跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 00:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張繼禾
研究生(外文):Chang, Chi-Ho
論文名稱:調頻連續波感測器射頻前端設計與系統整合驗證
論文名稱(外文):Frequency-Modulated Continuous-Wave Sensor Design and System Integration
指導教授:莊晴光
指導教授(外文):Tzuang, Ching-Kuang C.
學位類別:博士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:105
中文關鍵詞:調頻連續波互補金屬氧化物半導體合成近橫向電磁模之互補傳導線帶csc2θ型式天線場型交通管理系統平面洩漏波陣列天線
外文關鍵詞:FMCWCMOSCCS-TLcsc2 type antenna patternTransportation Management System (TMS)the planar leaky-wave antenna array
相關次數:
  • 被引用被引用:2
  • 點閱點閱:534
  • 評分評分:
  • 下載下載:94
  • 收藏至我的研究室書目清單書目收藏:1
本文主要介紹以CMOS技術設計且用於交通運輸管理的X頻段調頻連續波(FMCW)偵測器系統。文內所提的偵測器系統採用兩組天線分別進行訊號的發射和接收。而且這完整的射頻(RF)收發器實現了應用標準的0.18 微米一層聚合物六層金屬(1P6M)互補金屬氧化物半導體(CMOS)技術來完成且其晶片面積大小僅1.68 �e 1.6 毫米平方。
在這篇論文中,以所謂合成近橫向電磁模之互補傳導線帶的傳輸線(CCS TL)用於整個射頻晶片的設計。的主要特點是互補傳導線帶的傳輸線(CCS TL)可減少CMOS射頻收發機晶片中相鄰兩元件間的電磁耦合,此結構亦能夠將各種射頻信號處理元件稠密的整合到單一晶片上。因此互補傳導線帶的傳輸線(CCS TL) 在10.5GHz工作頻率中提供了晶片上從接收路徑傳輸路徑55.0 dB隔離度。
此外這兩個平面洩漏波陣列天線的增益設計在18dB。實驗結果顯示兩陣列天線間的隔離度在間距為5.0 毫米與工作頻率為10.5 GHz時高於42.0 dB。這平面天線實現了csc2θ型式天線場型和也可在短距離偵測中輔助中頻濾波器作為靈敏度時間控制(STC)功能。此調頻連續波傳感器的雛型系統是應用於多車道的距離測量之交通管理系統(TMS)。
本文最佳貢獻整合0.18微米互補金屬氧化物半導體(CMOS)收發器和陣列天線成為調頻連續波之射頻前端。另一個創新的工作,使用了平面洩漏波陣列天線形成csc2θ型式的天線輻射場型,然後配合三角波產生電路,中頻放大器,數位信號處理器,以及一些電子儀表來證明近似均一訊號雜音比的概念。最終由測量結果得知,實地測試結果與系統模擬是一致的。
未來本論文最重要的工作,即是將現有雷達系統微型化,即是將原有的射頻系統、中頻類比電路與數位訊號處理電路等皆以CMOS積體電路的技術進行縮裝與整合,即整合RFIC、AIC與DIC等積體電路成為系統晶片。
The paper presents an X-band CMOS-based frequency-modulation continuous-wave (FMCW) sensor system for the transportation management. The proposed sensor system adopts two antennas to transmit and receive signal separately. The completed radio frequency (RF) transceiver is realized by using standard 0.18 �慆 one-poly six-metal (1P6M) complementary metal–oxide semiconductor (CMOS) technology with a chip area of 1.68 mm �e 1.6 mm.
The so-called synthetic quasi-TEM complementary conducting-strip transmission line (CCS-TL) is also employed throughout the entire RF chip design. The main features of the CCS TL are the reduction of electromagnetic coupling of adjacent components in the RF CMOS transceiver chip and it able to densely integrate various RF signal-processing components into a single chip. Therefore, the CCS TL provides the on-chip isolation of 55.0dB from the receiving path to the transmitting path at 10.5GHz.
Additionally, two planar leaky-mode antenna arrays with a gain of 18 dB are designed. Experiments indicate the isolation between two antenna arrays with a spacing of 5.0 mm is higher than 42.0 dB at 10.5 GHz. The planar antenna was achieved the csc2 type antenna pattern and also took as the sensitivity time control (STC) function of IF filter for short range detection. The prototype of the FMCW sensor system is applied to the range measurement of multiple lanes for the Transportation Management System (TMS).
The best contribution of the paper is integrated a 0.18 um CMOS transceiver and antenna arrays into a FMCW RF-frond. Another originality of the work that used the planar leaky-wave antenna array to shape a csc2θ-type radiation pattern, then assisted a triangular-wave circuit, an IF amplifier, a digital signal processor, and lot of instruments to prove the nearly uniform SNR concept. Finally, the measured results from field tests agree well with the system simulation results.
The future work of the dissertation is miniaturized of the radar system. The works use the CMOS integrated circuit technology to miniaturize and integrate the original radio frequency system, intermediate frequency analog circuits and the digital signal processing circuit and so on. They namely of the system on chip (SOC) for the radar system is integrated by radio frequency integrated circuits (RFIC), analog integrated circuits (AIC), and digital integrated circuits (DIC).
TABLE OF CONTENTS

RECOMMENDATION (Chinese) ………………………………….I
ABSTRACT (Chinese)……….………………………………….II
ABSTRACT (English)…………………………………………..…IV
ACKNOWLEDGMENTS (Chinese)………………………….…...VI
TABLE OF CONTENTS…………………………………….......VIII
LIST OF FIGURES………………………………………………..X
LIST OF TABLES………………………………………………..XV
CHAPTER 1 Introduction ………………………………………..1
1.1 History of the RF frond-end development of FMCW sensor………1
1.2 Development of the RF frond-end for FMCW sensor………………2
CHAPTER 2 Principles and Theories………………………...........6
2.1 Principle of the frequency-modulated continuous wave…………...6
2.2 Introduction of the radar equation…………....................................16
2.3 Concept of the cosecant-squared antenna…………….…………...21
2.4 System Simulation of FMCW Radar…………….………………...23
CHAPTER 3 Design and Realization of the RF Transceiver…... 25
3.1 First Version CMOS FMCW Chip Design…………….…………..25
3.2 New Version CMOS FMCW Chip Design…………….…………..32
3.3 Package of CMOS FMCW Chip…………….……………………...40
CHAPTER 4 Dual Leaky-wave Antenna Arrays Structure Design with High Isolation and High Gain………………48
4.1 The Design Method of the Leaky-wave Antenna Arrays……..…48
4.2 The Integration and Realization of Leaky-wave Antenna Arrays..50
4.3 The Measurement Result of Leaky-wave Antenna Arrays……….54
4.4 Integrating the Antenna Arrays and the CMOS Transceiver into a Mechanical Fixture…………….…………………………………...67
CHAPTER 5 Designs of the Accessory Circuits: the External IF Circuits and Digital Signal Processing Unit…….70
CHAPTER 6 Measurement and Verification of the FMCW System ………………………………………..…….76
6.1 Measurement of the First-version FMCW Radar…………….…76
6.1.1 Distance Measurement……………………………………………..76
6.1.2 Velocity Measurement……………………………………………..79
6.1.3 Field Test of the Azimuth Resolution of Antenna Arrays……….…81
6.2 Measurement of the New-version FMCW Radar…………….…...84
6.2.1 Signal-to-Noise Ratio of CMOS-Based FMCW Sensor System…...84
6.2.2 Range Measurements……………………………………………..94
CHAPTER 7 Conclusion…………………………………………..98
REFERENCE………………………………………………..……100
1 From Wikipedia, the free encyclopedia, “History of Radar.” [Online]. Available: http://en.wikipedia.org/wiki/Radar
2 Charles E. Cook and Marvin Bernfeld, “Radar Signals - An Introduction to Theory and Application,” Aretech House, Inc., Norwood, MA, 1993.
3 H. J. Siweris, A. Werthof, H. Tischer, U. Schaper, A. Schäfer, L. Verweyen, T. Grave, G. Böck, M. Sclechtweg, and W. Kellner, “Low-Cost GaAs pHEMT MMIC’s for Millimeter-Wave Sensor Applications,” IEEE Trans. on Microwave Theory and Techniques, vol. 46, no. 12, pp. 2560-2567, Dec. 1998.
4 D. C. W. Lo, K. W. Chang, R. Lin, E. W. Lin, H. Wang, M. Biedenbender, G. S. Dow, and B. R. Allen, “A Single-chip W-band Transceiver with Front-end Switching Receiver for FMCW Radar Applications,” in IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, Orlando, FL, May 1995, pp. 225-228.
5 W. H. Haydl, M. Neumann, L. Verweyen, A. Bangert, S. Kuddazus, M. Schlectweg, A. Hülsmann, A. Tessmann, W. Reinert, and T. Krems, “Single-Chip Coplanar 94-GHz FMCW Radar Sensors”, IEEE Microwave and Guided wave Letters, vol. 9, no. 2, pp. 73-75, Feb. 1999.
6 D. Chouvaev, A. Dalerå, and U. Stein, “Application of a Substrate-Lens Antenna Concept and SiGe Component Development for Cost-Efficient Automotive Radar,” in European Radar Conference 2004. EuRAD. First European, Manchester, UK, Oct. 2004, pp. 81-54.
7 Y. Watanabe and N. Okubo, "HEMT Millimeter-wave Monolithic IC Technology for 76-GHz Automotive Radar," FUJITSU Sci. Tech. J., vol. 34, no. 2, pp.153-161, Dec. 1998.
8 M. Camiade, D. Domnesque, Z. Quarch, and A. Sion, "Fully MMIC-Based Front End for FMCW Automotive Radar at 77GHz," European Microwave Conference. Week, GaAs 2000 Proceedings, Paris, France, Oct. 2000, pp.1-4.
9 S. T. Nicolson, K A. Tang, K. H.K. Yau, P. Chevalier, B. Sautreuil, and S. P. Voinigescu, “A Low-Voltage 77-GHz Automotive Radar Chipset,” in IEEE MTT-S Int. Microwave Symp. Dig., Honolulu, Hawaii, Jun. 2007, pp.487-490.
10 R. Reuter, H. Li, I. To, Y. Yin, A. Ghazinour, D. Jahn, D. Morgan, J. Feige, P. Welch, S. Braithwaite, B. Knappenberger, D. Scheitlin, J. John, M. Huang, P. Wennekers, M. Tutt, C. Trigas, and J. Kirchgessner, “Fully Integrated SiGe-BiCMOS Receiver(RX) and Transmitter(TX) Chips for 76.5 GHz FMCW Automotive Radar Systems Including Demonstrator Board Design, ” in IEEE MTT-S Int. Microwave Symp. Dig., Honolulu, Hawaii, Jun. 2007, pp.1307-1310.
11 G. S. Woods, D. L. Maskell, and M. V. Mahoney, “A High Accuracy Microwave Ranging System for Industrial Applications,” IEEE Trans. on Instrumentation and Measurement, vol. 42, no. 4, pp. 812-815, Aug. 1993.
12 D. Brumbi, “Low Power FMCW Radar System for Level Gaging,” in IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, Jun. 2000, pp. 1559-1562.
13 J C. Clifton, A W Dearn, P. R. Bestwick, L. M. Devlin, and M. W. Geen, “GaAs Power MMIC for X-Band Radar Applications,” in Modelling, Design and Application of MMIC's, IEE Colloquium on, London, UK, Jun. 1994, pp. 12/1-12/6.
14 Wavetronix SmartSensor TM Model 105, Wavetronix LLC, UT84042 USA. [Online]. Available: http:// www.wavetronix.com
15 T. N. Trinh, E. Benko, and W. S. Wong, “KA-Band Microstrip Integrated Circuit FMCW Transceiver,” in IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, Jun. 1986, pp. 639-642.
16 L. Reynolds and Y. Ayasli, “Single Chip FMCW Radar for Target Velocity and Range Sensing Applications,” in GaAs IC Symposium, 1989. Technical Digest 1989, 11th Annual, San Diego, CA, Oct. 1989, pp. 243-246.
17 A. Tessmann, S. Kudszus, T. Feltgen, M. Riessle, C. Sklarczyk, and W. H. Haydl, “Compact Single-Chip W-Band FMCW Radar Modules for Commercial High-Resolution Sensor Applications,” IEEE Trans. on Microwave Theory and Techniques, vol. 50, no. 12, pp. 2995-3001, Dec. 2002.
18 A. Tessmann, S. Kudszus, T. Feltgen, M. Riessle, C. Sklarczyk, W. H. Haydl, “A 94 GHz Single-Chip FMCW Radar Module for Commercial Sensor Applications,” in IEEE MTT-S Int. Microwave Symp. Dig., Seattle, WA, Jun. 2002, pp. 1851-1854.
19 K. Sasaki, J. Utsu, K. Matsugatani, K. Hoshino, T. Taguchi, and Y. Ueno, “InP MMICs FOR V-BAND FMCW RADAR,” in IEEE MTT-S Int. Microwave Symp. Dig., Denver, CO, Jun. 1997, pp. 937-940.
20 D. C. Chang and Y. C. Cheng, “Development of Eight Meters Inverse Cosecant Square Reflector Antenna,” in IEEE Antennas and Propagation Society International Symp., vol. 2, Orlando, FL, July 1999, pp.1160 – 1163.
21 Terma A/S SCANTER 2001 Radar System, Terma A/S Hovmarken 4 DK - 8520 Lystrup Denmark. [Online]. Available: http://www.terma.com/radar.
22 AN/GSS-7 Search Radar, Radio Research Instrument Co., Inc. 584 N. Main Street Waterbury, CT. 06704-3506 USA. [Online]. Available: http://www.radiores.com/
23 T. L. Foreman, “A Model to Quantify the Effects of Sensitivity Time Control on Radar-to-radar Interference,” IEEE Trans. on Electromagnetic Compatibility, vol. 37, no. 2, pp. 299 – 301, May 1995.
24 T. Moriyama, H. Kasahara, Y. Yamaguchi, and H. Yamada, “Advanced Polarimetric Subsurface FM-CW Radar,” IEEE Transactions on Geoscience and Remote Sensing, vol. 36, no. 3, pp.725 – 731, May 1998.
25 C. E. Livingstone, A. L. Gray, R. K. Hawkins, and R. B. Olsen, “CCRS C/X Airborne Synthetic Aperture Radar: An R and D Tool for the ERS-1 Time Frame,” in Proc. 1988 IEEE National Radar Conference, Ann Arbor, MI, Apr. 1988, pp.15 – 21.
26 A. M. Madni, P. T. McDonald, R. K. Hansen, and L. A. Wan, “High Dynamic Range Airborne Tracking and Fire Control Radar Subsystem,” IEEE Trans. on Microwave Theory and Techniques, vol. 37, no. 12, pp.1942 – 1948, Dec. 1989.
27 C. S. Miller, “Signal Processor Retrofit for Air Search Radar,” in Proc. 1992 IEEE Aerospace Applications Conference, Dig., Snowmass, CO, Feb. 1992, pp.77 – 85.
28 S. A. Hovanessian, “Radar Detection & Tracking Systems,” Aretech House, Inc., Dedham, MA, 1982.
29 J. A. Scheer and J. L. Kurtz, “Coherent Radar Performance Estimation,” Artech House, 1993, Chapter 12, pp.289-313.
30 EESA Earthnet Online, European Space Agency, “The Radar Equation.” [Online]. Available: http://earth.esa.int/applications/data_util/SARDOCS/spaceborne
31 C. K. C. Tzuang, C. C. Chen, and W. Y. Chien, “LC-free CMOS Oscillator Employing Two-dimensional Transmission Line,” in Proc. 2003 IEEE Int. Frequency Control Symp. and PDA Exhibition and the 17th European Frequency and Time Forum, pp. 487-489, May 2003.
32 C. C. Chen and C. K, C. Tzuang, “Synthetic Quasi-TEM Meandered Transmission Lines for Compacted Microwave Integrated Circuits,” IEEE Trans. on Microwave Theory and Techniques, vol 52, no 6, pp. 1637-1647, June 2004.
33 M. J. Chiang, H. S. Wu, and C. K. C. Tzuang, “Design of CMOS Spiral Inductors for Effective Broadband Shielding,” Proc. 36th European Microwave Conference Digest, Manchester, UK, Sept. 2006, pp. 48-51.
34 C. K. C. Tzuang, C. H. Chang, H. S. Wu, S. Wang, S. X. Lee, C. C. Chen, C. Y. Hsu, K. H. Tsai, and J. Chen, “An X-Band CMOS Multifunction-Chip FMCW Radar,” Proc. of the 2006 IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA, Jun. 2006, pp. 2011~2014.
35 Ali F., Podell, A., “A Wide-Band Push-Pull GaAs Monolithic Active Isolator,” IEEE Microwave and Guided Wave Lett., vol. 1, no. 2, pp. 26-27, 1991.
36 S. Wang, H. S. Wu, C. H. Chang, and C. K. C. Tzuang, “Modeling and Suppressing Substrate Coupling of RF CMOS FMCW Sensor Incorporating Synthetic Quasi-TEM Transmission Lines,” in IEEE MTT-S Int. Microwave Symp. Dig., Honolulu, Hawaii, Jun. 2007, pp.1939-1942.
37 K. Lin, Y. E. Wang, C. K. Pao, Y. C. Shih, “A Ka-Band FMCW Radar Front-End With Adaptive Leakage Cancellation,” IEEE Trans. on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4041-4048, Dec. 2006.
38 A. H and T. H. Lee, “The design of low noise oscillators,” Kluwer Academic, 1999.
39 S. Wang, H. S. Wu, and C. K. C. Tzuang, “An X-band Transmission Line Based CMOS VCO with FM Modulation”, in 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF07), Long Beach, CA,.Jan. 2007, pp.139-141.
40 B. Gilbert, “A Highly Linear Variant of the Gilbert Mixer Using a Bisymmetric Class-AB Input Stage,” IEEE Journal of Solid-state Circuits, vol. 32, no. 9, pp. 1412-1423, Sept. 1997.
41 H. Cooper and H. McComas, “Synthesis of csc2θ type antenna patterns using two-dimensional surface wave arrays,” in IRE International Convention Record, vol. 8, Part 1, Mar. 1960 pp.24 – 34.
42 I. Ohtera, “On a Forming of Cosecant Square Beam Using a Curved Leakywave Structure,” IEEE Trans. on Antennas and Propagation, vol. 49, no. 6, pp.1004 – 1006, June 2001.
43 C. N. Hu and C. K. C. Tzuang, “Analysis and Design of Large Leaky-mode Array Employing the Coupled-mode Approach,” IEEE Trans. on Microwave Theory and Techniques, vol. 49, no. 4, pp. 629-636, Apr. 2001.
44 K. F. S. Huang and C. K. C. Tzuang, “Characteristics and Design of Broadside-Coupled Transmission Line at a Higher Order Leaky Mode,” IEEE Trans. on Microwave Theory and Techniques, vol. 51, no. 2, pp. 440 – 447, Feb. 2003.
45 G. J. Chou and C. K. C. Tzuang, “An Integrated Quasi-Planar Leaky-Wave Antenna,” IEEE Trans. on Antennas and Propagation, vol. 44, no. 8, pp.1078 – 1085, Aug. 1996.
46 Y. D. Lin, J. W. Sheen, and C. K. C. Tzuang, “Analysis and Design of Feeding Structures for Microstrip Leaky-Wave Antenna,” IEEE Trans. on Microwave Theory and Techniques, vol. 44, no. 9, pp. 1540 – 1547, Sept. 1996.
47 C. C. Lin and C. K. C. Tzuang, “A Dual-Beam Micro-CPW Leaky-Mode Antenna,” IEEE Trans. on Antennas and Propagation, vol. 48, no. 2, pp. 310 – 316, Feb. 2000.
48 C. N. Hu and C. K. C. Tzuang, “Injection-Locked Coupled Microstrip Leaky-Mode Antenna Array,” IEE Proceedings -Microwaves, Antennas and Propagation, vol. 147, no. 5, pp.364 – 368, Oct. 2000.
49 W. L. Stutzman and G. A. Thiele, “Antenna Theory and Design,” 2nd Edition, John Wiley & Sons, Inc.1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top