跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 08:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳泊芳
研究生(外文):Po-Fang Chen
論文名稱:以暗黑頻道預測為基礎的水下影像修復技術
論文名稱(外文):Underwater Image Restoration Based on Dark Channel Prior
指導教授:張恆華
口試委員:宋家驥張瑞益
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:56
中文關鍵詞:水下影像影像修復影像強化影像除霧暗黑頻道預測
外文關鍵詞:underwater imageimage enhancementimage restorationhaze removaldark channel prior
相關次數:
  • 被引用被引用:0
  • 點閱點閱:660
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
水下影像受到水中濃密混濁介質與水中普遍存在的懸浮微粒影響,使得光在水中傳遞時產生衰減、吸收及散射問題,導致水下影像的對比度嚴重下降,並產生如被一層薄紗覆蓋般的霧化現象。而不同顏色的光因為波長不同,入水後會隨波長的長短依序消失在水中,造成水下影像普遍偏藍這種由單一顏色主宰整張影像的情形。另一方面,我們觀察到水下影像退化的現象與濃霧中拍攝得到的影像十分類似,影像都同樣呈現低對比度與色彩改變的情形。本文改良影像除霧技術之暗黑頻道預測方法來解決水下影像的霧化問題,修復影像的清晰度。接著分別對每個RGB色彩頻道做線性轉換,均化各個色彩頻道亮度平均值,以解決影像色偏問題。最後使用 CLAHE方法進一步強化影像對比度,得到細節更加清晰的最終修復影像。實驗結果顯示,本研究方法能有效地對各種不同的水下影像除霧,並成功地復原色彩和對比。

Underwater images are usually affected by the turbid water medium and floating particles existed in the water. Thus attenuation, absorption, and scattering happen while light propagates in the water. These phenomena cause low contrast in underwater images, and make them look like covering by a veil. In addition, colors disappear sequentially according to the wavelength while light travels deeper in the water, which makes underwater images blue. On the other hand, we observe that underwater images are similar to haze images because they have the same problems of low contrast and color shifting. This has motivated our use of the haze removal technique, namely, dark channel prior, to dehaze underwater images. Subsequently, we equalize the color mean in each RGB channel to balance the color. Finally, we use CLAHE to enhance the contrast of the images. Experimental results indicate that the proposed method effectively removes the haze in a wide variety of underwater images and successfully recovers the color and contrast.

致謝 i
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
符號表 ix
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 論文架構 3
第2章 文獻探討 5
2.1 色彩空間模型 5
2.1.1 RGB色彩空間 5
2.1.2 HSI色彩空間 6
2.1.3 CIEXYZ色彩空間 7
2.1.4 CIELAB色彩空間 7
2.2 水下影像處理 9
2.2.1 水下成像模型 9
2.2.2 水下影像處理技術 11
2.3 影像除霧技術 14
第3章 研究方法 16
3.1 系統架構 16
3.2 霧化修正 17
3.2.1 取得暗黑頻道 18
3.2.2 評估全域背景光源 21
3.2.3 估計傳遞率圖像 21
3.2.4 最佳化傳遞率圖像 23
3.2.5 修復影像發光強度 27
3.3 色偏修正 28
3.4 影像對比度增強 29
第 4 章 實驗結果 31
4.1 實驗設計 31
4.2 參數分析 33
4.3 模擬影像結果 35
4.4 真實影像結果 40
第 5 章 結論與未來展望 51
5.1 結論 51
5.2 未來展望 52
參考文獻 53

[1] G. L. Foresti, Visual inspection of sea bottom structures by an autonomous underwater vehicle. IEEE Trans Syst Man Cybern B Cybern, 31(5), p. 691-705, 2001.
[2] D. F. Coleman, J. B. Newman, and R. D. Ballard, Design and implementation of advanced underwater imaging systems for deep sea marine archaeological surveys. Oceans 2000 Mts/IEEE - Where Marine Science and Technology Meet, Vols 1-3, Conference Proceedings, p. 661-665, 2000.
[3] S. Bazeille, I. Quidu, L. Jaulin, and J. P. Malkasse, Automatic underwater image pre-preprocessing. Proceedings of the SEA TECH WEEK Caractérisation du Milieu Marin, Brest, 2006.
[4] Y. Y. Schechner and N. Karpel, Clear underwater vision. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol 1, p. 536-543, 2004.
[5] R. Schettini and S. Corchs, Underwater Image Processing: State of the Art of Restoration and Image Enhancement Methods. EURASIP Journal on Advances in Signal Processing, (1), p. 746052, 2010.
[6] R. Garcia, T. Nicosevici, and X. Cufi, On the way to solve lighting problems in underwater imaging. Oceans 2002 Mts/IEEE Conference & Exhibition, Vols 1-4, Conference Proceedings, p. 1018-1024, 2002.
[7] A. Arnold-Bos, J.-P. Malkasse, and G. Kervern, A preprocessing framework for automatic underwater images denoising, 2005.
[8] J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, Underwater optical imaging: status and prospects. Oceanography, 14, p. 66-76, 2001.
[9] A. Arnold-Bos, J. P. Malkasse, and G. Kervern, Towards a model-free denoising of underwater optical images. Oceans 2005 - Europe, Vols 1 and 2, p. 527-532, 2005.
[10] L. A. Torres-Mendez and G. Dudek, Color correction of underwater images for aquatic robot inspection. Energy Minimization Methods in Computer Vision and Pattern Recognition, Proceedings, p. 60-73, 2005.
[11] R. Fattal, Single image dehazing. Acm Transactions on Graphics, 27(3), 2008.
[12] K. M. He, J. A. Sun, and X. O. Tang, Single Image Haze Removal Using Dark Channel Prior. Cvpr: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Vols 1-4, p.1956-1963, 2009.
[13] K. Iqbal, R. A. Salam, A. Osman, and A. Z. Talib, Underwater image enhancement using an integrated color model. International Journal of Computer Science, vol. 34, p.2, 2007.
[14] R. C. Gonzalez and R. E. Woods, Digital image processing. 3rd ed, Prentice Hall, 2008.
[15] A. Koschan and M. A. Abidi, Digital color image processing, Wiley-Interscience, 2008.
[16] W. K. Pratt, Digital image processing : PIKS inside.3rd ed, Wiley, 2001.
[17] La Bitácora Industrial. Available: http://disenoypreimpresionmozadr.wordpress.com/2012/03/20/traductor-universal-de-color-espacio-cielab/.
[18] B. McGlamery, A computer model for underwater camera system. Ocean Optics VI, S. Q. Duntley, Ed., vol. 208, Proceedings of SPIE, p. 221-231, 1979.
[19] J. S. Jaffe, Computer Modeling and the Design of Optimal Underwater Imaging-Systems. IEEE Journal of Oceanic Engineering, 15(2), p. 101-111, 1990.
[20] L. E. Mertens and F. S. Replogle, Use of Point Spread and Beam Spread Functions for Analysis of Imaging-Systems in Water. Journal of the Optical Society of America, 67(8), p. 1105-1117, 1977.
[21] Z. S. Liu, Y. F. Yu, K. L. Zhang, and H. L. Huang, Underwater image transmission and blurred image restoration. Optical Engineering, 40(6), p. 1125-1131, 2001.
[22] E. Trucco and A. T. Olmos-Antillon, Self-tuning underwater image restoration. IEEE Journal of Oceanic Engineering, 31(2), p. 511-519, 2006.
[23] Y. Y. Schechner and N. Karpel, Recovery of underwater visibility and structure by polarization analysis. IEEE Journal of Oceanic Engineering, 30(3), p. 570-587, 2005.
[24] Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, Instant dehazing of images using polarization. 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol 1, Proceedings, p. 325-332, 2001.
[25] R. T. Tan, Visibility in bad weather from a single image. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Vols 1-12, p. 2347-2354, 2008.
[26] K. M. He, J. Sun, and X. O. Tang, Single Image Haze Removal Using Dark Channel Prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), p.2341-2353, 2011.
[27] Y. C. Chen, Underwater image enhancement: Using Wavelength Compensation and Image Dehazing (WCID), in Department of Computer Science and Enginnering, National Sun Yat-Sen University: Kaohsiung, Taiwan, 2011.
[28] Crikey Llama. Available: http://www.crikeyllama.com.
[29] A. Levin, D. Lischinski, and Y. Weiss, A closed-form solution to natural image matting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), p.228-242, 2008.
[30] K. M. He, J. A. Sun, and X. O. Tang, Guided Image Filtering. Computer Vision-Eccv 2010, Pt I, 6311, p. 1-14, 2010.
[31] K. Zuiderveld, Contrast Limited Adaptive Histogram Equalization, Graphics Gems IV, P. Heckbert (Ed.), Academic Press, p. 474-485, 1994.
[32] K. He. Available: http://research.microsoft.com/en-us/um/people/kahe/.
[33] AQUALIFEIMAGES. Available: http://www.aqualifeimages.com/default.aspx.
[34] National Geographic. Available: http://www.nationalgeographic.com/.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊