跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/30 23:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余育崴
研究生(外文):Yu-Wei Yu
論文名稱:應用新型降-升壓式轉換器於功率因數改善
論文名稱(外文):Application of Novel Buck-Boost Converter for Power Factor Correction
指導教授:莊英俊莊英俊引用關係
指導教授(外文):Ying-Chun Chuang
口試委員:莊宏祥王永山
口試委員(外文):Hung-Shiang ChuangYung-Shan Wang
口試日期:2012-12-17
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:52
中文關鍵詞:降壓式轉換器(buck)升壓式轉換器(boost)降-升壓式轉換器(buck-boost)
外文關鍵詞:step-down converter(buck)step-up converter (boost)down - step-up converter (buck-boost)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:715
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本文以新型降-升壓式轉換器為主要核心架構,使用開迴路架構下,進而改善功率因數。本文中提到新型降-升壓式轉換器的零件選擇,使電流操作於連續能有良好的轉換效率,內容包含原理介紹、動作分析、電路組成、交流輸入60V直流輸出40V的實驗結果。在設計電路上,先以IsSpice模擬軟體完成模擬,與實體電路實驗結果來驗證。
在電路部分,不需用傳統線性穩壓器就可以完成升降壓模式,可以節省電路空間,實做電路的結果,證實此電路功率因數可達到0.8,此電路可達到75.9%的轉換效率。
The article to the new drop - boost converter as the main core architecture, use of open-loop architecture, thus improving the power factor. This article mentioned the new drop - the choice of the boost converter parts,when the current in continuous operation can have a good conversion efficiency, content inclusion principle, motion analysis,AC input 60V DC output 40V experimental results. In the design of the circuit,first completion of the IsSpice simulation software simulation,with entities circuit experimental results to validate.
The circuit portion without using a conventional linear regulator can be completed the step-up/step-down mode, can save circuit space, implement circuit results confirmed that this circuit power factor can reach 0.8, this circuit can be achieved a conversion efficiency of 75.9%.
目錄
摘要 -----------------------------------------------------I
Abstract ------------------------------------------------II
誌謝 ----------------------------------------------------IV
目錄 ----------------------------------------------------V
圖目錄 --------------------------------------------------VII
表目錄 ---------------------------------------------------X
第一章 序論 ………………………………………………………………………1
1.1 研究背景與動機…………………………………………………………………1
1.2 研究目的…………………………………………………………………………2
1.3 論文架構…………………………………………………………………………3
第二章 轉換器之工作原理及架構…………………………………………………4
2.1電力轉換器 ………………………………………………………………………4
2.1.1線性式電力轉換器 ……………………………………………………………5
2.1.2 切換式電力轉換器……………………………………………………………6
2.1.3 線性式與切換式之比較………………………………………………………8
2.2 新型降升壓式轉換器……………………………………………………………9
2.3整流器 …………………………………………………………………………10
第三章 功率因數改善之原理及分析 ……………………………………………12
3.1功率因數…………………………………………………………………………12
3.1.1線性負載………………………………………………………………………13
3.1.2非線性負載……………………………………………………………………14
3.2 功因校正電路 …………………………………………………………………16
3.2.1被動式功率因數校正電路……………………………………………………16
3.2.2主動式功率因數校正電路……………………………………………………20
第四章 新型降升壓式轉換器 ……………………………………………………23
4.1新型降升壓式轉換器……………………………………………………………23
4.2元件設計…………………………………………………………………………28
4.2.1儲能電感之設計………………………………………………………………29
4.2.2功率開關選擇…………………………………………………………………30
4.2.3二極體之選擇……………………………………………………………30
4.3 新型降升壓式轉換器動作原理 ………………………………………………30
4.3.1 新型降升壓式轉換器動作模式 ……………………………………………31
第五章 模擬與實際之波形 ………………………………………………………32
5.1 模擬與實測 ……………………………………………………………………34
第六章 結論與未來展望 …………………………………………………………36
參考文獻 ……………………………………………………………………………50


圖目錄
圖1-1 AC/DC轉換器示意圖…………………………………………………………1
圖1-2 AC/DC整流器系統方塊圖……………………………………………………2
圖2-1傳統線性式電力轉換器方塊圖………………………………………………5
圖2-2降壓型轉換器…………………………………………………………………6
圖2-3升壓型轉換器…………………………………………………………………6
圖2-4降升壓型轉換器………………………………………………………………6
圖2-5邱克式轉換器…………………………………………………………………7
圖2-6脈波寬度調變…………………………………………………………………7
圖2-7 切換式轉換器電路架構………………………………………………………7
圖2-8 新型降升壓轉換器……………………………………………………………9
圖2-9全橋式全波整流器……………………………………………………………10
圖2-10 半橋式全波整流器…………….……………………………………………11
圖2-11整流器接DC/DC轉換器(功率因數校正電路) ……………………………11
圖3-1線性負載電壓與電流波形 .…………………………………………………13
圖3-2 LC濾波功率因數校正電路…………………………………………………17
圖3-3 π型濾波功因校正電路……………………………………………………17
圖3-4填谷式功率因數校正電路 …………………………………………………18
圖3-5電壓隨偶法公因校正電路 …………………………………………………22
圖4-1新型降升壓式轉換器電路圖 ………………………………………………24
圖4-2 開關導通等效電路…………………………………………………………..26
圖4-3 開關截止等效電路…………………………………………………………27
圖4-4 新型降升轉換器之時序圖 …………………………………………………31
圖4-5 新型降升轉換器動作模式一 ………………………………………………32
圖4-6新型降升轉換器動作模式二 ………………………………………………33
圖5-1 新型降升壓轉換器之模擬電路圖 ………………………………………35
圖5-2 VGS1與VGS2實體波形…………………………………………………………36
圖5-3 VGS1與VGS2模擬波形…………………………………………………………36
圖5-4電感電壓VLr電流iLr實體波形 ……………………………………………37
圖5-5電感電壓VLr電流iLr模擬波形 ……………………………………………37
圖5-6訊號VGS1及VDS1實體波形……………………………………………………38
圖5-7訊號VGS1及VDS1模擬波形……………………………………………………38
圖5-8訊號VGS1及VLr實體波形……………………………………………………39
圖5-9 訊號VGS1及VLr模擬波形…………………………………………………39
圖5-10訊號VGS1電感電流iLr實體波形 …………………………………………40
圖5-11訊號VGS1電感電流iLr模擬波形 …………………………………………40
圖5-12訊號VGS1及VDR1實體波形…………………………………………………41
圖5-13訊號VGS1及VDR1模擬波形…………………………………………………41
圖5-14訊號VGS2及VDS2實體波形…………………………………………………42
圖5-15訊號VGS2及VDS2模擬波形…………………………………………………42
圖5-16訊號VGS2及VL實體波形 …………………………………………………43
圖5-17 訊號VGS2及VL模擬波形…………………………………………………43
圖5-18訊號VGS2及iL實體波形 …………………………………………………44
圖5-19訊號VGS2及iL模擬波形 …………………………………………………44
圖5-20訊號VGS2及VDR2實體波形………………………………………………45
圖5-21 VGS2及VDR2模擬波形…………………………………..………………45
圖5-22 VO及iO實體波形…………………………………….…....………………46
圖5-23 VO及iO模擬波形……………………………………..……………………46
圖5-24 VAC及VIN實體波形 ………………………………….…………………47
圖5-25 訊號VAC及VIN模擬波形…………………………………………………47
圖5-26 MOSFET訊號VAC及iAC實體波形………………………………………48
圖5-27 MOSFET訊號VAC及iAC模擬波形………………………………………48











表目錄
表2-1 線性式與切換式電路之比較 ………………………………………………8
表3-1被動式功率因數校正電路優缺點 …………………………………………19
表3-2乘法器控制法優缺比較表 …………………………………………………21



參考文獻
[1]王順忠編著,電力電子學,東華書局有限公司,2001。
[2]Mohan Undeland Robbins原著,江炫章編譯,電力電子學,全華科技圖書有限公司,2003。
[3]K.H.Liu,F.C.Lee,“Zero-Voltage-Switching Technique In DC/DC Converter ”,IEEE Trans. on Power Electronics,Vol.5, Issue 3, pp.293-304,1990.
[4]鄭培璿,IsSpice在電源轉換器之應用-基礎班,經濟部工業局八十八年度工業技術人才培訓計畫講義,1999年。
[5]“Magnetics Designer Application Note”, Intusoft,1997.
[6]N. Mohan, T.M. Undeland Computer Simulation, Analysis, and Education Using PSpice “,Minnesota Power Electronics Research & Education, 1992.
[7]B.Sahu and G.A. Rincon-Mora,"A Low Voltage, Dynamic, Noninvertig,Synchronous BucK-Boost Converter for Portable Applications," IEEE Transactions on Power Electronics, vol. 19,no.2, pp. 443-452, Mar. 2004.
[8]G.K.Andersen and F.Blaabjerg, "Current Programmed Control of a Single-Phase Two-Switch BucK-Boost Power Factor Correction Circuit," IEEE Transactions on Industrial Electronics, vol. 53, no.1, pp. 263-271, Feb. 2005.
[9]C. Jingquan, D. MaKsimovic, and R. EricKson, "BucK-Boost PWM Converters Having two Independently Controlled Switches," in IEEE32nd Annual Power Electronics Specialists Conference, June 2001,pp. 736-741 vol.2.
[10]Reza Dowlatabadi, Modelling and Controller Design for a Non-inverting BucK-Boost Chopper, 2011 International Conference on Electrical Engineering and Informatics 17-19 July 2011, Bandung, Indonesia.
[11]E.Schaltz, P. O. Rasmussen, and A. Khaligh, “Non-inverting BucK-Boost Converter For Fuel Cell Applications,” in Proc. IEEE Annual Conference on Industrial Electronics, 2008, pp. 855-860.
[12]J.K.Shiau, and C. J. Cheng, “Design of a Non-Inverting Synchronous BucK-Boost DC/DC Power Converter With Moderate Power Level,”Robotics and Computer-Integrated Manufacturing, vol. 26, no. 3, pp.263-267, June 2010.
[13]R. Paul and D. MaKsimovic, “Analysis of PWM Nonlinearity in Non-Inverting BucK-Boost Power Converters,” IEEE 2008 Power Electronics Specialists Conference(PESC 2008), .pp. 3741 – 3747, 2008.
[14]M. Gaboriault and A. Notman, “A High Efficiency, Non-Inverting, BucK-Boost DC-DC Converter,” 19th Annual IEEE,Applied Power Electronics Conference and Exposition,2004(APEC ’04), vol. 3, pp. 1411 – 1415, 2004.
[15]P. C. Huang, W. Q. Wu, H. H. Ho and K. H. Chen, “High Efficiency and Smooth Transition BucK-Boost Converter for Extending Battery Life in Portable Devices,” 2009 Energy Conversion Congress and Exposition, pp. 2869 – 2872, 2009.
[16]B. Sahu and G. A. Rincon Mora, “A Low Voltage, Dynamic, Noninverting, Synchronous BucK-Boost Converter for Portable Applications,” IEEE Transaction on Power Electronics, vol. 19, no. 2, Mar. 2004.
[17]G. Chryssis, “High-Frequency Switching Power Supplies: Theory and Design”, McGraw-Hill Publishing Company, New YorK, 1989.
[18]S. M. Sandler, “SMPS Simulation With SPICE 3”, McGrew-Hill Companies,1997.
[19]Gaboriault M, Notman A,"A High Efficiency, Noninverting, BucK-BoostDC-DC converter", IEEE APEC '04, Vol 3, pp.1411- 1415.
[20]J. Chen, D. MaKsimovic and R. EricKson, “A New Low-Stress BucK-Boost Converter for Universal-Input PFC Applications,” Proc. IEEE APEC, March 4-8, 2001, pp. 343-349.
[21]Sahu B, Rincon-Mora G.A,"A High Efficiency WCDMA RF Power Amplifier With Adaptive, Dual-Mode BucK-Boost Supply and Bias- Current Control", Microwave and Wireless Components Letters, IEEE, March 2007, Vol 17, Issue: 3, pp: 238-240.
[22]R. Paul, D. MaKsimovic,” Smooth Transition and Ripple Reduction in 4-Switch Non-Inverting BucK-Boost Power Converter for WCDMA RF Power Amplifier ”, IEEE ISCAS-2008.
[23]S. BarKaro, Solna, Sweden “BucK Boost Switching Regulator” U. S. Patent 5,949,224, 7 Sep., 1999.
[24]K. H. Liu and Y. L. Lin, “Current Waveform Distortion in Power Factor Correction Circuits Employing Discontiuous-Mode Boost Converters,” in Proc. IEEE PESC’89, 1989, pp. 825–829.
[25]P. C. Huang, W. Q. Wu, H. H. Ho and K. H. Chen, “Hybrid BucK-Boost Feedforward and Reduced Average Inductor Current Techniques in Fast Line Transient and High- Efficiency BucK-Boost Converter,” IEEE Transaction on Power Electronics, vol. 25, no. 3, March 2010.
[26]Robert W. EricKson, Dragan MaKsimovic, Fundamentals of Power Electronics - Second Edition

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top