跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/26 20:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪悠誠
研究生(外文):Yu-Chen Hung
論文名稱:勁度法之理論與在結構分析之應用
論文名稱(外文):Stiffness Theory and It''s application in Structural Analysis
指導教授:呂 東 苗
指導教授(外文):Dung-Myau Lue
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:140
中文關鍵詞:勁度法傾角變位法
外文關鍵詞:Stiffness MatrixSlope Deflection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:411
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
隨著經濟的發展,科技的進步,今日的建築結構計算,完全仰賴電腦運算來達成,但是當人類享受科技之便,卻忘了結構力學分析的基本原理,往往無法判斷與分析電腦所跑出來結果是否正確,目前一般結構工程師都應用結構矩陣的原理,利用電腦來計算分析繁雜而具高數目自由度的結構物,並且能在數分鐘內得到非常精確的答案,所以昔日古典的分析方法,已漸被一些新進的工程師們忽視而不用。
我們在一般結構分析裡面,我們常利用電腦來處理繁複的計算,而電腦用的就是直接勁度法也就是矩陣的計算,由於電腦的出現勁度法就變成非常受到歡迎,本研究主要目的是提供做為大學部的結構學與電腦分析的直接勁度法之中間橋樑,把兩者之間的差異做有系統的總整理,並提出一個解決方法讓以後的後學者在學電腦結構分析有比較好基礎,這是本研究最大的目的。
本研究主要工作是由傾角變位法來推導勁度法,先由基本理論入手推導出傾角變位方程式,包括有傳統解法、疊加解法、傾角變位之修正、傾角變位法之應用、勁度矩陣之定義、結構載重及均佈載重等,然後再利用每一種勁度法之不同例題做示範說明,並在第四章之例題用傾角變位法、CAL-90 method、SSTAN method等三種方法求解,並比較其差異。
Most current structural analysis is done on the computer using the direct stiffness method. Stiffness methods became extremely popular with the advent of the computer. The purpose of this study is to have a full treatment for the stiffness method which is derived from the slope deflection method. The work for this study includes the classical derivation of slope deflection equation, a beam-column member with end moments and axial forces is selected to perform the derivation of the moment-displacement relationship of beam-column member; the superposition derivation of slope deflection equation, the moment at the ends of beam-column member can be broken up into four parts including the fixed-end moments, the moment due to a rotation of the ends, the moment due to a rotation of the opposite end of the member, and the moment due to a relative displacement of the ends; the applications of the slope deflection; stiffness matrices by definition; structural loading, work equivalence concept was used; distributed loads, the procedure includes two stages that finding the equivalent loading for a distributed loading on a member. Illustrated examples are presented in several ways which include the slope deflection method, the CAL-90 method, and the SSTAN method. The comparisons among these methods are evaluated and it was found that the results are quite encouraging.
Abstract (in Chinese) i
Abstract ii
Table of Contents iii
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Objectives of This Study 2
Chapter 2 Slope Deflection and Stiffness Matrix 3
2.1 Slope Deflection / Closed-Form Solution / Classical Solution 3
2.2 Slope Deflection / Superposition Approach 11
2.3 Application of Slope Deflection 22
2.4 Displaced Shapes 24
2.5 Stiffness Matrices by Definition 30
2.6 Structural Loadings 33
2.7 Distributed Loads 36
2.8 Three-dimensional Stiffness 40
Chapter 3 Illustrated Examples 43
3.1 Example for Simple Slope Deflection 43
3.2 Example for Modified Slope Deflection 47
3.3 Example for Frame by Slope Deflection 50
3.4 Example for Frame with Slanted Member 53
3.5 Example for Stiffness Matrices by Definition 56
3.6 Example for Structural Loadings 69
3.7 Example for Distributed Load 82
Chapter 4 Comprehensive Examples 88
Example 1 88
Example 2 102
Example 3 118
Example 4 137
Chapter 5 Conclusions 138
References 140
1.William McGuire, Richard H. Gallagher, and Ronald D. Ziemian (2000), Matrix Structural Analyis, 2nd edition, John Wiley and Sons, New York.
2.Joe G. Eisley (1989), Mechanics of Elastic Structures, Prentice Hall, Englewood Cliffs, New Jersey.
3.Robert E. Sennett (1994), Matrix Analysis of Structures, Prentice Hall, Englewood Cliffs, New Jersey.
4.Lewis P. Felton and Richard B. Nelson (1997), Matrix Structural Analysis, John Wiley and Sons, New York
5.Aslam Kassimali (1999), Matrix Analysis of Structures, Brooks/Cole Pulishing Company.
6.Marc Hoit (1995), Computer-Assisted Structural Analysis and Modeling, Prentice Hall, Englewood Cliffs, New Jersey.
7.Harold I. Laursen (1988), Structural Analysis, 3rd Edition, McGraw-Hill Book Company, New York.
8.Russell C. Hibbeler (1995), Structural Analysis, 4th Edition, Prentice Hall, Upper Saddle River, New Jersey.
9.C. K. Wang (1976), Intermediate Structural Analysis, McGraw-Hill Book Company, New York.
10.A. Ghali, A. M. Neville and T. G. Brown (2003), Structural Analysis A Unified Classical and Matrix Approach, 5th Edition, Spon Press London and New York.
11.謝元裕 (1994), 初等結構理論, 科技圖書股份有限公司, 臺北.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top