|
[1]G. E. Moore, “Cramming more components onto integrated circuits,” Proc. IEEE, vol. 86, no. 1, pp. 82-85, Jan. 1998. [2]K. Kim, C.-G. Hwang, and J.-G. Lee,“DRAM Technology Perspective for Gigabit Era,”IEEE Trans. Electron Devices, vol. 45, no. 3, pp. 598-608, Mar. 1998. [3]A. Nitayama, Y. Kohyama, and K. Hieda, “Future directions for DRAM memory cell technology,” in Proc. Int. Electron Devices Meeting (IEDM) Tech. Dig., 1998, pp. 355–358. [4]L. Nesbit, J. Alsmeier, B. Chen, J. Debrosse, P. Fahey, M. Gall, J. Gambino, S. Gernhardt, H. Ishiuchi, R. Kleinhenz, J. Mandelman, T. Mii, M. Morikado, A. Nitayama, S. Parke, H. Wong, and G. Bronner, “A 0.6 μm2 256Mb Trench DRAM Cell with Self-Aligned BuriED Strap (BEST),” in IEDM Tech. Dig., Dec. 5-8, 1993, pp. 627-630. [5]T. Kaga, T. Kure, H. Shinriki, Y. Kawamoto, F. Murai, T. Nishida, Y. Nakagome, D. Hisamoto, T. Kisu, E. Takeda, and K. Itoh, “Crown-Shaped Stacked-Capacitor Cell for 1.5-V Operation 64-Mb DRAMs,” IEEE Trans. Electron Devices, vol. 38, no. 2, pp. 255-261, Feb. 1991. [6]H.-J. Wann and C. Hu, “A Capacitorless DRAM Cell on SOI Substrate,” in IEDM Tech. Dig., 1933, pp. 635-638. [7]S. Okhonin, M. Nagoga, J. M. Sallese, and P. Fazan, “A SOI Capacitor-less 1T-DRAM Concept,” in Proc. IEEE Int. SOI Conf., Oct. 2001 , pp. 153-154. [8]P. Fazan, S. Okhonin, M. Nagoga, J. M. Sallese, L. Portmann, R. Ferrant, M. Kayal, M. Pastre, M. Blagojevic, A. Borschberg, and M. Declercq, “Capacitor-Less 1-Transistor DRAM,” in Proc. IEEE Int. SOI Conf., Oct. 7-10, 2002, pp.10-13. [9]R. Ranica, A. Villaret, P. Mazoyer, D. Lenoble, P. Candelier, F. Jacquet, P. Masson, R. Bouchakour, R. Foumel, J. P. Schoellkopf, and T. Skotnicki, “A One Transistor Cell on Bulk Substrate (1T-Bulk) for Low-cost and High Density eDRAM,” in VLSI Symp. Tech. Dig., Jun. 2004, pp. 128-129. [10]M. G. Ertosun, H. Cho, P. Kapur, and K. C. Saraswat, “A Nanoscale Vertical Double-Gate Single-Transistor Capacitorless DRAM,” IEEE Electron Device Lett., vol. 29, no. 6, pp. 615-617, May 2008. [11]S. Kim, S.-J. Choi, D.-Il. Moon, and Y.-K. Choi “Carrier Lifetime Engineering for Floating-Body Cell Memory,” IEEE Trans. Electron Devices, vol. 59, no. 2, pp. 367-373, Feb. 2012. [12]T. Tanaka, E. Yoshida, and T. Miyashita, “Scalability Study on A Capacitorless 1T-DRAM: from Single-gate PD-SOI to Double-gate FinDRAM,” in IEDM Tech. Dig., 2004, pp. 919-922. [13]J.-W. Han, S.-W. Ryu, D.-H. Kim, C.-J. Kim, S. Kim, D.-Il. Moon, S.-J. Choi, and Y.-K. Choi, “Fully Depleted Polysilicon TFTs for Capacitorless 1T-DRAM,” IEEE Electron Device Lett., vol. 30, no. 7, pp. 742-744, Jul. 2009. [14]S. Eminente, S. Cristoloveanu, R. Clerc, A. Ohata, and G. Ghibaubo, “Ultra-thin fully-depleted SOI MOSFETs: special charge properties and coupling effects,” Solid-State Electron., vol. 51, no. 2, pp. 239-244, Feb. 2007. [15]W. Lee and W.-Y. Choi, “A Novel Capacitorless 1T-DRAM Cell for Data Retention Time Improvement,” IEEE Trans. on Nanotechnology, vol. 10, no. 3, pp. 462-466, May 2011. [16]N. Butt and M. Alam, “Scaling Limits of double-gate and surrounding-gate Z-RAM cells,” IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2255-2262, Sep. 2007. [17]N. Rodriguez, S. Cristoloveamu, and F. Gamiz, “Novel Capacitorless 1T-DRAM Cell for 22-nm Node Compatible with Bulk and SOI Substrates,” IEEE Electron Device Lett., vol. 58, no. 8, pp. 2371-2377, Aug. 2011. [18]J.-T. Lin, P.-H. Lin, Y.-C. Eng, and Y.-R. Chen, “Novel Vertical SOI-Based 1T-DRAM With Trench Body Structure,” IEEE Trans. Electron Devices, vol. 60, no. 6, pp. 1872-1877, Jun. 2013. [19]S. Lee, J. S. Shin, J. Jang, H. Bae, D. Yun, J. Lee, D. H. Kim, and D. M. Kim, “A Novel Capacitorless DRAM Cell Using Superlattice BandGap-Engineered (SBE) Structure With 30-nm Channel Length,” IEEE Trans. on Nanotechnology, vol. 10, no. 5, pp. 1023-1030, Sep. 2011. [20]A. Pal, A. Nainani, S. Gupta, and K. C. Saraswat, “Performance Improvement of One-Transistor DRAM by Band Engineering,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 29-31, Jan. 2012. [21]J. S. Shin, H. Bae, J. Jang, D. Yun, J. Lee, E. Hong, D. H. Kim, and D. M. Kim, “A novel double HBT-based capacitorless 1T DRAM cell with Si/SiGe heterojunctions,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 850-852, Jul. 2011. [22]S.-W. Ryu, J.-W. Han, C.-J. Kim, and Y.-K. Choi, “Investigation of Isolation-Dielectric Effects of PDSOI FinFET on Capacitorless 1T-DRAM,” IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 3232-3235, Dec. 2009. [23]D.-Il. Moon, J.-Y. Kim, J.-B. Moon, D.-O. Kim, and Y.-K. Choi, “Evolution of Unified-RAM: 1T-DRAM and BE-SONOS Built on a Highly Scaled Vertical Channel,” IEEE Trans. Electron Devices, vol. 61, no. 1, pp. 60-65, Jan. 2014. [24]J.-T. Lin, P.-H. Lin, S. W. Haga, Y.-C. Wang, and D.-R. Lu, “Transient and Thermal Analysis on Disturbance Immunity for 4F2 Surrounding Gate 1T-DRAM With Wide Trenched Body,” IEEE Trans. Electron Devices, vol. 62, no. 1, pp. 61-68, Jan. 2015. [25]J.-W. Han, S.-W. Ryu, S.-J. Choi, and Y.-K. Choi, “Gate-induced Drain-leakage (GIDL) Programming Method for Soft-programming-free Operation in Unified RAM (URAM),”IEEE Electron Device Lett., vol. 30, no. 2, pp. 189-191, Feb. 2009. [26]J.-W. Han, S.-W. Ryu, D.-H. Kim, and Y.-K. Choi, “Polysilicon Channel TFT With Separated Double-Gate for Unified RAM (URAM)─Unified Function for Nonvolatile SONOS Flash and High-Speed Capacitorless 1T-DRAM,” IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 601-607, Mar. 2010. [27]N. Rodriguez, F. Gamiz, and S. Cristoloveanu, “A-RAM Memory Cell: Concept and Operation,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 972-974, Sep. 2010. [28]N. Rodriguez, C. Navarro, F. Gamiz, F. Andrieu, O. Faynot, and S. Cristoloveanu, “Experimental Demonstration of Capacitorless A2RAM Cells on Silicon-on-Insulator,” IEEE Electron Device Lett., vol. 33, no. 12, pp. 1717-1719, Dec. 2012. [29]F. Gamiz, N. Rodriguez, and S. Cristoloveanu, “3D Trigate 1T-DRAM Memory Cell for 2x nm Node,” in IEEE Int. Memory Workshop Conf., May 2012, pp. 1-4. [30]M. Lee, T. Moon, and S. Kim, “Floating Body Effect in Partially Depleted Silicon Nanowire Transistors and Potential Capacitor-Less One-Transistor DRAM Applications,” IEEE Trans. on Nanotechnology, vol. 11, no. 2, pp. 355-359, Mar. 2012. [31]D.-Il. Moon, S.-J. Choi, J.-W. Han, and Y.-K. Choi, “An Optically Assisted Program Method for Capacitorless 1T-DRAM,” IEEE Trans. Electron Devices, vol. 57, no. 7, pp. 1714-1718, Jul. 2010. [32]M. G. Ertosun, K.–Y. Lim, C. Park, J. Oh, P. Kirsch, and K. C. Saraswat, “Novel Capacitorless Single-Transistor Charge-Trap DRAM (1T CT DRAM) Utilizing Electrons,” IEEE Electron Device Lett., vol. 31, no. 5, pp. 405-407, May 2010. [33]J.-S. Shin, H. Choi, H. Bae, J. Jang, D. Yun, E. Hong, D.-H. Kim, and D.-M. Kim, “Vertical-Gate Si-SGe Double-HBT-Based Capacitorless 1T DRAM Cell for Extended Retention Time at Low Latch Voltage,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 134-136, Feb. 2012. [34]S. Okhonin, M. Nagoga, E. Carman, R. Begffa, E. Faraon,“New Generation of Z-RAM,”in IEDM Tech. Dig., Dec. 2007, pp. 925-928. [35]H. Jeong, K.-W. Song, I. H. Park, T.-H. Kim, Y. S. Lee, S.-G. Kim, J. Seo, K. Cho, K. Lee, H. Shin, J. D. Lee, and B.-G. Park, “A New Capacitorless 1T DRAM Cell:Surrounding Gate MOSFET with Vertical Channel (SGVC Cell),” IEEE Trans. on Nanotechnology, vol. 6, no. 3, pp. 352-357, May 2007. [36]J. P. Colinge, “Reduction of Kink Effect in Thin-Film SOI MOSFET’s,” IEEE Trans. Electron Devices, vol. 9, no. 2, pp. 97-99, Feb. 1988. [37]E. Yoshida, and T. Tanaka, “A capacitorless 1T-DRAM technology using gate-induced drain-leakage (GIDL) current for low-power and high-speed embedded memory,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 692-697, Apr. 2006. [38]J.-H. Chen, S.-C. Wong, and Y.-H. Wang, “An Analytic Three-Terminal Band-to-Band Tunneling Model on GIDL in MOSFET,” IEEE Trans. Electron Devices, vol. 48, no. 7, pp. 1400-1405, Jul. 2001. [39]S. Cristoloveanu, “Silicon on insulator technologies and devices: from present to future,” Solid-State Electron., vol. 45, no. 8, pp. 1403-1411, Aug. 2001. [40]K.-H. Park, Y. M. Kim, H.-I. Kwon, S. H. Kong, and J.-H. Lee, “Fully Depleted Double-Gate 1T-DRAM Cell with NVM Function for High Performance and High Density Embedded DRAM,” in IEEE Int. Memory Workshop Conf., May 2009, pp. 1-2. [41]M. Aoulaiche, A. Bravaix, E. Simoen, C. Caillat, M. Cho, L. Witters, P. Blomme, P. Fazan, G. Groeseneken, and M. Jurczak, “Endurance of One Transistor Floating Body RAM on UTBOX SOI,” IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 801-805, Mar. 2014. [42]K.-W. Song, H. Jeong, J.-W. Lee, S. I. Hong, N.-K. Tak, Y.-T. Kim, Y. L. Choi, H. S. Joo, S. H. Kim, H. J. Song, Y. C. Oh, W.-S. Kim, Y.-T. Lee, K. Oh, and C. Kim, “55 nm Capacitor-less 1T DRAM Cell Transistor with Non-Overlap Structure,” in Proc. IEEE IEDM, Dec. 2008, pp. 1–4. [43]J.-W. Han, D.-Il. Moon, D.-H. Kim, and Y.-K. Choi, “Parasitic BJT Read Method for High-Performance Capacitorless 1T-DRAM Mode in Unified RAM,” IEEE Electron Device Lett., vol. 30, no. 10, pp. 1108–1110, Oct. 2009. [44]S.-J. Choi, J.-W. Han, D.-Il. Moon, and Y.-K. Choi, “Analysis and Evaluation of a BJT-Based 1T-DRAM,” IEEE Electron Device Lett., vol. 31, no. 5, pp. 393–395, May 2010. [45]H. I. Hanafi, T. Kanarsky, S. Schmitz, and K. Hathorn, “Data Retention in SOI-DRAM with Trench Capacitor Cell,” in Proc. Solid-State Device Research Conference, Sep. 1998, pp. 276–279. [46]J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, “Nanowire transistors without junctions,” Nature Nanotechnology., vol. 5, no. 3, pp. 225–229, Feb. 2010. [47]L. M. Almeida, K. R. A. Sasaki, C. Caillat, M. Aoulaiche, N. Collaert, M. Jurczak, E. Simoen, C. Claeys, and J. A. Martino, “Optimizing the front and back biases for the best sense margin and retention time in UTBOX FBRAM,” Solid-State Electron., vol. 90, pp. 149–154, Dec. 2013. [48](2013). The International Technology Roadmap for Semiconductors (ITRS)-Table PIDS6. [Online]. Available: http://www.itrs.net/Links/2013ITRS/2013Tables/PIDS_2013Tables.xlsx [49]Sentaurus User’s Manual, ver. H-2013.03, Synopsys, Inc., Mountain View, CA, USA, Mar. 2013. [50]J.-J Maa, and C.-Y. Wu, “A new constant-field scaling theory for MOSFET’s,” IEEE Trans. Electron Devices, vol. 42, no. 7, pp. 1262-1268, Jul. 1995. [51]J.-W. Han, S.-W. Ryu, S. Kim, C.-J. Kim, J.-H. Ahn, S.-J. Choi, K. J. Choi, J. C. Byung, J. S. Kim, K. H. Kim, G. S. Lee, J. S. Oh, M. H. Song, C. P. Yun, J. W. Kim, and Y.-K. Choi, “Energy band engineering unidied-RAM (URAM) for multi-functioning 1T-DRAM and NVM,” in Proc. IEEE IEDM, Dec. 2008, pp. 1–4. [52]A. Pal, A. Nainani, Z. Ye, X. Bao, E. Sanchez, and K. C. Saraswat, “Electrical Characterization of GaP-Silicon Interface for Memory and Transistor Applications,” IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2238-2245, Jul. 2013. [53]J. Mitard, L. Witters, H. Arimura, Y. Sasaki, A. P. Milenin, R. Loo, A. Hikavyy, G. Eneman, P. Lagrain, H. Mertens, S. Sioncke, C. Vrancken, H. Bender, K. Barla, N. Horiguchi, A. Mocuta, N. Collaert, and A. V.-Y. Thean, “First demonstration of 15nm-WFIN inversion-mode relaxed-Germanium n-FinFETs with Si-cap free RMG and NiSiGe Source/Drain,” in Proc. IEEE IEDM, Dec. 2014, pp. 16.5.1–16.5.4. [54]K. Mondal and P. Dutta, “Big data parallelism: Challenges in different computational paradigms,” in Proc. Computer, Communication, Control and Information Technology, Feb. 2015, pp. 1-5. [55]P. Kerber, Q. Zhang, S. Koswatta, and A. Bryant, “GIDL in Doped and Undoped FinFET Devices for Low-Leakage Applications,” IEEE Electron Device Lett., vol. 34, no. 1, pp. 6-8, Jan. 2013.
|