|
1 From Wikipedia, the free encyclopedia, “History of Radar.” [Online]. Available: http://en.wikipedia.org/wiki/Radar 2 Charles E. Cook and Marvin Bernfeld, “Radar Signals - An Introduction to Theory and Application,” Aretech House, Inc., Norwood, MA, 1993. 3 H. J. Siweris, A. Werthof, H. Tischer, U. Schaper, A. Schäfer, L. Verweyen, T. Grave, G. Böck, M. Sclechtweg, and W. Kellner, “Low-Cost GaAs pHEMT MMIC’s for Millimeter-Wave Sensor Applications,” IEEE Trans. on Microwave Theory and Techniques, vol. 46, no. 12, pp. 2560-2567, Dec. 1998. 4 D. C. W. Lo, K. W. Chang, R. Lin, E. W. Lin, H. Wang, M. Biedenbender, G. S. Dow, and B. R. Allen, “A Single-chip W-band Transceiver with Front-end Switching Receiver for FMCW Radar Applications,” in IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, Orlando, FL, May 1995, pp. 225-228. 5 W. H. Haydl, M. Neumann, L. Verweyen, A. Bangert, S. Kuddazus, M. Schlectweg, A. Hülsmann, A. Tessmann, W. Reinert, and T. Krems, “Single-Chip Coplanar 94-GHz FMCW Radar Sensors”, IEEE Microwave and Guided wave Letters, vol. 9, no. 2, pp. 73-75, Feb. 1999. 6 D. Chouvaev, A. Dalerå, and U. Stein, “Application of a Substrate-Lens Antenna Concept and SiGe Component Development for Cost-Efficient Automotive Radar,” in European Radar Conference 2004. EuRAD. First European, Manchester, UK, Oct. 2004, pp. 81-54. 7 Y. Watanabe and N. Okubo, "HEMT Millimeter-wave Monolithic IC Technology for 76-GHz Automotive Radar," FUJITSU Sci. Tech. J., vol. 34, no. 2, pp.153-161, Dec. 1998. 8 M. Camiade, D. Domnesque, Z. Quarch, and A. Sion, "Fully MMIC-Based Front End for FMCW Automotive Radar at 77GHz," European Microwave Conference. Week, GaAs 2000 Proceedings, Paris, France, Oct. 2000, pp.1-4. 9 S. T. Nicolson, K A. Tang, K. H.K. Yau, P. Chevalier, B. Sautreuil, and S. P. Voinigescu, “A Low-Voltage 77-GHz Automotive Radar Chipset,” in IEEE MTT-S Int. Microwave Symp. Dig., Honolulu, Hawaii, Jun. 2007, pp.487-490. 10 R. Reuter, H. Li, I. To, Y. Yin, A. Ghazinour, D. Jahn, D. Morgan, J. Feige, P. Welch, S. Braithwaite, B. Knappenberger, D. Scheitlin, J. John, M. Huang, P. Wennekers, M. Tutt, C. Trigas, and J. Kirchgessner, “Fully Integrated SiGe-BiCMOS Receiver(RX) and Transmitter(TX) Chips for 76.5 GHz FMCW Automotive Radar Systems Including Demonstrator Board Design, ” in IEEE MTT-S Int. Microwave Symp. Dig., Honolulu, Hawaii, Jun. 2007, pp.1307-1310. 11 G. S. Woods, D. L. Maskell, and M. V. Mahoney, “A High Accuracy Microwave Ranging System for Industrial Applications,” IEEE Trans. on Instrumentation and Measurement, vol. 42, no. 4, pp. 812-815, Aug. 1993. 12 D. Brumbi, “Low Power FMCW Radar System for Level Gaging,” in IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, Jun. 2000, pp. 1559-1562. 13 J C. Clifton, A W Dearn, P. R. Bestwick, L. M. Devlin, and M. W. Geen, “GaAs Power MMIC for X-Band Radar Applications,” in Modelling, Design and Application of MMIC's, IEE Colloquium on, London, UK, Jun. 1994, pp. 12/1-12/6. 14 Wavetronix SmartSensor TM Model 105, Wavetronix LLC, UT84042 USA. [Online]. Available: http:// www.wavetronix.com 15 T. N. Trinh, E. Benko, and W. S. Wong, “KA-Band Microstrip Integrated Circuit FMCW Transceiver,” in IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, Jun. 1986, pp. 639-642. 16 L. Reynolds and Y. Ayasli, “Single Chip FMCW Radar for Target Velocity and Range Sensing Applications,” in GaAs IC Symposium, 1989. Technical Digest 1989, 11th Annual, San Diego, CA, Oct. 1989, pp. 243-246. 17 A. Tessmann, S. Kudszus, T. Feltgen, M. Riessle, C. Sklarczyk, and W. H. Haydl, “Compact Single-Chip W-Band FMCW Radar Modules for Commercial High-Resolution Sensor Applications,” IEEE Trans. on Microwave Theory and Techniques, vol. 50, no. 12, pp. 2995-3001, Dec. 2002. 18 A. Tessmann, S. Kudszus, T. Feltgen, M. Riessle, C. Sklarczyk, W. H. Haydl, “A 94 GHz Single-Chip FMCW Radar Module for Commercial Sensor Applications,” in IEEE MTT-S Int. Microwave Symp. Dig., Seattle, WA, Jun. 2002, pp. 1851-1854. 19 K. Sasaki, J. Utsu, K. Matsugatani, K. Hoshino, T. Taguchi, and Y. Ueno, “InP MMICs FOR V-BAND FMCW RADAR,” in IEEE MTT-S Int. Microwave Symp. Dig., Denver, CO, Jun. 1997, pp. 937-940. 20 D. C. Chang and Y. C. Cheng, “Development of Eight Meters Inverse Cosecant Square Reflector Antenna,” in IEEE Antennas and Propagation Society International Symp., vol. 2, Orlando, FL, July 1999, pp.1160 – 1163. 21 Terma A/S SCANTER 2001 Radar System, Terma A/S Hovmarken 4 DK - 8520 Lystrup Denmark. [Online]. Available: http://www.terma.com/radar. 22 AN/GSS-7 Search Radar, Radio Research Instrument Co., Inc. 584 N. Main Street Waterbury, CT. 06704-3506 USA. [Online]. Available: http://www.radiores.com/ 23 T. L. Foreman, “A Model to Quantify the Effects of Sensitivity Time Control on Radar-to-radar Interference,” IEEE Trans. on Electromagnetic Compatibility, vol. 37, no. 2, pp. 299 – 301, May 1995. 24 T. Moriyama, H. Kasahara, Y. Yamaguchi, and H. Yamada, “Advanced Polarimetric Subsurface FM-CW Radar,” IEEE Transactions on Geoscience and Remote Sensing, vol. 36, no. 3, pp.725 – 731, May 1998. 25 C. E. Livingstone, A. L. Gray, R. K. Hawkins, and R. B. Olsen, “CCRS C/X Airborne Synthetic Aperture Radar: An R and D Tool for the ERS-1 Time Frame,” in Proc. 1988 IEEE National Radar Conference, Ann Arbor, MI, Apr. 1988, pp.15 – 21. 26 A. M. Madni, P. T. McDonald, R. K. Hansen, and L. A. Wan, “High Dynamic Range Airborne Tracking and Fire Control Radar Subsystem,” IEEE Trans. on Microwave Theory and Techniques, vol. 37, no. 12, pp.1942 – 1948, Dec. 1989. 27 C. S. Miller, “Signal Processor Retrofit for Air Search Radar,” in Proc. 1992 IEEE Aerospace Applications Conference, Dig., Snowmass, CO, Feb. 1992, pp.77 – 85. 28 S. A. Hovanessian, “Radar Detection & Tracking Systems,” Aretech House, Inc., Dedham, MA, 1982. 29 J. A. Scheer and J. L. Kurtz, “Coherent Radar Performance Estimation,” Artech House, 1993, Chapter 12, pp.289-313. 30 EESA Earthnet Online, European Space Agency, “The Radar Equation.” [Online]. Available: http://earth.esa.int/applications/data_util/SARDOCS/spaceborne 31 C. K. C. Tzuang, C. C. Chen, and W. Y. Chien, “LC-free CMOS Oscillator Employing Two-dimensional Transmission Line,” in Proc. 2003 IEEE Int. Frequency Control Symp. and PDA Exhibition and the 17th European Frequency and Time Forum, pp. 487-489, May 2003. 32 C. C. Chen and C. K, C. Tzuang, “Synthetic Quasi-TEM Meandered Transmission Lines for Compacted Microwave Integrated Circuits,” IEEE Trans. on Microwave Theory and Techniques, vol 52, no 6, pp. 1637-1647, June 2004. 33 M. J. Chiang, H. S. Wu, and C. K. C. Tzuang, “Design of CMOS Spiral Inductors for Effective Broadband Shielding,” Proc. 36th European Microwave Conference Digest, Manchester, UK, Sept. 2006, pp. 48-51. 34 C. K. C. Tzuang, C. H. Chang, H. S. Wu, S. Wang, S. X. Lee, C. C. Chen, C. Y. Hsu, K. H. Tsai, and J. Chen, “An X-Band CMOS Multifunction-Chip FMCW Radar,” Proc. of the 2006 IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA, Jun. 2006, pp. 2011~2014. 35 Ali F., Podell, A., “A Wide-Band Push-Pull GaAs Monolithic Active Isolator,” IEEE Microwave and Guided Wave Lett., vol. 1, no. 2, pp. 26-27, 1991. 36 S. Wang, H. S. Wu, C. H. Chang, and C. K. C. Tzuang, “Modeling and Suppressing Substrate Coupling of RF CMOS FMCW Sensor Incorporating Synthetic Quasi-TEM Transmission Lines,” in IEEE MTT-S Int. Microwave Symp. Dig., Honolulu, Hawaii, Jun. 2007, pp.1939-1942. 37 K. Lin, Y. E. Wang, C. K. Pao, Y. C. Shih, “A Ka-Band FMCW Radar Front-End With Adaptive Leakage Cancellation,” IEEE Trans. on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4041-4048, Dec. 2006. 38 A. H and T. H. Lee, “The design of low noise oscillators,” Kluwer Academic, 1999. 39 S. Wang, H. S. Wu, and C. K. C. Tzuang, “An X-band Transmission Line Based CMOS VCO with FM Modulation”, in 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF07), Long Beach, CA,.Jan. 2007, pp.139-141. 40 B. Gilbert, “A Highly Linear Variant of the Gilbert Mixer Using a Bisymmetric Class-AB Input Stage,” IEEE Journal of Solid-state Circuits, vol. 32, no. 9, pp. 1412-1423, Sept. 1997. 41 H. Cooper and H. McComas, “Synthesis of csc2θ type antenna patterns using two-dimensional surface wave arrays,” in IRE International Convention Record, vol. 8, Part 1, Mar. 1960 pp.24 – 34. 42 I. Ohtera, “On a Forming of Cosecant Square Beam Using a Curved Leakywave Structure,” IEEE Trans. on Antennas and Propagation, vol. 49, no. 6, pp.1004 – 1006, June 2001. 43 C. N. Hu and C. K. C. Tzuang, “Analysis and Design of Large Leaky-mode Array Employing the Coupled-mode Approach,” IEEE Trans. on Microwave Theory and Techniques, vol. 49, no. 4, pp. 629-636, Apr. 2001. 44 K. F. S. Huang and C. K. C. Tzuang, “Characteristics and Design of Broadside-Coupled Transmission Line at a Higher Order Leaky Mode,” IEEE Trans. on Microwave Theory and Techniques, vol. 51, no. 2, pp. 440 – 447, Feb. 2003. 45 G. J. Chou and C. K. C. Tzuang, “An Integrated Quasi-Planar Leaky-Wave Antenna,” IEEE Trans. on Antennas and Propagation, vol. 44, no. 8, pp.1078 – 1085, Aug. 1996. 46 Y. D. Lin, J. W. Sheen, and C. K. C. Tzuang, “Analysis and Design of Feeding Structures for Microstrip Leaky-Wave Antenna,” IEEE Trans. on Microwave Theory and Techniques, vol. 44, no. 9, pp. 1540 – 1547, Sept. 1996. 47 C. C. Lin and C. K. C. Tzuang, “A Dual-Beam Micro-CPW Leaky-Mode Antenna,” IEEE Trans. on Antennas and Propagation, vol. 48, no. 2, pp. 310 – 316, Feb. 2000. 48 C. N. Hu and C. K. C. Tzuang, “Injection-Locked Coupled Microstrip Leaky-Mode Antenna Array,” IEE Proceedings -Microwaves, Antennas and Propagation, vol. 147, no. 5, pp.364 – 368, Oct. 2000. 49 W. L. Stutzman and G. A. Thiele, “Antenna Theory and Design,” 2nd Edition, John Wiley & Sons, Inc.1998.
|