跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/04 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:董書瑋
研究生(外文):Shu-Wei Tung
論文名稱:具倒鉤微針乾式電極陣列之研製及其於腦波量測的應用
論文名稱(外文):Development of Barbed Dry Electrode Arrays and Application for Electroencephalography
指導教授:楊燿州楊燿州引用關係
指導教授(外文):Yao-Joe Yang
口試委員:陳國聲蘇裕軒范士岡
口試日期:2013-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:102
中文關鍵詞:倒鉤乾式電極矽濕蝕刻附著力接觸阻抗腦電波
外文關鍵詞:barbed dry electrodesilicon wet etchingadhesive forcecontact impedanceEEG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:702
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出一低成本之矽濕蝕刻製程,製作具有倒鉤之微針乾式電極陣列,並用於腦電波之量測。有別於以往傳統濕式電極,使用乾式電極量測腦電波時,不需進行皮膚處理或塗抹導電膠,增加量測之便利性。製程技術是以矽濕蝕刻為基礎,先以氫氧化鉀非等向性濕蝕刻製作初步金字塔型電極,再利用氫氟酸/硝酸等向性濕蝕刻製作倒鉤結構,並在電極上製作矽通孔,增加電極組裝後之導電性。其中,電極倒鉤曲率半徑與蝕刻時間成線性遞減關係。本研究使用之倒鉤電極平均長度為155 μm,底部寬度為86 μm。後端組裝方面,是使用移除導電膠後的心電波濕式電極貼片,再使用銀膠將乾式電極固定於鈕扣電極部分,即完成後端組裝。拉力量測結果顯示,倒鉤電極與軟性材料及皮膚之附著力會高於無倒鉤之電極。在電極-皮膚接觸阻抗量測方面,具有矽通孔之倒鉤電極較一般之倒鉤電極阻抗低;使用心電波濕式電極貼片組裝之倒鉤乾式電極,其阻抗會低於將導線一端使用銀膠固定在背面之乾式電極;具倒鉤之乾式電極,其接觸阻抗會略高於無倒鉤之乾式電極;將面積校正後之濕式電極接觸阻抗與乾式電極比較,在頻率300 Hz以下時,其值會大於無倒鉤乾式電極之接觸阻抗,但小於有倒鉤之乾式電極;頻率300 Hz以上時,其值會小於有倒鉤及無倒鉤之乾式電極接觸阻抗。使用倒鉤乾式電極量測腦電波,其訊號波形與濕式電極相似,表示本研究之倒鉤乾式電極能應用於腦電波之量測。

In this work, barbed dry electrodes array for EEG measurement was designed and fabricated by using low-cost silicon wet etching techniques. Compared with traditional wet electrodes, the proposed dry electrodes can avoid skin preparation and electrolytic gel during measurement process. The preliminary pyramidal electrodes arrays were fabricated by KOH etching, and the barbed shapes were formed by HF/HNO3 etching. The radii of curvature of barbs decrease almost linearly as the etching time increases. Also, a through-silicon via (TSV), which improves the conductivity between the electrode lead and the tip array, was created on the substrate during the etching process. The average height of the dry electrodes is about 155 μm, and the average base width is 86 μm. By using conductive silver epoxy, the fabricated dry electrode was bonded with a traditional commercial ECG electrode, on which the electrolytic gel was removed. The detaching force measurement results showed that the barbed electrodes array was more adherent to soft materials than the pyramidal electrodes array. In the electrode-skin contact impedance measurement, the impedance of barbed dry electrodes is slightly higher than that of the wet electrodes. We also demonstrated that the proposed barbed dry electrodes can be used to measure the EEG signal effectively.

致謝 I
摘要 III
Abstract IV
目錄 V
圖目錄 VIII
表目錄 XII
符號說明 XIII
第一章 緒論 1
1.1 前言 1
1.2 腦電波概述 2
1.2.1 腦電波的產生 2
1.2.2 腦電波的分類 3
1.2.3 乾式與濕式電極 5
1.3 文獻回顧 6
1.3.1 針狀乾式電極 6
1.3.2 特殊乾式電極 20
1.4 研究動機與目的 26
1.5 論文架構 27
第二章 理論與設計 28
2.1 單晶矽之結構 28
2.2 矽濕蝕刻原理 29
2.2.1 非等向性濕蝕刻 30
2.2.2 等向性濕蝕刻 34
2.3 電極-皮膚之等效電路 36
2.4 電極設計規劃 37
第三章 製程方法與結果 38
3.1 倒鉤電極製作流程 38
3.2 製程技術與原理 40
3.2.1 光罩設計與製作 40
3.2.2 晶格方向對準 42
3.2.3 晶圓清洗 43
3.2.4 微影製程 44
3.2.5 反應離子蝕刻 49
3.2.6 晶圓切割 50
3.2.7 非等向性濕蝕刻 51
3.2.8 等向性濕蝕刻 52
3.2.9 濺鍍 52
3.3 倒鉤電極製作結果 53
3.3.1 倒鉤電極蝕刻結果 54
3.3.2 不同高度電極製作 57
3.3.3 不同倒鉤陣列樣式設計 61
3.4 倒鉤電極導電性改良(矽通孔) 63
3.5 等向性濕蝕刻與倒鉤曲率半徑之探討 65
3.6 電極後端組裝 66
第四章 量測結果與討論 68
4.1 電極陣列附著力量測 68
4.1.1 附著力量測架設 68
4.1.2 附著力量測結果與討論 70
4.2 電極-皮膚接觸阻抗量測與討論 72
4.2.1 電極-皮膚接觸阻抗量測架設 72
4.2.2 電極-皮膚接觸阻抗量測結果 73
4.2.3 電極-皮膚接觸阻抗模型 76
4.2.4 電極面積校正 78
4.3 腦電波訊號量測 81
4.3.1 腦電波量測設備架設 82
4.3.2 腦電波量測結果與討論 82
4.4 倒鉤乾式電極安全性討論 84
第五章 結論與未來展望 87
5.1 結論 87
5.2 未來展望 88
參考文獻 89
附錄 A 99


[1]吳進安,《神經診斷學》,國立編譯館主編,揚智文化,台北市,1998。
[2]關尚勇、林吉合,《破解腦電波》,藝軒圖書出版社,台北市,2002。
[3]T.-P. Jung, S. Makeig, C. Humphries, T.-W. Lee, M. J. Mckeown, V. Iragui, and T. J. Sejnowski, “Removing electroencephalographic artifacts by blind source separation,” Psychophysiology, Vol. 37, pp. 163-178, 2000.
[4]T.-P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, and T. J. Sejnowski, “Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects,” Clinical Neurophysiology, Vol. 111, pp. 1745-1758, 2000.
[5]Y. Li, Z. Ma, W. Lu, and Y. Li, “Automatic removal of the eye blink artifact from EEG using an ICA-based template matching approach,” Physiological Measurement, Vol. 27, pp. 425-436, 2006.
[6]B. Babušiak, and J. Mohylova, “Eye-blink artifact detection in the EEG,” IFMBE Proceedings, Vol. 25, pp. 1166-1169, 2009.
[7]E. Forvi, M. Bedoni, R. Carabalona, M. Soncini, P. Mazzoleni, F. Rizzo, C. O’Mahony, C. Morasso, D. G. Cassara, and F. Gramatica, “Preliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinations,” Sensors and Actuators A: Physical, Vol. 180, pp. 177-186, 2012.
[8]J.-C. Chiou, L.-W. Ko, C.-T. Lin, C.-T. Hong, T.-P. Jung, S.-F. Liang, and J.-L. Jeng, “Using novel MEMS EEG sensors in detecting drowsiness application,” Biomedical Circuits and Systems Conference, London, pp. 33-36, 2006.
[9]M. Matteucci, R. Carabalona, M. Casella, E. Di Fabrizio, F. Gramatica, M. Di Rienzo, E. Snidero, L. Gavioli, and M. Sancrotti, “Micropatterned dry electrodes for brain–computer interface,” Microelectronic Engineering, Vol. 84, pp. 1737-1740, 2007.
[10]R. Luttge, S.N. Bystrova, and M.J.A.M. van Putten, “Microneedle array electrode for human EEG recording,” 4th European Conference of the International Federation for Medical and Biological Engineering, Vol. 22, pp.1246-1249, 2009.
[11]C.-T. Lin, L.-W. Ko, J.-C. Chiou, J.-R. Duannm, R.-S. Huang, S.-F. Liang, T.-W. Chiu, and T.-P. Jung, “Noninvasive neural prostheses using mobile and wireless EEG,” Proceedings of the IEEE, Vol. 96, pp. 1167-1183, 2008.
[12]N.S. Dias, J.P. Carmo, A. Ferreira da Silva, P.M. Mendesa, and J.H. Correia, “New dry electrodes based on iridium oxide (IrO) for non-invasive biopotential recordings and stimulation,” Sensors and Actuators A: Physical, Vol. 164, pp. 28-34, 2010.
[13]A. Altuna, G. Gabriel, L. M. de la Prida, M. Tijero, Anton Guimera, J. Berganzo, R. Salido, R. Villa, and L. J. Fernandez, “SU-8-based microneedles for in vitro neural applications,” Journal of Micromechanics and Microengineering, Vol. 20, 064014, 2010.
[14]S. Rajaraman, J. A. Bragg, J. D. Ross, and M. G. Allen, “Micromachined three-dimensional electrode arrays for transcutaneous nerve tracking,” Journal of Micromechanics and Microengineering, Vol. 21, 085014, 2011.
[15]C. O’Mahonya, F. Pini, A. Blake, C. Webster, J. O’Brien, and K. G. McCarthy, “Microneedle-based electrodes with integrated through-silicon via for biopotential recording,” Sensors and Actuators A: Physical, Vol. 186, pp. 130-136, 2012.
[16]L.-F. Wang, J.-Q. Liu, X.-X. Yan, B. Yang, and C.-S. Yang, “A MEMS-based pyramid micro-needle electrode for long-term EEG measurement,” Microsystem Technologies, Vol. 19, pp. 269-276, 2013.
[17]D. E. Gunning, J. M. Beggs, W. Dabrowski, P. Hottowy, C. J. Kenney, A. Sher, A. M. Litke, and K. Mathieson, “Dense arrays of micro-needles for recording and electrical stimulation of neural activity in acute brain slices,” Journal of Neural Engineering, Vol. 10, 016007, 2013.
[18]Y. Nishinaka, R. Jun, G.S. Prihandana, and N. Miki, “Fabrication of polymeric dry microneedle electrodes coated with nanoporous parylene,” IEEE Transducer, Barcelona, Spain, 2013.
[19]M.A.R. Alves, D.F. Takeuti, and E.S. Braga, “Fabrication of sharp silicon tips employing anisotropic wet etching and reactive ion etching,” Microelectronics Journal, Vol. 36, pp. 51-54, 2005.
[20]G. Charvet, L. Rousseau, O. Billoint, S. Gharbia, J.-P. Rostaing, S. Joucla, M. Trevisiol, A. Bourgerette, P. Chauvet, C. Moulin, F. Goy, B. Mercier, M. Colin, S. Spirkovitch, H. Fanet, P. Meyrand, R. Guillemaud, and B. Yvert, “BioMEATM: A versatile high-density 3D microelectrode array system using integrated electronics,” Biosensors and Bioelectronics, Vol. 25, pp. 1889-1896, 2010.
[21]E. J. Carvalho, M. A.R. Alves, E. S. Braga, and L. Cescato, “Fabrication and electrical performance of high-density arrays of nanometric silicon tips,” Microelectronic Engineering, Vol. 87, pp. 2544-2548, 2010.
[22]A. A. Hamzah, N. A. Aziz, B. Y. Majlis, J. Yunas, C. F. Dee, and B. Bais, “Optimization of HNA etching parameters to produce high aspect ratio solid silicon microneedles,” Journal of Micromechanics and Microengineering, Vol. 22, 095017, 2012.
[23]G. Ruffini, S. Dunne, L. Fuentemilla, C. Grau, E. Farres, J. Marco-Pallares, P. C. P. Watts, and S.R.P. Silva, “First human trials of a dry electrophysiology sensor using a carbon nanotube array interface,” Sensors and Actuators A: Physical, Vol. 144, pp. 275-279, 2008.
[24]L.-D. Liao, I-J. Wang, S.-F. Chen, J.-Y. Chang, and C.-T. Lin, “Design, Fabrication and Experimental Validation of a Novel Dry-Contact Sensor for Measuring Electroencephalography Signals without Skin Preparation,” Sensors, Vol. 11, pp. 5819-5834, 2011.
[25]P. Wei, R. Taylor, Z. Ding, C. Chung, O. J. Abilez, G. Higgs, B. L. Pruitt, and B. Ziaie, “Stretchable microelectrode array using room-temperature liquid alloy interconnects,” Journal of Micromechanics and Microengineering, Vol. 21, 054015, 2011.
[26]H.-C. Jung, J.-H. Moon, D.-H. Baek, J.-H. Lee, Y.-Y. Choi, J.-S. Hong, and S.-H. Lee, “CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring,” IEEE Transactions on Biomedical Engineering, Vol. 59, pp. 1472-1479, 2012.
[27]L.-F. Wang, J.-Q. Liu, B. Yang, and C.-S. Yang, “PDMS-based low cost flexible dry electrode for long-term EEG measurement,” IEEE Sensors Journal, Vol. 12, pp. 2898-2904, 2012.
[28]C.-Y. Chen, C.-L. Chang, C.-W. Chang, S.-C. Lai, T.-F. Chien, H.-Y. Huang, J.-C. Chiou, and C.-H. Luo, “A low-power bio-potential acquisition system with flexible PDMS dry electrodes for portable ubiquitous healthcare applications,” Sensors, Vol. 13, pp. 3077-3091, 2013.
[29]陳建人等,《微機電系統技術與應用》,行政院國家科學委員會精密儀器發展中心,2003。
[30]施敏、張俊彥,《半導體元件與物理與製作技術》,高立圖書公司,1996。
[31]D. A. Neamen著,李世鴻、陳勝利譯,《半導體元件物理》,台商圖書,1998。
[32]李建宜,《以濕式蝕刻研製微機電微波濾波器》,國立成功大學博士論文,2005。
[33]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution. I. Orientation dependence and behavior of passivation layer,” Journal of The Electrochemical Society, Vol. 137, pp. 3612-3626, 1990.
[34]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution. II. Influence of dopants,” Journal of The Electrochemical Society, Vol. 137, pp. 3626-3632, 1990.
[35]I. Zubel, and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions,” Sensors and Actuators A: Physical, Vol. 93, pp. 138-147, 2001.
[36]I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si (100) anisotropic etching in KOH and KOH + IPA solutions,” Sensors and Actuators A: Physical, Vol. 84, pp. 116-125, 2000.
[37]I. Zubel, I. Barycka, K. Kotowska, and M. Kramkowska, “Silicon anisotropic etching in alkaline solutions IV: The effect of organic and inorganic agents on silicon anisotropic etching process,” Sensors and Actuators A: Physical, Vol. 87, pp. 163-171, 2001.
[38]I. Zubel, and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions,” Sensors and Actuators A: Physical, Vol. 93, pp. 138-147, 2001.
[39]D. Resnik, D. Vrtacnik, U. Aljancic, M. Mozek, and S. Amon, “The role of triton surfactant in anisotropic etching of {110} reflective planes on (100) silicon,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 1174-1183, 2005.
[40]P. Pal, M. A. Gosalvez, and K. Sato, “Etched profile control in anisotropic etching of silicon by TMAH + Triton,” Journal of Micromechanics and Microengineering, Vol. 22, 065013, 2012.
[41]I. Zubel, M. Kramkowska, and K. Rola, “Silicon anisotropic etching in TMAH solutions containing alcohol and surfactant additives,” Sensors and Actuators A: Physical, Vol. 178, pp. 126-135, 2012.
[42]邱文俊,《KOH/醇類蝕刻液系統應用於單晶矽濕式蝕刻之研究》,國立清華大學博士論文,2004。
[43]O. Powell, and H. B. Harrison, “Anisotropic etching of {100} and {110} planes in (100) silicon,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 217-220, 2001.
[44]B. Schwartz, and H. Robbins, “Chemical etching of silicon-I. The system, HF, HNO3 and H2O,” Journal of The Electrochemical Society, Vol. 106, pp. 505-508, 1959.
[45]H. Robbins, and B. Schwartz, “Chemical etching of silicon-II. The system, HF, HNO3, H2O, and HC2C3O2,” Journal of The Electrochemical Society, Vol. 107, pp. 108-111, 1960.
[46]H. Robbins, and B. Schwartz, “Chemical etching of silicon-III. A temperature study in the acid system,” Journal of The Electrochemical Society, Vol. 108, pp. 365-372, 1961.
[47]B. Schwartz, and H. Robbins, “Chemical etching of silicon-IV. Etching technology,” Journal of The Electrochemical Society, Vol. 123, pp. 1903-1909, 1976.
[48]E. McAdams, “Biomedical electrodes for biopotential monitoring and electrostimulation,” Bio-Medical CMOS ICs, pp. 31-124, New York: Springer-Verlag, 2011.
[49]Y. M. Chi, T. P. Jung, and G. Cauwenberghs, “Dry-contact and noncontact biopotential electrodes: Methodological review,” IEEE Reviews in Biomedical Engineering, Vol. 3, pp. 106-119, 2010.
[50]http://vesolor.com/article/skin_general_moisturizing.aspx
[51]K. Holbrook, and G. Odland, “Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis,” Journal of Investigative Dermatology, Vol. 62, pp. 415-422, 1974.
[52]M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy,” Acta Derm-Venereol, Vol. 87, pp. 4-8, 2007.
[53]P. Griss, P. Enoksson, and G. Stemme, “Micromachined barbed spikes for mechanical chip attachment,” Sensors and Actuators A: Physical, Vol. 95, pp. 94-99, 2002.
[54]郭哲希,《微機電技術應用於倒鉤狀乾式腦電波電極之研製》,國立台灣大學碩士論文,2012。
[55]H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sensors and Actuators A: Physical, Vol. 64, pp. 33-39, 1998.
[56]A. del Campo, and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” Journal of Micromechanics and Microengineering, Vol. 17, pp. R81-R95, 2007.
[57]G. Ensell, “Alignment of mask patterns to crystal orientation,” Sensors and Actuators A-Physical, Vol. 53, pp. 345-348, 1996.
[58]陳永明,《利用介電泳效應研製具重覆記憶功能之CNT/PDMS壓力與溫度感測器》,國立台灣大學碩士論文,2011。
[59]S. D. Senturia, “Microsystem Design,” Massachusetts Institute of Technology, 2000.
[60]N. Wilke, M.L. Reed, and A. Morrissey, “The evolution from convex corner undercut towards microneedle formation: theory and experimental verification,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 808-814, 2006.
[61]N. Wilke, and A. Morrissey, “Silicon microneedle formation using modified mask designs based on convex corner undercut,” Journal of Micromechanics and Microengineering, Vol. 17, pp. 238-244, 2007.
[62]R. Ma, D.-H. Kim, M. McCormick, T. Coleman, and J. Rogers, “A stretchable electrode array for non-invasive, skin-mounted measurement of electrocardiography (ECG), electromyography (EMG) and electroencephalography (EEG),” 40th Annual Meeting of the Society-for-Neuroscience, San Diego, CA, USA, 2010.
[63]C.-T. Lin, L.-D. Liao, Y.-H. Liu, I-J. Wang, B.-S. Lin, and J.-Y. Chang, “Novel dry polymer foam electrodes for long-term EEG measurement,” IEEE Transactions on Biomedical Engineering, Vol. 58, pp. 1200-1207, 2011.
[64]S. Grimnes, “Impedance measurement of individual skin surface electrodes,” Medical & Biological Engineering & Computing, Vol. 21, pp. 750-755, 1983.
[65]J. Rosell, J. Colominas, P. Riu, R. Pallas-Areny, and J. G. Webster, “Skin impedance from 1 Hz to 1 MHz,” IEEE Transactions on Biomedical Engineering, Vol. 35, pp. 649-651, 1988.
[66]L. A. Geddes, and M. E. Valentinuzzi, “Temporal changes in electrode impedance while recording the electrocardiogram with “Dry” electrodes,” Annals of Biomedical Engineering, Vol. 1, pp. 356-367, 1973.
[67]T. Janzen, K. Graap, S. Stephanson, W. Marshall, and G. Fitzsimmons, “Differences in baseline EEG measures for ADD and normally achieving preadolescent males,” Biofeedback and Self-Regulation, Vol. 20, pp. 65-82, 1995.
[68]L.C. Fung, A.E. Khoury, S.I. Vas, C. Smith, D.G. Oreopoulos, and M.W. Mittelman, “Biocompatibility of silver-coated peritoneal dialysis catheter in a porcine model,” Peritoneal Dialysis International, Vol. 16, pp. 398-405, 1996.
[69]J. A. Cowen, R. E. Imhof, and P. Xiao, “Opto-thermal measurement of stratum corneum renewal time,” Analytical Sciences, Vol. 17, pp. 353-356, 2001.
[70]J. Enfield, M.-L. O’Connell, K. Lawlor, E. Jonathan, C. O’Mahony, and M. Leahy, “In vivo dynamic characterization of microneedle skin penetration using optical coherence tomography (OCT),” Journal of Biomedical Optics, Vol. 15, 046001, 2010.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top