跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/29 18:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂冠毅
研究生(外文):Kuan-yi Lu
論文名稱:微接觸印刷上墨技術改進研究
論文名稱(外文):Improvement of the Inking Method of Micro-Contact Printing
指導教授:鄭榮偉
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:81
中文關鍵詞:上墨技術圖案化微接觸印刷
外文關鍵詞:contact printingpatterninginking
相關次數:
  • 被引用被引用:9
  • 點閱點閱:366
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本實驗室致力於軟性電子製程開發,其重點在於有機薄膜的圖案化技術,而本技術的關鍵點於如何在低溫、均勻性與可隨意控制膜厚之下製作出有機薄膜圖案,而本實驗室開發之創新物理吸附式微接觸印刷之轉移上墨技術已可製作出膜厚控制能力為100奈米以下以及良好之有機圖案薄膜解析度為10微米的MEH-PPV薄膜,但是應用到其他的高分子材料會發生問題。
因此本文中,將對此製程技術應用於有機薄膜高解析度圖案化之上墨技術研究做一系列的探討;針對圖案化PMMA及P3HT薄膜產生的問題,如解析度不高以及邊緣效應等問題,利用增加接觸面積實驗和增加印模吸附功實驗和有限元素分析上墨及轉印過程印模與印泥受力情形,以了解其發生的原因,並且提出了PDMS海綿預潤濕印模的方式,解決施力過大的問題,讓PMMA及P3HT達到10微米的解析度;最後利用伺服馬達控制之滾輪及移動平台達成轉移上墨及轉印,達成半自動化的製程。
Our group have devoted to flexible electronics fabrication for a long time. There are three key issues for flexible electronics fabrication: patterning thin film on substrate without heating, the uniformity and thickness controllability of the thin film, and using Innovative μCP process” (Innovative Micro-Contact Printing process) with transfer inking technique in our laboratory has achieved that the MEH-PPV thin film thickness is lower than 100 nm and the resolution is 10 μm. But applied to other polymer will be problems.
In this thesis, the high fidelity patterning of the innovative μCP process is evaluated. About patterning PMMA and P3HT thin film cause some problems, such as low fidelity and edge effect. I did some experiment and used finite element analysis to analyze transfer inking and printing process force application on stamp and inking pad. To invent PDMS sponge for stamp pre-wetting, the force application on stamp and inking pad too much be solved. Achieved that PMMA and P3HT thin film resolution is 10 μm. Using roller and carrier controlled by servo motor to transfer ink and print, and achieved semi-automatic process.
摘要…… iii
第一章 序論 1
1-1 背景及研究動機 1
1-2 文獻回顧 6
1-3 研究目的及貢獻 10
1-4 論文架構 10
第二章 微接觸印刷上墨技術改進 11
2-1 介電與半導體高分子轉移上墨問題探討 11
2-2 介電高分子上墨技術改進 15
2-2.1 增加預潤濕溶劑於印模 15
2-2.2 印模氧電漿處理轉印介電高分子圖案化薄膜 18
2-2.3 利用有限元素分析印模之受力形變 21
2-2.4 使用PDMS海綿預潤濕印模 28
2-3 半導體高分子上墨技術改進 32
第三章 高分子圖案化薄膜轉印結果與討論 35
3-1 滾輪與移動平台轉印高分子圖案化薄膜 35
3-2 半導體高分子圖案化薄膜轉印結果與討論 41
3-3 介電高分子圖案化薄膜轉印結果與討論 44
第四章 結論與未來工作 47
4-1 結論 47
4-2 未來工作 48
參考文獻 49
附錄A 表面能量測取樣說明 52
附錄B 膜厚與粗糙度資料點取樣說明 54
附錄C ANSYS分析轉移上墨 56
附錄D ANSYS分析轉印 63
附錄E PDMS 楊式模數 69
附錄F 二階段預潤濕技術 71
附錄G 使用PDMS海綿預潤濕印模參數定義 72
附錄H 滾輪與移動平台轉印高分子圖案化薄膜參數定義 76
附錄I 實驗儀器與材料 80
[1]M. Hambsch, K. Reuter, M. Stanel, G. Schmidt, H. Kempa, U. Fügmann, U. Hahn, A.C. Hübler, “Uniformity of fully gravure printed organic field-effect transistors,” Materials Science and Engineering B 170 93–98, 2010.
[2]蔡金津(工研院電光所), 印刷技術於軟性電子產業之應用, 教育部影像顯示科技人才培育計畫2006種子教師培育進階課程前瞻Flexible課程講義, 95年8月.
[3]J. Birnstock, J. Blassing, A. Hunze, and M. Scheffel, “Screen-printed passive matrix displays based on light-emitting polymers,” Appl. Phys. Lett., vol. 78, pp. 3905-3907, 2001.
[4]M. B. Wolk, P. F. Baude, J. M. Florczak, F. B. McCormick, and Y. Hsu, “Thermal transfer element and process for forming organic electroluminescent devices,” US Patent 6,582,876, Jun. 2003.
[5]G. B. Blanchet, Y-L Loo, J. A. Rogers, F.Gao, and C. R. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett., vol. 82, pp. 463-465, 2003.
[6]A. Kumar, and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching,” Appl. Phys. Lett., vol. 63, pp. 2002-2004, 1993.
[7]H. A. Biebuyck, N. B. Larsen, E. Delamarche, and B. Michel, “Lithography beyond light: Microcontact printing with monolayer resists,” IBM J. Res. Dev., vol. 41, pp. 159-170, 1997.
[8]T. Granlund, T. Nyberg, L. S. Roman, M. Svensson, and O. Inganas, “Patterning of Polymer Light-Emitting Diodes with Soft Lithography,” Adv. Mater., vol. 12, pp. 269-273, 2000.
[9]J. Park, S-O Shim, and H. H. Lee, “Polymer thin-film transistors fabricated by dry transfer of polymer semiconductor,” Appl. Phys Lett., vol. 86, pp. 073505, 2005.
[10]R. D. Bennett, A. J. Hart, A. C. Miller, P. T. Hammond, D. J. Irvine, and R. E. Cohen, “Creating Patterned Carbon Nanotube Catalysts through the Microcontact Printing of Block Copolymer Micellar Thin Films,” Langmuir, vol. 22, pp. 8273-8276, 2006.
[11] P. S. Hale, P. Kappen, N. Brack, W. Prissanaroon, P. J. Pigram, and J. Liesegang, “Micropatterning of fluoropolymers,” Appl. Surf. Sci., vol. 252, pp. 2217-2228, 2006.
[12]C. Y. Kuo, “Characterization and Performance Evaluation of Innovated Micro-Contact Printing,” 國立中正大學機械工程研究所碩士論文, 民96年
[13]S. H. Tsai, “High-Fidelity Micro-Contact Printingat Room Temperature for Low Polar Polymers,” 國立中正大學光機電整合工程研究所碩士論文, 民98年
[14]J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Analytical Chemistry, Vol.75, No.23 6544- 6554, 2003
[15]C. Y. Lee, “Micro-Contact printing at room-temperature and Its Application to Flexible Electronics,” 國立中正大學機械所碩士論文,民國98年
[16]Dawen Li and L Jay Guo, “Organic thin film transistors and polymer light-emitting diodes patterned by polymer inking and stamping,“ J. Phys. D: Appl. Phys. 41, 105-115, 2004.
[17]S. N. Jung, C. K. Kang, I. D. Jung, S. M. Lee, P. G. Jung and J. S. Ko, “ Fabrication of curved copper micromesh sheetsusing flexible PDMS molds,” Microsyst Technol, vol. 14, pp. 829-833, 2008.
[18]L. Dawen, and L. J. Guo., “Micron-scale organic thin film transistors with conducting polymer electrodes patterned by polymer inking and stamping,” Appl. Phys. Lett., vol. 88, pp. 063513-1, 2006.
[19]K. J. Hsia, Y. Huang, E. Menard, J.-U. Park, W. Zhou, J. Rogers and J. M. Fulton, “Collapse of stamps for soft lithography due to interfacial adhesion,“ Applied Physics Letters, vol. 86, 2005.
[20]K. G. Sharp, G. S. Blackman, N. J. Glassmaker, A. Jagota, and C. Y. Hui, “Effect of Stamp Deformation on the Quality of Microcontact Printing: Theory and Experiment, ” Langmuir, 20, 6430-6438 , 2004.
[21]Mark A Eddings, Michael A Johnson and Bruce K Gale, “Determining the optimal PDMS–PDMS bonding technique for microfluidic devices, ” Received 15 January 2008, in final form 6 March 2008,Published 25 April 2008.
[22]Xue Feng, Matthew A. Meitl, Audrey M. Bowen, Yonggang Huang,|Ralph G. Nuzzo, and John A. Rogers,’’ Competing Fracture in Kinetically Controlled Transfer Printing, ” ReceiVed May 28, 2007. In Final Form: September 26, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top