跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李彥勳
研究生(外文):Yen-Shin Lee
論文名稱:靜止圓盤承受旋轉週期邊緣負荷之穩定性分析
論文名稱(外文):Dynamic Stability of a Disk Subjected to Rotating Periodic Edge Loads
指導教授:楊條和
指導教授(外文):T. H. Young
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:112
中文關鍵詞:圓盤承受邊緣負荷之穩定性分析
外文關鍵詞:stability of a disk subjected to edge loads
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
旋轉圓盤在機械領域中使用非常廣泛,隨著精密機械時代的來臨,更凸顯旋轉圓盤角色的重要性,既有相關文獻,對於圓盤承受週期參數激振的研究卻不多見。
本文擬研究一圓盤承受定速旋轉的邊緣負荷之動態穩定性。在此研究中,依邊緣負荷為集中之共平面靜態力或週期力來探討。本文首先進行圓盤之應力分析,以決定因邊緣負荷所產生之應力分佈,再利用有限元素法得到離散化之系統運動方程式,而後利用模態分析法將耦合的運動方程式部分解耦化。最後以多尺度擾動法求得系統在各種不同之共振情況下之穩定邊界。
研究結果顯示,若邊緣負荷為靜態力,當作用力角度從徑向逐漸變成切線向時,不穩定區會隨之擴大。若邊緣負荷為週期力,作用力角度於 時系統最不穩定。
Rotating disks are widely used structural elements in various kinds of machinery. They are even more popular in modern ultra-precision machinery. However, studies of disks subjected to parametric excitations are very scarce in the existing literature .
This thesis presents a study of the dynamic stability of a stationary disk subjected spinning edge loads. The spinning edge loads are in-plane forces, which may be static or periodic in time. In this study, stress analysis is first conducted to determine the initial stresses caused by the edge loads. The finite element method is applied then to yield the discretized equations of motion. Finally, the method of multiple scales is adopted to determine the stability boundaries of the system.
From the results obtained, it is observed that if the edge loads are static force, unstable regions will exlarge with the angle between the force and the radial direction . When the edge loads are periodic forces, the system will be the most unstable as the angle of the loads is 45 .
目 錄
頁次
中文摘要…………………………………………………………….

英文摘要…..………………………………………………………... II
誌謝…………………………………………………………………. III
目錄……………………………………………………………….… IV
圖表索引……………………………………………………………. VI
第一章 緒論………………………………………………………... 1
1.1 前言………………………………………………………….. 1
1.2 文獻回顧…………………………………………………….. 2
1.3 研究動機與目的…………………………………………….. 6
第二章 理論分析………………………………………………….. 8
2.1圓盤受旋轉邊緣負荷之運動方程式………………………… 8
2.2圓盤之起始應力……………………………………………. 10
2.3有限元素法之離散化……………………………………….. 24
2.4模態分析……………………………………………………… 35
第三章 動態穩定性分析………………………………………….. 38
3.1靜態邊緣負荷………………………………………………… 38
3.2週期邊緣負荷………………………………………………… 46
第四章 數值分析與討論…………….……………………………. 57
4.1圓盤之自然頻率……………………………………….…… 57
4.2 圓盤承受旋轉靜態邊緣負荷之穩定性.…………………. . 58
4.3 圓盤承受旋轉週期邊緣負荷之穩定性.…………………. . 62
第五章 結論展望……………………………….…………………. 94
5.1結論…………………………………...…………………….. 94
5.2 未來展望………………………………...……………….... 95
參考文獻……………………………………………………………. 97
附錄A………………………………………………………………. 101
1.Lamb, H. and Southwell, R. V., 1921, ”The Vibration of Spinning Disk,” Proceedings of Royal Society, Vol. 99, pp. 272-280.
2.Southwell, R. V., 1921, ”On the Transverse Vibrations of a Uniform Circular Disk at Its Center and on the Effects of Rotation,” Proceedings of Royal Society, Vol. 101, pp. 133-153.
3.Eringen, A. C., 1955, ”Response of an Elastic Diak to Impact and Moving Load, ” Quarterly Journal of Mechanics and Applied Mathematics, Vol. 8, pp. 385-389.
4.Mote, C. D., Jr., 1965, ”Free Vibrations of Initially Stressed Circular Disks,” ASME Journal of Engineering for Industry, Vol. 87, pp. 258-264.
5.Nowinski, J. L., 1964, ”Nonlinear Transverse Vibration of a Spinning Disk,” Journal of Applied Mechanics, Transections of ASME, Vol. 31, pp. 72-78.
6.Advani, S. H. and Bulkeley, P. Z., 1969, ”Nonlinear Transverse Vibration and Waves in Spinning Membrane Discs,” International Journal of Non-Linear Mechanics, Vol. 4, pp. 123-127.
7.Carlin, J. F., Appl, F. C., Bridwell, H. C. and Dubois, R. P., 1975, ”Effects of Tensioning on Bucking and Vibration of Circular Saw Blades,” ASME Journal of Engineering for Industry, Vol. 2, pp. 37-48.
8.Iwan, W. D. and Moeller, T. L., 1976, ”The Stability of a Spinning Elastic Disk With a Transverse Load System,” ASME Journal of Applied Mechanics, Vol. 43, pp. 485-490.
9.Tani, J. and Nakamura, T., 1978, ”Dynamic Stability of Annular Plates Under Periodic Radial Loads,” Journal of Acoustical Society of America, Vol. 64, pp. 827-831.
10.Tani, J. and Nakamura, T., 1980, ”Dynamic Stability of Annular Plates Under Pulsating Torsion,” ASME Journal of Applied Mechanics, Vol. 47, pp. 595-600.
11.Srinivasan, V. and Ramamurti, V., 1980, ”Dynamic Response of an Annular Disk to a Movig Concentrated In-Plane Edge load, ” Journal of Sound and Vibration, Vol.72,pp. 251-262
12.Shen, I. Y. and Mote, C. D., Jr. 1991, ”On the Mechanisms of Instability of a Circular Plate Under a Rotating Spring-Mass-Dashpot System,” Journal of Sound and Vibration, Vol.148, pp. 307-318.
13.Shen, I. Y. and Mote, C. D., Jr. 1992, ”Parametric Resonances of an Axisymmetric Circular Plate Subjected to a Rotating Mass,” Journal of Sound and Vibration, Vol.152, pp. 573-576.
14.Chen, J. S. and Bogy, D. B. 1992, ”Effects of Load Parameters on the Natural Frequencies and Stability of a Flexible Spinning Disk with a Stationary Load System,” Journal of Applied Mechanics, Vol. 59, pp. 230-235.
15.Chen, J. S. and Bogy, D. B.,1993, ”The Effects of a Space-Fixed Friction Force on the In-Plane Stress and Stability of a Spinning Disk,” Journal of Applied Mechanics, Vol. 60, pp. 646-648.
16.Chen, J. S.,1994, ”Stability Analysis of a Spinning Elastic Disk Under a Stationary Concentrated Edge Load,” Journal of Applied Mechanics, Vol. 61, pp.788-792.
17.Shen, I. Y. and Song, Y., 1996, ”Stability and Vibration of a Rotating Circular Plate Subjected to Stationary In-Plane Edge Loads,” Journal of Applied Mechanics, Vol. 63, pp.121-127.
18.Chen, J. S., 1997, ”Parametric Resonance of a Spinning Disk Under Space Fixed Pulsating Edge Loads,” Journal of Applied Mechanics, Vol. 64, pp. 139-143.
19.Kammer, D. C. and Schlack, A. L., Jr., 1987, ”Effects of Nonconstant Spin Rate on the Vibration of a Rotating Beam,” Journal of Applied Mechanics, Vol. 54, pp. 305-310.
20.Young, T. H. and Liou, G. T., 1992, ”Coriolis Effect on the Vibration of a Cantilever Plate with Time-Varying Rotating Speed,” Journal of Vibration and Acoustics, Vol. 114, pp. 232-241.
21.Young, T. H. and Liou, G. T., 1993, ”Dynamic Response of Rotor-Bearing Systems with Time-Dependene Spin Rates,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 115, pp. 239-245.
22.Young, T. H., 1992, ”Nonlinear Transverse Vibration and Stability of Spinning Disks with Nonconstant Spin rate,” ASME Journal of Vibration and Acoustics, Vol. 114, pp. 506-513.
23.Phylactopoulos, A. and Adams, G. G., 1999, ” Transverse Vibration of a Rectangularly Orthotropic Spinning Disk, Part 1: Formulation and Free Vibration,” ASME Journal of Vibration and Acoustics, Vol. 121, pp. 273-279.
24.Phylactopoulos, A. and Adams, G. G., 1999, ” Transverse Vibration of a Rectangularly Orthotropic Spinning Disk, Part 2: Forced Vibration and Critical Speeds,” ASME Journal of Vibration and Acoustics, Vol. 121, pp. 280-285.
25.Young, T. H. and Wu, M. Y., 2004, ”Dynamic Stability of Disks with Periodically Varying Spin Rates Subjected to Stationary In-Plane Edge Loads,” Journal of Applied Mechanics, Vol. 71, pp. 450-458.
26.Young, T. H. and Lin, C. Y., 2006, ”Stability of a Spinning Disk Under a Stationary Oscillating Unit,” Journal of Sound and Vibration, Vol. 298, pp. 307-318.
27.Timoshenko, S. P. and Goodier, J. N., 1970, Theory of Elasticity, McGraw-Hill, New York.
28.Vogel, S. M., and Skinner, D. W., 1965, “Natural Frequencies of Transversely Vibrating Uniform Annular Plates,” ASME Journal of Applied Mechanics, Vol. 32, pp. 926-931.
29.Leissa, A. W., 1969, Vibration of Plates, U. S. Government Printing Office, Washington, D.C. .
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文