跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/05 11:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇佑安
研究生(外文):Yu-An Su
論文名稱:製備樹枝狀共聚物及其在形態之影響
論文名稱(外文):Synthesis and Morphology of Dendritic Block Copolymers
指導教授:鄭如忠
指導教授(外文):Ru-Jong Jeng
口試委員:邱文英劉定宇蔡協致駱俊良
口試委員(外文):Wen-Yen ChiuTing-Yu LiuHsieh-Chih TsaiChun-Liang Lo
口試日期:2014-08-07
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:110
中文關鍵詞:樹枝狀分子樹枝狀共聚物自組裝
外文關鍵詞:dendronsdendritic block copolymersself-assembly
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,主要是探討樹枝狀共聚物(dendritic block copolymers)的自組裝行為,並且藉由改變樹枝狀共聚物的兩崁鏈段中組成與構型,並進一步進行形態上的觀察,製備具備反應選擇性官能基(azetidine-2,4-dione)為建構單元,並製備不同代數的樹枝狀分子,並經由FT-IR、1H-NMR、EA、MASS的結構鑑定,判定其結構的正確性。並導入軟鏈段製備樹枝狀共聚物,增加兩崁鏈段的作用力參數,調控不同代數的樹枝狀分子、改變軟鏈段長度與分子構形分別製備線型與啞鈴型樹枝狀共聚物,並藉由FT-IR、1H-NMR、EA、MASS及GPC的結構鑑定。
由於樹枝狀分子因為代數越高,其分支情形越明顯,不利於結晶排列,然而樹枝狀共聚物藉由兩崁鏈段的作用力差異進行自組裝排列,其中L1D0BC的Tm為20 oC, 60 oC,隨著代數的增加,反而誘導高代數的樹枝狀共聚物能沿著兩崁鏈段的界面進行結晶排列,因此,L1D2BC的Tm提升到37 oC, 86 oC。利用TEM觀察自組裝行為在形態上的變化,樹枝狀共聚物,以L1D0BC為例,其自組裝成層狀,間距為30 nm,隨著代數的增加,結構形態轉變為蟲狀再轉變成球狀,並經由SAXS與Igor軟體進行高分子擬合佐證,而當軟鏈段的鏈長增加時,其中L2D0BC自組裝成圓柱狀,且圓柱的半徑為6 nm,間距為21.2 nm,此外當改變樹枝狀共聚物的分子構形時,D2D0BC則是又轉為層狀,間距為30 nm,因此可以藉由不同代數的樹枝狀分子、改變軟鏈段長度與分子構形來操控樹枝狀共聚物的形態。

This work consists of the synthesis of dendritic block copolymers (DBCs) with various flexible chain lengths, architectures and numbers of branching generations, and the effects of these structural factors on the morphologies. A series of poly(urethane/malonamide)dendrons were synthesized first based on the reactive building block, 4-isocyanate-4-(3,3-dimethyl-2,4-dioxo-azetidine)-diphenylmethane (IDD) with different numbers of branching generations. All the dendrons were confirmed by FT-IR, 1H-NMR, EA and Mass. Subsequently, the flexible poly(oxyalkylene) reacted with the reactive dendrons with different numbers of branching generations. Hence, several series of DBCs were synthesized and confirmed by FT-IR, 1H-NMR and GPC. Because the high branching generations of dendrons were difficult to self-assemble, a soft segment was incorporated to enhance the x values of DBCs. As a result, the presence of microphase separation between the interface would certainly induce a pattern of the architecture of dendrons with high branching generations to self-assemble. In addition, two melting transitions, pertaining to the partial micro-separation were observed as measured by DSC. In the L1DBC system, Tm1 and Tm2 were increased from 20 oC, 60 oC to 37 oC, 86 oC, respectively, when a dendron of higher generation was incorporated onto a DBC. The TEM image of L1DBC showed the morphologies were lamellar, worm-like and sphere, dependent on increasing generation of dendrons in L1DBCs accordingly. Furthermore, the morpholgy of L2D0BC and D2D0BC were cylinder and lamellar by the extension of flexible chain lengths and architecture conformation, respectively. All the DBCs were confirmed by Small angle x-ray scattering (SAXS) and Igor software curve fitting.

摘要 I
ABSTRACT II
目錄 III
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 分子自組裝(self-assembly)行為 2
1.3 樹枝狀分子 3
1.3.1 樹枝狀分子之合成路徑 5
第二章 文獻回顧 7
2.1 團聯共聚高分子 (Block Copolymer, BCP) 7
2.2 雜臂星狀共聚物 (Miktoarm Star Copolymer) 11
2.3樹枝狀共聚物 (Dendritic Block Copolymer) 12
2.4 研究動機 17
第三章 實驗內容 18
3.1 藥品及溶劑 18
3.2 實驗儀器 20
3.3 實驗流程圖 23
3.4 合成步驟 24
3.4.1 合成(4-Isocyanato-4’(3,3-dimethyl-2,4-dioxo-azetidino)diphenyl-methane) (IDD) 24
3.4.2 合成樹枝狀分子 26
3.4.2.1 G0.5-C18 26
3.4.2.2 G1-C18 27
3.4.2.3 G1.5-C18 27
3.4.2.4 G2-C18 28
3.4.2.5 G2.5-C18 28
3.4.3 合成線型樹枝狀共聚物(Linear Dendritic Block Copolymer, LDBC) 29
3.4.3.1 L1D0BC 29
3.4.3.2 L1D1BC 30
3.4.3.3 L1D2BC 30
3.4.3.4 L2D0BC 30
3.4.3.5 L2D1BC 31
3.4.3.6 L2D2BC 31
3.4.4合成啞鈴型樹枝狀共聚物(Dumbbell-Shaped Dendritic Block Copolymer, DDBC) 32
3.4.4.1 D2D0BC 32
3.4.4.2 D2D1BC 32
3.4.4.3 D2D2BC 33
第四章 結果與討論 34
4.1 樹枝狀分子與樹枝狀共聚物之合成與鑑定 34
4.1.1樹枝狀分子之合成與鑑定 34
4.1.1.1 IDD之合成與鑑定 34
4.1.1.2 G0.5-C18之合成與結構鑑定 37
4.1.1.3 G1-C18之合成與結構鑑定 38
4.1.1.4 G1.5-C18之合成與結構鑑定 40
4.1.1.5 G2-C18之合成與結構鑑定 43
4.1.1.6 G2.5-C18之合成與結構鑑定 46
4.1.2線性樹枝狀共聚物(LDBC)之合成與鑑定 50
4.1.2.1 L1D0BC之合成與結構鑑定 50
4.1.2.2 L1D1BC之合成與結構鑑定 52
4.1.2.3 L1D2BC之合成與結構鑑定 54
4.1.2.4 L2D0BC之合成與結構鑑定 57
4.1.2.5 L2D1BC之合成與結構鑑定 59
4.1.2.6 L2D2BC之合成與結構鑑定 61
4.1.3 啞鈴型樹枝狀共聚物(DDBC)之合成與鑑定合成 64
4.1.3.1 D2D0BC之合成與結構鑑定 64
4.1.3.2 D2D1BC之合成與結構鑑定 66
4.1.3.3 D2D2BC之合成與結構鑑定 68
4.2樹枝狀共聚物之熱性質分析 71
4.3樹枝狀分子與樹枝狀共聚物之形態結構分析 79
4.3.1探討不同代數樹枝狀分子之形態變化 79
4.3.2探討不同代數樹枝狀共聚物之形態變化 84
4.3.3探討改變軟鏈段的長度在樹枝狀共聚物之形態變化 91
4.3.4探討改變分子構形在樹枝狀共聚物之形態變化 97
第五章 總結 103
第六章 參考文獻 104

[1] G. M. Whitesides, B. A. Grzybowski, Science, 2002, 295, 2418.
[2] Supramolecular Chemistry Concepts and Perspectives, ed. J. M. Lehn, 1995.
[3] Ringsdorf, H.; Simon, J. Nature, 1994, 371, 284.
[4] Whitesides, G. M.; Boncheva, M. Proc. Natl. Acad. Sci. USA, 2002, 99, 4769.
[5] Y. F. Zhou, D. Yan, Chem. Commun., 2009, 1172.
[6] S. F. Mason, Chemical Evolution, 1991,
[7] M. K. Lothian-Tomalia, Tetrahedron 1997, 53, 15495.
[8] D. L. Jiang, T. Aida, Progress in Polymer Science, 2005, 30, 403.
[9] F. Xia, L. Jiang, Adv. Mater. 2008, 20, 2842.
[10] Buhleier, E., W. Wehner, and F. VOGtle, "Cascade"- and "Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies. Synthesis, 1978. 1978(02): p. 155-158.
[11] D. A. Tomalia, H. Baker, J. Dewald, Polym. journal, 1985, 17, 117.
[12] A. M. Naylor, J. Am. Chem. Soc. 1989, 111, 2339.
[13] N. J. Turro, J. K. Barton, D. A. Tomalia, Account Chem. Res. 1991, 24, 332.
[14] C. J. Hawker, K. L. Wooley, J. M. J. Frechet, J. Am. Chem. Soc. 1993, 115, 4375.
[15] S. M. Grayson, J. M. J. Frechet, Chem. Rev. 2001, 101, 3819.
[16] G. R. Newkome, The Journal of Organic Chemistry, 1985, 50, 2003.
[17] A. B. Padias, The Journal of Organic Chemistry, 1987, 52, 5305.
[18] T. M. Miller, T. X. Neenan, Chem. Mater. 1990, 2, 346.
[19] C. J. Hawker, J. M. J. Frechet, J. Am. Chem. Soc. 1990, 112, 7638.
[20] A. K. Khandpur, S. Forster, F. S. Bates, Macromolecules 1995, 28, 8796.
[21] I. Otsuka, T. Isono, C. Rochas, S. Halila, S. Fort, T. Satoh, T. Kakuchi, R. Borsali, ACS Macro Lett. 2012, 1, 1379.
[22] J. H. Kim, M. S. Rahman, J. S. Lee, J. W. Park, Macromolecules 2008, 41, 3181.
[23] T. Isono, I. Otsuka, Y. Kondo, S. Halila, S. Fort, C. Rochas, T. Satoh, R. Borsali, T. Kakuchi, Macromolecules 2013, 46, 1461.
[24] B. M. Rosen, C. J. Wilson, D. A. Wilson, M. Peterca, M. R. Imam, V. Percec, Chemical Reviews 2009, 109, 6275.
[25] (a) I. Gitsov, K. L. Wooley, C. J. Hawker, P. T. Ivanova, J. M. J. Frechet, Macromolecules 1993, 26, 5621. (b) I. Gitsov, J. M. J. Frechet, Macromolecules 1993, 26, 6536. (c) I. Gitsov, J. M. J. Frechet, J. Am. Chem. Soc. 1996, 118, 3785.
[26] B. K. Cho, A. Jain, S. M. Gruner, U. Wiesner, Chem.Commun. 2005, 2143.
[27] M. A. Johnson, J. Iyer, P. T. Hammond, Macromolecules 2004, 37, 2490.
[28] J. Barrio, L. Oriol, R. Alcala, C. Sanchez, Macromolecules 2009, 42, 5752.
[29] S. M. Shau, C. C. Chang, C. H. Lo, Y. C. Chen, T. Y. Juang, S. A. Dai, R. H. Lee, R. J. Jeng, ACS Appl. Mater. Interfaces, 2012, 4, 1897.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top