[1]吳進安,《神經診斷學》,國立編譯館主編,揚智文化,台北市,1998。
[2]關尚勇、林吉合,《破解腦電波》,藝軒圖書出版社,台北市,2002。
[3]T.-P. Jung, S. Makeig, C. Humphries, T.-W. Lee, M. J. Mckeown, V. Iragui, and T. J. Sejnowski, “Removing electroencephalographic artifacts by blind source separation,” Psychophysiology, Vol. 37, pp. 163-178, 2000.
[4]T.-P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, and T. J. Sejnowski, “Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects,” Clinical Neurophysiology, Vol. 111, pp. 1745-1758, 2000.
[5]Y. Li, Z. Ma, W. Lu, and Y. Li, “Automatic removal of the eye blink artifact from EEG using an ICA-based template matching approach,” Physiological Measurement, Vol. 27, pp. 425-436, 2006.
[6]B. Babušiak, and J. Mohylova, “Eye-blink artifact detection in the EEG,” IFMBE Proceedings, Vol. 25, pp. 1166-1169, 2009.
[7]E. Forvi, M. Bedoni, R. Carabalona, M. Soncini, P. Mazzoleni, F. Rizzo, C. O’Mahony, C. Morasso, D. G. Cassara, and F. Gramatica, “Preliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinations,” Sensors and Actuators A: Physical, Vol. 180, pp. 177-186, 2012.
[8]J.-C. Chiou, L.-W. Ko, C.-T. Lin, C.-T. Hong, T.-P. Jung, S.-F. Liang, and J.-L. Jeng, “Using novel MEMS EEG sensors in detecting drowsiness application,” Biomedical Circuits and Systems Conference, London, pp. 33-36, 2006.
[9]M. Matteucci, R. Carabalona, M. Casella, E. Di Fabrizio, F. Gramatica, M. Di Rienzo, E. Snidero, L. Gavioli, and M. Sancrotti, “Micropatterned dry electrodes for brain–computer interface,” Microelectronic Engineering, Vol. 84, pp. 1737-1740, 2007.
[10]R. Luttge, S.N. Bystrova, and M.J.A.M. van Putten, “Microneedle array electrode for human EEG recording,” 4th European Conference of the International Federation for Medical and Biological Engineering, Vol. 22, pp.1246-1249, 2009.
[11]C.-T. Lin, L.-W. Ko, J.-C. Chiou, J.-R. Duannm, R.-S. Huang, S.-F. Liang, T.-W. Chiu, and T.-P. Jung, “Noninvasive neural prostheses using mobile and wireless EEG,” Proceedings of the IEEE, Vol. 96, pp. 1167-1183, 2008.
[12]N.S. Dias, J.P. Carmo, A. Ferreira da Silva, P.M. Mendesa, and J.H. Correia, “New dry electrodes based on iridium oxide (IrO) for non-invasive biopotential recordings and stimulation,” Sensors and Actuators A: Physical, Vol. 164, pp. 28-34, 2010.
[13]A. Altuna, G. Gabriel, L. M. de la Prida, M. Tijero, Anton Guimera, J. Berganzo, R. Salido, R. Villa, and L. J. Fernandez, “SU-8-based microneedles for in vitro neural applications,” Journal of Micromechanics and Microengineering, Vol. 20, 064014, 2010.
[14]S. Rajaraman, J. A. Bragg, J. D. Ross, and M. G. Allen, “Micromachined three-dimensional electrode arrays for transcutaneous nerve tracking,” Journal of Micromechanics and Microengineering, Vol. 21, 085014, 2011.
[15]C. O’Mahonya, F. Pini, A. Blake, C. Webster, J. O’Brien, and K. G. McCarthy, “Microneedle-based electrodes with integrated through-silicon via for biopotential recording,” Sensors and Actuators A: Physical, Vol. 186, pp. 130-136, 2012.
[16]L.-F. Wang, J.-Q. Liu, X.-X. Yan, B. Yang, and C.-S. Yang, “A MEMS-based pyramid micro-needle electrode for long-term EEG measurement,” Microsystem Technologies, Vol. 19, pp. 269-276, 2013.
[17]D. E. Gunning, J. M. Beggs, W. Dabrowski, P. Hottowy, C. J. Kenney, A. Sher, A. M. Litke, and K. Mathieson, “Dense arrays of micro-needles for recording and electrical stimulation of neural activity in acute brain slices,” Journal of Neural Engineering, Vol. 10, 016007, 2013.
[18]Y. Nishinaka, R. Jun, G.S. Prihandana, and N. Miki, “Fabrication of polymeric dry microneedle electrodes coated with nanoporous parylene,” IEEE Transducer, Barcelona, Spain, 2013.
[19]M.A.R. Alves, D.F. Takeuti, and E.S. Braga, “Fabrication of sharp silicon tips employing anisotropic wet etching and reactive ion etching,” Microelectronics Journal, Vol. 36, pp. 51-54, 2005.
[20]G. Charvet, L. Rousseau, O. Billoint, S. Gharbia, J.-P. Rostaing, S. Joucla, M. Trevisiol, A. Bourgerette, P. Chauvet, C. Moulin, F. Goy, B. Mercier, M. Colin, S. Spirkovitch, H. Fanet, P. Meyrand, R. Guillemaud, and B. Yvert, “BioMEATM: A versatile high-density 3D microelectrode array system using integrated electronics,” Biosensors and Bioelectronics, Vol. 25, pp. 1889-1896, 2010.
[21]E. J. Carvalho, M. A.R. Alves, E. S. Braga, and L. Cescato, “Fabrication and electrical performance of high-density arrays of nanometric silicon tips,” Microelectronic Engineering, Vol. 87, pp. 2544-2548, 2010.
[22]A. A. Hamzah, N. A. Aziz, B. Y. Majlis, J. Yunas, C. F. Dee, and B. Bais, “Optimization of HNA etching parameters to produce high aspect ratio solid silicon microneedles,” Journal of Micromechanics and Microengineering, Vol. 22, 095017, 2012.
[23]G. Ruffini, S. Dunne, L. Fuentemilla, C. Grau, E. Farres, J. Marco-Pallares, P. C. P. Watts, and S.R.P. Silva, “First human trials of a dry electrophysiology sensor using a carbon nanotube array interface,” Sensors and Actuators A: Physical, Vol. 144, pp. 275-279, 2008.
[24]L.-D. Liao, I-J. Wang, S.-F. Chen, J.-Y. Chang, and C.-T. Lin, “Design, Fabrication and Experimental Validation of a Novel Dry-Contact Sensor for Measuring Electroencephalography Signals without Skin Preparation,” Sensors, Vol. 11, pp. 5819-5834, 2011.
[25]P. Wei, R. Taylor, Z. Ding, C. Chung, O. J. Abilez, G. Higgs, B. L. Pruitt, and B. Ziaie, “Stretchable microelectrode array using room-temperature liquid alloy interconnects,” Journal of Micromechanics and Microengineering, Vol. 21, 054015, 2011.
[26]H.-C. Jung, J.-H. Moon, D.-H. Baek, J.-H. Lee, Y.-Y. Choi, J.-S. Hong, and S.-H. Lee, “CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring,” IEEE Transactions on Biomedical Engineering, Vol. 59, pp. 1472-1479, 2012.
[27]L.-F. Wang, J.-Q. Liu, B. Yang, and C.-S. Yang, “PDMS-based low cost flexible dry electrode for long-term EEG measurement,” IEEE Sensors Journal, Vol. 12, pp. 2898-2904, 2012.
[28]C.-Y. Chen, C.-L. Chang, C.-W. Chang, S.-C. Lai, T.-F. Chien, H.-Y. Huang, J.-C. Chiou, and C.-H. Luo, “A low-power bio-potential acquisition system with flexible PDMS dry electrodes for portable ubiquitous healthcare applications,” Sensors, Vol. 13, pp. 3077-3091, 2013.
[29]陳建人等,《微機電系統技術與應用》,行政院國家科學委員會精密儀器發展中心,2003。
[30]施敏、張俊彥,《半導體元件與物理與製作技術》,高立圖書公司,1996。
[31]D. A. Neamen著,李世鴻、陳勝利譯,《半導體元件物理》,台商圖書,1998。
[32]李建宜,《以濕式蝕刻研製微機電微波濾波器》,國立成功大學博士論文,2005。[33]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution. I. Orientation dependence and behavior of passivation layer,” Journal of The Electrochemical Society, Vol. 137, pp. 3612-3626, 1990.
[34]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution. II. Influence of dopants,” Journal of The Electrochemical Society, Vol. 137, pp. 3626-3632, 1990.
[35]I. Zubel, and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions,” Sensors and Actuators A: Physical, Vol. 93, pp. 138-147, 2001.
[36]I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si (100) anisotropic etching in KOH and KOH + IPA solutions,” Sensors and Actuators A: Physical, Vol. 84, pp. 116-125, 2000.
[37]I. Zubel, I. Barycka, K. Kotowska, and M. Kramkowska, “Silicon anisotropic etching in alkaline solutions IV: The effect of organic and inorganic agents on silicon anisotropic etching process,” Sensors and Actuators A: Physical, Vol. 87, pp. 163-171, 2001.
[38]I. Zubel, and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions,” Sensors and Actuators A: Physical, Vol. 93, pp. 138-147, 2001.
[39]D. Resnik, D. Vrtacnik, U. Aljancic, M. Mozek, and S. Amon, “The role of triton surfactant in anisotropic etching of {110} reflective planes on (100) silicon,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 1174-1183, 2005.
[40]P. Pal, M. A. Gosalvez, and K. Sato, “Etched profile control in anisotropic etching of silicon by TMAH + Triton,” Journal of Micromechanics and Microengineering, Vol. 22, 065013, 2012.
[41]I. Zubel, M. Kramkowska, and K. Rola, “Silicon anisotropic etching in TMAH solutions containing alcohol and surfactant additives,” Sensors and Actuators A: Physical, Vol. 178, pp. 126-135, 2012.
[42]邱文俊,《KOH/醇類蝕刻液系統應用於單晶矽濕式蝕刻之研究》,國立清華大學博士論文,2004。[43]O. Powell, and H. B. Harrison, “Anisotropic etching of {100} and {110} planes in (100) silicon,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 217-220, 2001.
[44]B. Schwartz, and H. Robbins, “Chemical etching of silicon-I. The system, HF, HNO3 and H2O,” Journal of The Electrochemical Society, Vol. 106, pp. 505-508, 1959.
[45]H. Robbins, and B. Schwartz, “Chemical etching of silicon-II. The system, HF, HNO3, H2O, and HC2C3O2,” Journal of The Electrochemical Society, Vol. 107, pp. 108-111, 1960.
[46]H. Robbins, and B. Schwartz, “Chemical etching of silicon-III. A temperature study in the acid system,” Journal of The Electrochemical Society, Vol. 108, pp. 365-372, 1961.
[47]B. Schwartz, and H. Robbins, “Chemical etching of silicon-IV. Etching technology,” Journal of The Electrochemical Society, Vol. 123, pp. 1903-1909, 1976.
[48]E. McAdams, “Biomedical electrodes for biopotential monitoring and electrostimulation,” Bio-Medical CMOS ICs, pp. 31-124, New York: Springer-Verlag, 2011.
[49]Y. M. Chi, T. P. Jung, and G. Cauwenberghs, “Dry-contact and noncontact biopotential electrodes: Methodological review,” IEEE Reviews in Biomedical Engineering, Vol. 3, pp. 106-119, 2010.
[50]http://vesolor.com/article/skin_general_moisturizing.aspx
[51]K. Holbrook, and G. Odland, “Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis,” Journal of Investigative Dermatology, Vol. 62, pp. 415-422, 1974.
[52]M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy,” Acta Derm-Venereol, Vol. 87, pp. 4-8, 2007.
[53]P. Griss, P. Enoksson, and G. Stemme, “Micromachined barbed spikes for mechanical chip attachment,” Sensors and Actuators A: Physical, Vol. 95, pp. 94-99, 2002.
[54]郭哲希,《微機電技術應用於倒鉤狀乾式腦電波電極之研製》,國立台灣大學碩士論文,2012。[55]H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sensors and Actuators A: Physical, Vol. 64, pp. 33-39, 1998.
[56]A. del Campo, and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” Journal of Micromechanics and Microengineering, Vol. 17, pp. R81-R95, 2007.
[57]G. Ensell, “Alignment of mask patterns to crystal orientation,” Sensors and Actuators A-Physical, Vol. 53, pp. 345-348, 1996.
[58]陳永明,《利用介電泳效應研製具重覆記憶功能之CNT/PDMS壓力與溫度感測器》,國立台灣大學碩士論文,2011。[59]S. D. Senturia, “Microsystem Design,” Massachusetts Institute of Technology, 2000.
[60]N. Wilke, M.L. Reed, and A. Morrissey, “The evolution from convex corner undercut towards microneedle formation: theory and experimental verification,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 808-814, 2006.
[61]N. Wilke, and A. Morrissey, “Silicon microneedle formation using modified mask designs based on convex corner undercut,” Journal of Micromechanics and Microengineering, Vol. 17, pp. 238-244, 2007.
[62]R. Ma, D.-H. Kim, M. McCormick, T. Coleman, and J. Rogers, “A stretchable electrode array for non-invasive, skin-mounted measurement of electrocardiography (ECG), electromyography (EMG) and electroencephalography (EEG),” 40th Annual Meeting of the Society-for-Neuroscience, San Diego, CA, USA, 2010.
[63]C.-T. Lin, L.-D. Liao, Y.-H. Liu, I-J. Wang, B.-S. Lin, and J.-Y. Chang, “Novel dry polymer foam electrodes for long-term EEG measurement,” IEEE Transactions on Biomedical Engineering, Vol. 58, pp. 1200-1207, 2011.
[64]S. Grimnes, “Impedance measurement of individual skin surface electrodes,” Medical & Biological Engineering & Computing, Vol. 21, pp. 750-755, 1983.
[65]J. Rosell, J. Colominas, P. Riu, R. Pallas-Areny, and J. G. Webster, “Skin impedance from 1 Hz to 1 MHz,” IEEE Transactions on Biomedical Engineering, Vol. 35, pp. 649-651, 1988.
[66]L. A. Geddes, and M. E. Valentinuzzi, “Temporal changes in electrode impedance while recording the electrocardiogram with “Dry” electrodes,” Annals of Biomedical Engineering, Vol. 1, pp. 356-367, 1973.
[67]T. Janzen, K. Graap, S. Stephanson, W. Marshall, and G. Fitzsimmons, “Differences in baseline EEG measures for ADD and normally achieving preadolescent males,” Biofeedback and Self-Regulation, Vol. 20, pp. 65-82, 1995.
[68]L.C. Fung, A.E. Khoury, S.I. Vas, C. Smith, D.G. Oreopoulos, and M.W. Mittelman, “Biocompatibility of silver-coated peritoneal dialysis catheter in a porcine model,” Peritoneal Dialysis International, Vol. 16, pp. 398-405, 1996.
[69]J. A. Cowen, R. E. Imhof, and P. Xiao, “Opto-thermal measurement of stratum corneum renewal time,” Analytical Sciences, Vol. 17, pp. 353-356, 2001.
[70]J. Enfield, M.-L. O’Connell, K. Lawlor, E. Jonathan, C. O’Mahony, and M. Leahy, “In vivo dynamic characterization of microneedle skin penetration using optical coherence tomography (OCT),” Journal of Biomedical Optics, Vol. 15, 046001, 2010.