.0∼5.0),並改變鍍液成分如氨離子、氯離子,於銅板上製備70μm的鍍鎳層,再將鍍層做200℃∼600℃的熱處理以探討鎳層受熱軟化的趨勢,然後以橫截面光學顯微鏡(OM)、橫截面掃瞄式電子顯微鏡(SEM)、橫截面和平面向穿透式電子顯微鏡(TEM)及X-射線繞射分析,觀察鍍層組織與結晶缺陷分析和鍍層的優選方位。
實驗結果顯示在40℃鍍液中,電流密度小於1.0A/dm2時,鍍鎳層呈纖維晶構造,結晶優選取向為〔110〕,鍍層硬度較高,鍍層經400℃以上熱處理後,產生再結晶與晶粒的成長,當電流密度大於1.0A/dm2時,鍍鎳層呈明顯柱狀晶結構,為強烈〔100〕優選方位,同時其硬度較低,鍍層經600℃熱處理仍然保持柱狀結構。在0.5A/dm2∼4.0A/dm2下製備的鎳層皆呈大晶粒與小晶粒混合的雙集合結構,晶粒大小隨著電流密度增加而增加,但其結晶缺陷密度卻隨電流密度增加而減少,高電流密度製備的鎳層晶粒較粗大且其結晶缺陷較少,導致鍍層硬度較低。於40℃鍍液中,pH值3.0∼5.0製備的鍍層,皆為明顯柱狀晶結構,結晶優選取向為強烈的〔100〕,鍍層硬度隨著pH值的昇高而昇高,鍍層經600℃熱處理後,仍然為柱狀晶結構。
於40℃鍍液中,無添加氨離子時,鍍鎳層呈柱狀結構,為〔100〕優選方位,結晶缺陷密度低,鍍層硬度低,氨離子含量300ppm時,鍍層為較弱〔100〕優選方位,結晶缺陷密度高,導致硬度提高,當氨離子含量300ppm以上,鍍鎳層呈纖維晶結構,結晶優選取向為〔110〕,鍍層經400℃以上熱處理後,有再結晶的現象與晶粒的成長。鍍液溫度50℃,無添加氨離子時,鎳層呈纖維結構,結晶優選取向為〔110〕,當氨離子含量100ppm以上,鎳層呈纖維結構,結晶優選取向為〔110〕和〔310〕,鎳層結晶缺陷密度高,導致硬度提昇,鎳層經400℃以上熱處理後,產生粗大且不規則的再結晶晶粒與晶粒成長。
添加3g/l∼30g/l的含水氯化鎳之40℃鍍液中製備的鎳層呈柱狀晶結構,為〔100〕優選方位,鎳層經600℃熱處後,仍然為柱狀晶結構,當添加量30g/l以上,鍍鎳層為纖維結構,呈較弱〔100〕優選方位,鎳層經400℃以上熱處理後,有再結晶的現象與晶粒的成長。從添加3g/l∼60g/l含水氯化鎳的50℃鍍液中製備的鍍鎳層呈纖維結構,優選取向為〔110〕,經400℃熱處理後,產生再結晶與晶粒的成長。
Relationship of “processing/microstructure/mechanical-properties” of electrodeposited nickel was established to achieve better understanding of the annealing behaviors Ni deposits. 70m-thick Ni was electrodeposited onto copper plates from Ni sulfamate baths with the addition of various amounts of chloride and ammonium ions. Electroplating parameters studied include solution temperature, current density and pH. Ni deposits were then annealed at temperatures ranging from 200 to 600 ℃for 1hr. Optical microscopy, scanning electron microscopy, transmission electron microscopy, and x-ray diffraction technique were used to characterize the microstructure and texture of Ni deposits, particularly the grain structure and lattice defects.
Fibrous structure of [110] texture was observed for Ni deposits plated from 40 ℃ bath at current density less than 1 A/dm2. Recrystallization and grain growth occur after annealing at temperatures higher than 400 ℃. Ni deposits plated at current density above 1 A/dm2 show well-defined columnar grain structure with strong [100] texture. [100] oriented Ni deposits are softer and still exhibit columnar grain structure even after 600 ℃ annealing. Although Ni deposits plated at various current densities exhibit a bimodal grain structure, average grain size of Ni deposits increases with current density. In contrast, lattice defects of Ni deposits decreases with current density. For 40 ℃ baths, pH variations between 3.0 and 5.0 show little effect on the texture and structure of Ni deposits, which consist of columnar grains with [100] texture. Columnar grain structure still exists up to 600 ℃ annealing.
Addition of ammonium and chloride ions modifies the electrocrystallization and growth of Ni deposits. For 40 ℃ bath, texture of Ni deposits change from strong [100] to weak [100], and then to weak [110] with the increase of ammonium ions in the bath. With the addition of 100 ppm ammonium ions into 50 ℃ bath, Ni deposits exhibit a mixture of [110] and [310] textures. Ni deposits with [110] and/or [310] textures suffer recrystallization after 400 ℃ annealing. Addition of 30g/l NiCl2.6H2O into 40 ℃ bath results in the texture change from [100] to weak [100]. [110] oriented Ni deposits are plated from 50 ℃ bath with the addition of 3 ~ 60g/l NiCl2.6H2O. Recrystallization of Ni deposits with weak [100] orientation and with [110] orientation occur after 400 ℃ annealing. In general, Ni deposits with inhibition textures, such as [110] and [310], tend to recrystallize after 400 ℃ annealing. In contrast, strongly [100] oriented Ni deposits still exhibit columnar grain structure even after 600 ℃ annealing.
封面內頁
簽名頁
授權書……………………………………………………………….iii
中文摘要……………………………………………………………...v
英文摘要……………………………………………………………vii
誌謝…………………………………………………………………..ix
目錄……………………………………………………………….…..x
圖目錄………………………………………………………………xiv
表目錄…………………………………………………………….xxiv
第一章 導論………………………………………………………….1
1.1 前言……………………………………………………………1
1.2 研究動機………………………………………………………2
第二章 文獻探討……………………………………………………4
2.1 電化學反應…………………………………………………..4
2.2 鍍鎳溶液種類……………………………………………….4
2.3 電鍍鎳液中的不純物……………………………………….5
2.4 鍍層的內應力……………………………………………….7
2.5 鍍層的硬度………………………………………………….9
2.6 鍍層的結構…………………………………………………13
2.7 鍍層的織構或優選方位…………………………………...17
第三章 實驗方法…………………………………………………..20
3.1 電鍍設備…………………………………………………….20
3.2 鍍鎳層的製備……………………………………………….21
3.2.1 鍍液的化學成分…………………………………………..21
3.2.2 銅底材……………………………………………………..27
3.2.3 鎳圓塊……………………………………………………..28
3.2.4 操作條件…………………………………………………..28
3.2.5 銅底材前處理……………………………………………..29
3.2.6 熱處理……………………………………………………..30
3.2.7 試片編號…………………………………………………..31
3.3 鍍鎳銅底材機械性質量測………………………………….32
3.3.1 微硬度試驗………………………………………………..32
3.3.2高溫磨耗試驗………………………………………………33
3.4 微觀組織試片製作與觀察………………………………….35
3.4.1 光學顯微鏡試片準備……………………………………..35
3.4.2 掃瞄式電子顯微鏡試片製作與觀察……………………..36
3.4.3穿透式電子顯微鏡試片製作與觀察……………………...37
3.4.4 X光繞射……………………………………………………39
第四章 實驗結果…………………………………………………..45
4.1 電流密度的影響…………………………………………….45
4.1.1 XRD組織觀察……………………………………………..45
4.1.2 鍍鎳層的微小硬度………………………………………..45
4.1.3 光學顯微金相觀察………………………………………..48
4.1.4 平面向TEM試片觀察………………………………….…55
4.1.5 橫截面TEM試片觀察……………………………………62
4.2 PH值的影響…………………………………………………76
4.2.1 XRD組織觀察…………………………………………….76
4.2.2 鍍鎳層的微小硬度………………………………………..76
4.2.3 光學顯微金相觀察………………………………………..79
4.2.4 平面向TEM試片觀察……………………………………85
4.2.5 橫截面TEM試片觀察……………………………………85
4.3 氨離子的影響……………………………………………….98
4.3.1 XRD組織觀察……………………………………………..98
4.3.2 鍍鎳層的微小硬度………………………………………101
4.3.3 光學顯微金相觀察………………………………………105
4.3.4 平面向TEM試片觀察…………………………………..114
4.3.5 橫截面TEM試片觀察…………………………………..115
4.4 氯離子的影響……………………………………………...141
4.4.1 XRD組織觀察……………………………………………141
4.4.2 鍍鎳層的微小硬度………………………………………144
4.4.3 光學顯微金相觀察………………………………………147
4.4.4 平面向TEM試片觀察…………………………………..155
4.4.5 橫截面TEM試片觀察…………………………………..156
4.5 銅/鎳界面、擴散層的觀察………………………………..181
4.6 鍍鎳層的磨耗試驗………………………………………...184
第五章 討論………………………………………………………185
第六章 結論………………………………………………………189
第七章 展望………………………………………………………196
參考文獻…………………………………………………………...198
附錄一……………………………………………………………...203
自傳………………………………………………………………...206
1. H. Brown and B. B. Knapf, in: Modern Electroplating 3rd, Electrochemical Society, 1974
2. 李鴻年,張紹恭,張炳乾,宋子玉等編著, ”實用電鍍工藝”, 國防 工業出版社, 1991, 154-203
3. 蘇癸陽編譯, “實用電鍍理論與實際”, 復文書局
4. W. H. William, in: The Properties of Electrodeposited Metals and Alloys, 2nd (American Electroplators and Surface Finishing Society, Florida), 1986, 253-325
5. 陳志雄, ”大鋼胚連續銅模鍍鎳研究”, 技術與訓練,中鋼研究發展報告, 1986, 11-19
6. G. Maurin, A. Lavanant, “Electrodeposition of Nickel/Silicon Carbide Composite Coatings on Rotating Disc Electrode”, J. of Applied Electrochemistry, Vol.25, 1995, 1113-1121
7. F. K. Sautter, “Electrodeposition of Dispersion-Hardened Nickel-Al2O3 Alloys” J. of The Electrochemical Society, Vol.110, No.6, 1963, 557-560
8. M. Verelst, J. P. Bonino and A. Rousset, “Electroforming of Metal Matrix Composite:Dispersoid Grain Size Dependence of Thermostructural and Mechanical Properties”, Materials Science and Engineering, A135, 1991, 51-57
9. G. A. Di Bari, “Nickel Plating”, Vol.5, ASM Materials Handbook,1994, 201-212
10. Don Baudrand, “Nickel Sulfamate Plating, Its Mystique and Practicality”, Metal Finishing, Vol.94, No.7, 1996, 15-18
11.彭裕民譯, ”鍍鎳的基本溶液及工業電鍍的應用”, Vol.64, 54-64
12.Lowenheim, Fredeeerick Adolph, “Electroplating”, American Electroplaters’ Society, McGraw-Hill, 1978
13.S. K. Verma and H. Wilman, “The Structure and Crystal Growth of Nickel Electrodeposite From a Sulphamate Bath on Polished Polycrystalline copper, in Relation to Thickness, Rate of Deposition, Temperature and Stirring”, J. Phys. D: Appl. Phy., Vol.4, 1971,2051-2065
14.S. Nakahara and E. C. Felder, “Defect Structure in Nickel Electrodeposits”, J. Electrochem. Soc. : Electrochemical Science and Technology, Vol.129, No.1, 1982, 45-49
15.G. Konishi, “Stress in Nickel Plating”, Journal of the Metal Finishing Society of Japan, Vol.11, 1960, 263-268
16.J. W. Dini and H. R. Johnson, “The Influence of Nickel Sulfamate Operating Parameters on The Impurity Content and Properties of Electrodeposits”, Thin Solid Films, Vol.54, 1978, 183-188
17.S. W. Banovic, K. Barmak and A.R. Marder, “Microstructure Characterization and Hardness of Electrodeposited Nickel Coatings From a Sulphamate Bath”, Journal of Materials Science, Vol.33, 1998, 639-645
18.彭坤增, “銅模鍍鎳層組織及性質受熱潛熱之研究”, 大葉大學機械工程研究所碩士論文, 1998
19. B. E. Jacobson and J. W. Sliwa, “Structure and Mechanical Properties of Electrodeposited Nickel”, Plating and Surface Finishing, Vol.60, No.9, 1979, 42-47
20.R. Weil, W. N. Jacobus, Jr., and S. J. DeMay, “The Effect of Annealing on the Microstructure and Hardness of Some Nickel Electrodeposits”, Journal of The Electrochemical Society, Vol.111, No.9, 1964, 1046-1052
21.J. W. Dini, “Electrodeposition”, The Materials Science of Coatings and Substrates”, 1992
22.Yasuhiko Kawanami, Masahiko Nakano, Masanori Kajihara and Tsutomu Mori, “Growth Rate of Fine Grains Formed by Diffusion Induced Recrystallization in Ni Layer of Cu/Ni/Cu Diffusion Couples”, Materials Transactions, JIM, Vol.39, No.1,1998,218-224
23.H. R. Johnson, J. W. Dini and R. E. Stoltz, “The Influence of Thickness, Temperature and Strain Rate on the Mechanical Properties of Sulfamate Nickel Electrodeposits”, Plating and Surface Finishing, Vol.66, No.3, 1979, 57-61
24.D. R. Cliffe and J. P. G. Farr, “Growth Habits of Electrodeposited Nickel and Cobalt”, Journal of the Electrochemical Society, Vol.111, No.3, 1964, 299-306
25.J. A. Crossley, P. A. Brook and J. W. Cuthbertson, “Electron-Microscope Studies of the Structure of Nickel Deposited in the Presence of Addition Agents”, Electrochimica Acta, Vol.11, 1966, 1153-1161
26.R. Weil and H. C. Cook, “Electron-Microscopic Observations of the Structure of Electroplated Nickel”, Journal of the Electrochemical Society, Vol.109, No.4, 1962, 295-301
27.M. Saleem, P. A. Brook and J. W. Cuthberrtson, “Note on the Structure of Nickel Deposited from Sulphamate Solutions”, Electrochimica Acta, Vol.12, 1967, 553-555
28.S. Kaja, H.W. Pickering and W.R. Bitler, “Effect of PH on the Microstructure of Nickel Electrodeposits:A TEM Study”, Plating and Surface Finishing, January, 1986, 58-61
29.R. Weil, H. J. Sumka, and G. W. Greene, “Annealing Behavior of Fine-Grained Nickel Electrodeposits”, J. Electrochem. Soc.:Electrochemical Science, Vol.114, No.5, 1967, 449-451
30.J. Amblard, I. Epelboin, M. Froment and G. Maurin,”Inhibition and Nickel Electrocrystallization”, Journal of Applied Electrochemistry, Vol.9, 1979, 233-242
31.G. D. Hughes, S. D. Smith, C. S. Pande, H. R. Johnson and R. W. Armstrong, “Hall-Petch Strengthening for the Microhardness of Twelve Nanometer Grain Diameter Electrodeposited Nickel”, Metallurgica, Vol.20, 1986, 93-97
32.E. J. Suoninen, T. Hakkarainen, “Letters”, Journal of Materials Science, Vol.3, 1968, 446-448
33.D. N. Lee nad G. C.Ye, “Orientation and Microstructure of Watts and Bright Nickel Electrodeposits”, Plating and Surface Finishing, Vol.68, November, 1981, 46-50
34.A. Argyriou and N. Spyrellis, “Nickel Electrodeposition From All-Sulphate and All-Chloride Baths. Texture and Microhardness”, Trans. Inst. Metal Finish, Vol.71, No.3, 83-84
35.N. Atanassov, K. Gencheva and M. Bratoeva, “Properties of Nickel-Tungsten Alloys Electrodeposited from Sulfamate Electrolyte”, Plating and Surface Finishing, February, 1997, 67-71
36.F. J. A. DEN BROEDER, “Diffusion-Induced Grain Boundary Migration and Recrystallization, Exemplified by the System Cu-Zn”, Thin Solid Films,Vol.124,1985,135-148
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊