跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/06 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林俊廷
研究生(外文):Jyun-Ting Lin
論文名稱:人字型凹槽軸承結合止推液壓結構熱效應之數值研究
論文名稱(外文):Numerical Study of Thermal Effects in the Coupled Herringbone-Grooved Journal and Thrust Hydrodynamic Bearing
指導教授:王謹誠
指導教授(外文):Chin-Cheng Wang
口試委員:陳明志林育才
口試委員(外文):Ming-Jyh CHERNYur-Tsai Lin
口試日期:2016-7-12
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:74
中文關鍵詞:Lubricant viscosityHerringbone-groovedThrust bearingLoad capacityThermal effects
外文關鍵詞:潤滑油黏度人字形止推軸承負載能力熱效應
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
我們透過求解納維-斯托克斯方程和能量方程來對液壓軸承熱效應進行數值模擬分析。對液壓軸承來說,眾所皆知溫度影響潤滑油的粘度和軸承的負載能力。因此,本研究的主要目的是提出在不同潤滑油粘度及偏心比下,軸承的溫度與壓力分佈。在這項研究中,結果包括軸頸軸承索末菲數的驗證,以及人字形軸承、人字形軸承結合止推軸承與人字形軸承結合溝槽結構止推軸承的溫度與壓力分佈。結果顯示當潤滑油薄膜溫度升高,其軸承負載能力下降。偏心比增加,軸向速度和壓力差變大。人字形軸承有效地將高壓分散於溝槽尖端,增加穩定性。此外,結合人字形軸承與溝槽結構止推軸承,運作時也會產生額外作用力穩定軸的運轉。這些發現將有助於了解液壓軸承的最佳工作環境以便未來軸承設計。
We numerically analyzed a hydrodynamic bearing with thermal effects by solving Navier-Stokes and energy equations. For a hydrodynamic bearing (HDB), it is well known that high temperature affects the lubricant viscosity and the bearing load capacity. Therefore, the main objective of this study is to present temperature and pressure distribution of a hydrodynamic bearing under different values of lubricant viscosity and eccentricity ratio. In this study, the results include the verification of Sommerfeld number for a journal bearing, pressure and temperature distribution for herringbone-grooved journal bearing (HGJB), HGJB with thrust bearing, and HGJB with grooved thrust bearing. The bearing characteristics such as load capacity and eccentricity ratio are also discussed. Results show that the load capacity of the bearing decreases as temperature increase. Also the axial velocity and pressure difference rise as the eccentricity ratio increase. HGJB concentrates the pressure distribution on the groove tip. Also, the HGJB with grooved thrust bearing can be used to stabilize the journal. These findings may help and facilitate the bearing design for a suitable operating environment in the future.
摘 要 ................................................................................................. ii
ABSTRACT ................................................................................................. iii
Ackonwledgements ...................................................................................... iv
Contents ......................................................................................................... v
List of Tables ................................................................................................ vi
List of Figures ............................................................................................. vii
Nomenclatures .............................................................................................. xi
1. Introduction ............................................................................................ 1
2. Numerical Model ................................................................................... 5
2.1 Problem Descriptions ...................................................................... 5
2.2 Governing Equations ....................................................................... 6
2.3 Boundary Conditions ...................................................................... 7
2.3.1 Case 1: Journal bearing ........................................................ 7
2.3.2 Case 2: HGJB ....................................................................... 8
2.3.3 Case 3: HGJB with thrust bearing ....................................... 8
2. 3.4 Case 4: HGJB with grooved thrust bearing ........................ 9
2.4 Grid Independence .......................................................................... 9
3. Results and Discussion ......................................................................... 11
3.1 Case 1: Journal bearing ................................................................. 11
3.2 Case 2: HGJB ................................................................................ 13
3.3 Case 3: HGJB with thrust bearing ................................................ 14
3.4 Case 4: HGJB with grooved thrust bearing .................................. 15
4. Conclusions and Future Work .............................................................. 17
4.1 Conclusions ................................................................................... 17
4.2 Future work ................................................................................... 18
References ................................................................................................... 19
[1] 何玠霖, 人字形凹槽液動軸承之數值分析, 碩士論文, 機械工程研究所, 元智大學, 桃園, 台灣, 2015.
[2] B. C. Majumdar, The thermohydrodynamic solution of oil journal, Wear 31, 1975, pp. 287-94.
[3] J.A. Cole, An experimental investigation of temperature effects in journal bearings, Proc. Conf. Lubrication and Wear, 1957, 111 (Instn Mech. Engrs, London).
[4] S. S. Banwait, H.N. Chandrawat, Study of thermal boundary conditions for a plain journal bearing, Tribology International 31, 1998, pp. 289-296.
[5] S. Boubendir, S. Larbi, R. Bennacer, Numerical study of the thermo-hydrodynamic lubrication phenomena in porous journal bearings, Tribology International 44, 2011, pp. 1-8.
[6] 高裕翔, 考慮交變負荷和擠壓膜之軸頸軸承分析, 碩士論文, 機械工程研究所, 國立台灣大學, 台北, 台灣, 2008.
[7] M. Sahu, M. Sarangi, B.C. Majumdar, Thermal-hydrodynamic analysis of herringbone grooved journal bearings, Tribology International 39, 2006, pp.1395-1404.
[8] U. Singh, L. Roy, M. Sahu, Steady-state thermo-hydrodynamic analysis of cylindrical fluid film journal bearing with an axial groove, Tribology International 41, 2008, pp. 1135-1144.
[9] G. H. Jang, K. S. Kim, H. S. Lee, C. S. Kim, Analysis of a Hydrodynamic bearing of a HDD spindle motor at elevated temperature, Journal of Tribology 126, 2004, pp. 353-359.
[10] T. H. Yu, F. Sadeghi, Groove effects on thrust washer lubrication, Journal of Tribology 123, 2001, pp. 295-304.
[11] Motor Oils - Dynamic Viscosity, Retrieved July 20, 2016, from http://www.engineeringtoolbox.com/dynamic-viscosity-motor-oils-d_1759.html.
[12] G.W. Stachowiak and A.W. Batchelor, Engineering Tribology, Butterworth-Heinemann, 1993, pp.150-153.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top