跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃少玫
研究生(外文):Shao-Mei
論文名稱:葡萄糖六磷酸鹽脫氫酶在胚胎發育的角色
論文名稱(外文):Influence of Glucose-6-Phosphate Dehydrogenase Deficiency in Zebrafish Embryos During Early Development
指導教授:蔡淦仁
指導教授(外文):Kan-Jen Tsai
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:醫學檢驗暨生物技術學系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:51
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
葡萄糖六磷酸脫氫酶(G6PD)在五碳糖磷酸途徑(pentose phosphate pathway)中負責催化葡萄糖-6-磷酸(glucose-6-phosphate)轉換成6-磷酸葡萄糖酸內酯(6-phosphogluconolactone ),可產生還原態之菸鹼胺腺呤雙核酸磷酸(NADPH),對許多生化反應提供還原能量維持細胞內抗氧化系統,保護細胞免受到氧化壓力的損害。臨床上針對酵素缺乏患者多研究與貧血相關,較少說明胚胎發育及早期的生長調控。因此,研究中利用斑馬魚動物模式,說明酵素在胚胎發育扮演的角色。在胚胎中注入反義核苷酸(Morpholino)能阻斷蛋白轉譯,減少斑馬魚G6PD活性,並發現胚胎發育產生遲緩現象。利用即時聚合酶連鎖反應(RT-PCR)偵測一連串受到上下游影響的氧化壓力相關基因。最後利用凋亡細胞的特性偵測活性含氧化物(ROS),及利用螢光染劑Acridine orange觀察細胞,此時當細胞受到G6PD活性下降影響,走向凋亡的細胞增加的趨勢。從實驗結果證明G6PD在胚胎發育扮演重要角色,能提供斑馬魚胚胎發育時所需的氧化還原物質,使胚胎能維持正常發育表現。

The Glucose-6-phosphate dehydrogenase (G6PD) is the housekeeping enzyme in pentose phosphate pathway, which the nicotinamide adenine dinucleotide phosphates (NADPH) is generated as intracellular reduction potentials to overcome the oxidative stresses in cells. To date, not much have been done to reveal the role of this important metabolic enzyme in early embryo development. In this study, we take the advantage of using zebrafish as an animal model to explore the role of G6PD in early embryo development. Through G6PD-morpholino (G6PD-MO) injecting, the G6PD gene expression is knockdown by blocking mRNA translation and subsequently the G6PD enzymatic activity is diminished. Through the phenotypic observations, retardation in embryo development in G6PD knockdown embryos was demonstrated. Using real-time PCR, a series of genes responsible for oxidative stress were measured to determine either up- or down-regulated in G6PD knockdown embryos. ROS measurement and acridine orange (AO) stain experiments have also shown that G6PD knockdown embryos have a higher tendency to undergo apoptosis. These data clearly suggested that G6PD is an important element for embryos’ normal developments, and possibly through its role in supplying reduction potentials for the needs during the embryo growing process.

Chinese Abstract…………….......……………………..................... i
English Abstract…………………..……………………………...... ii
Table of Contents…………………………….......…….................... iii
List of Figures…………………………………………................... v
List of Tables…………………………………................................. v
Chapter 1 Introduction.…………………………...…................... 1
1.1 The Pentose Phosphate Pathway…………………………..... 1
1.2 The Role of G6PD in PPP……………………….…….......... 2
1.3 G6PD Deficiency…………………………………………… 2
1.4 The Productions in PPP: NADPH…………………………... 4
1.5 Reactive Oxygen Species (ROS)……………………………. 4
1.6 ROS and disease and cell development……………………... 5
1.7 Antioxidant Systems: GSH, SOD, Catalase….……………... 6
1.7.1 Glutathione (GSH)………………………………………... 7
1.7.2 Superoxide dismutase (SOD)……………………………... 7
1.7.3 Catalase……………………………………………..…….. 8
1.8 Genes related to oxidative stress……………………………. 8
1.8.1 Cytoglobin (Cygb1 and 2)………………………………… 9
1.8.2 Dual oxidase 1 (Duox1)…………………………………... 9
1.8.3 nudix (nucleoside diphosphate linked moiety X)-type motif 1 (Nudt1)……………………………………………
10
1.8.4 NADPH oxidases 5 (NOX5)……………………………… 10
1.8.5 Forkhead box protein M1 (Foxm1)……………………….. 11
1.9 The possible role of G6PD in cell development…………….. 12
1.10 Motivation and experimental approach……………………. 12
Chapter 2 Materials and Methods….…………………………… 14
2.1 Zebrafish Maintenance………..……………………….......... 14
2.2 Microinjection of Morpholino Oligonucleotides...……......... 14
2.2.1 Morpholino Oligonucleotides……………………………... 14
2.2.2 Microinjection………………………………………..…… 15
2.3 RNA extraction and reverse transcription (RT)……………... 15
2.4 Quantitative real-time PCR…………………………………. 16
2.5 Protein extraction…………………………………………… 16
2.6 Western Blot Analysis………………………………………. 17
2.7G6PD Activity Determination……………………………….. 18
2.7.1 Sample solution preparation………………………………. 18
2.7.2 Calibration………………………………………………… 19
2.8 ROS Measurement………………………………………….. 20
2.9 Acridine Orange Staining……...……………………………. 20
2.10 Statistical analysis…………………………………………. 21
Chapter 3 Results............................................................................ 22
3.1 The Survival Rate of Zebrafish Embryos after Injections with Different Concentrations of G6PD Morpholino....22
3.2 The Effect of G6PD Knockdown in Embryonic
Development... 23
3.3 G6PD Knockdown Decreases G6PD Activity......... 23
3.4 G6PD Knockdown Could Induce Certain
Oxidative-Stress Related Genes Expression............. 24
3.5 ROS Measurement...................... 24
3.6 G6PD Knockdown Possibly Induce Cells Apoptosis.. 25
3.7 Oxidative Stress Possibly Induce Some other Antioxidant
System........................26
Chapter 4 Discussion........................................... 27
4.1 G6PD is the major source of NADPH to supply cells for
coping with oxidative stress attack................27
4.2 ROS accumulation triggers the apoptotic pathway in G6PD knockdown embryos............................27
4.3 Apoptotic cells accumulation resulted by G6PD
Knockdown........................................28
4.4 Apoptotic signaling pathway..................... 29
4.5 G6PD plays an important role in embryonic development..................... 30
References.............................. 39
Appendices............................... 51
List of Figures
Fig. 1 Survivals of Zebrafish embryos injected with
G6PD MO...........................................31
Fig. 2 The G6PD-MO injected Zebrafish embryos displayed abnormal phenotypes of somatotype and melanin pigmentation.......................32
Fig. 3 The G6PD-MO injected Zebrafish embryos displayed two different abnormal somatotype and melanin pigmentation, and that can be classified to two types.............33
Fig. 4 G6PD activities of Zebrafish embryos injected with different concentrations of G6PD-MO...............34
Fig. 5 G6PD knockdown and certain oxidative stress related gene expressions.................................35
Fig. 6 DCFH-DA stain to detect the ROS accumulation... 36
Fig. 7 G6PD knockdown induces cells apoptosis......... 37
Fig.8 Antioxidative genes were induced in G6PD knockdowns.38

List of Table
Table. Primers used in quantitative RT-PCR............ 49


Adam A. Linkage between deficiency of glucose-6-phosphate dehydrogenase and colour-blindness. Nature 189:686, 1961.

Atay E, Bozaykut A, Ipek IO. Glucose-6-phosphate dehydrogenase deficiency in neonatal indirect hyperbilirubinemia. J Trop Pediatr. 52(1):56-58, 2006.

Abdelmounaaim Allaoui, Anne Botteaux, Jacques E. Dumont, Candice Hoste and Xavier De Deken. Dual oxidases and hydrogen peroxide in a complex dialogue between host mucosae and bacteria. Trends in Molecular Medicine 15:12 571-579, 2009.

Amy T McCurley and Gloria V Callard. Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Molecular Biology 9:102, 2008.

Alfonso Pompella,Athanase Visvikis, Aldo Paolicchi, Vincenzo De Tata and Alessandro F. Casini. The changing faces of glutathione, a cellular protagonist Biochemical Pharmacology 66:1499-1503, 2003.

Brown DI, Griendling KK. Nox proteins in signal transduction. Free Radic Biol Med. 47(9):1239-1253, 2009.

Christopher J. Nicol, Julian Zielenski, Lap-Chee Tsui and Peter G. Wells. An embryoprotective role for glucose-6-phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis. The FASEB Journal 14: 111-127, 2000.

Cristina Matrenl, Lazzaro Repetto, Gavino Forteleoni, Tullio Meloni, and Gian Franco Gaetani. Favism: looking for an autosomal gene associated with glucose-6-phosphate dehydrogenase deficiency. Journal of Medical Genetics 21: 278-280, 1984.

Chengfu Sun, Mafei Xu, Zhen Xing, Zhili Wu, Yiping Li, Tsaiping Li, and Mujun Zhao. Expression and function on embryonic development of lissencephaly-1 genes in zebrafish. Acta Biochim Biophys 41:677–688, 2009.

Chan P.K. and Cheng S.H.. Cadmium-induced ectopic apoptosis in zebrafish embryos. Arch. Toxicol. 77: 69-79, 2003.

Cheng Huang, Shanye Gu, Pengchun Yu, Fudong Yu, Chun Feng, Ning Gao, Jiulin Du. Deficiency of smarcal1 causes cell cycle arrest and developmental abnormalities in zebrafish. Developmental Biology 339: 89-100, 2010.

Danielle H. Vlecken, Jsnwillem Testerink, Elisabeth B. Ott, Philippe A. Sakalis, Richard T. Jaspers and Christoph P. Bagowski. A critical role for myoglobin in zebrafish development. Int. J. Dev. Biol. 53: 517-524, 2009.

DeLeve LD, Kaplowitz N. Glutathione metabolism and its role in hepatotoxicity. Pharmacol Ther. 52(3):287-305, 1991.

Dorota Scibior, Hanna Czeczot Catalase: structure, properties, functions Postepy Hig Med Dosw 60: 170-180, 2006.

Garry X. Shen. Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase. Can. J. Physiol. Pharmacol. 88: 241-248, 2010.

Homer D. Venters Jr., Leo E. Bonilla, Tara Jensen et al. Heme from Alzheimer’s brain inhibits muscarinic receptor binding via thiyl radical generation. Brain Research 764: 93-100, 1997

Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med. 119(6):598-620, 1992.

Honarbakhsh S, Schachter M. Vitamins and cardiovascular disease. Br J Nutr. 101(8):1113-1131, 2009.

Henry Jay Forman and Martine Torres. Reactive Oxygen Species and Cell Signaling. Am J Respir Crit Care Med 166: 54-58, 2002.

Hyun Jung Park, Janai R Carr and Zebin Wang et al. FoxM1, a critical regulator of oxidative stress during oncogenesis. The EMBO Journal 28: 2908-2918, 2009.
Hideaki Kaneto, Naoto Katakami, Munehide Matsuhisa, and Taka-aki Matsuoka. Role of Reactive Oxygen Species in the Progression of Type 2 Diabetes and Atherosclerosis. Mediators of Inflammation 2010, 2009.

Igor N. Zelko, Thomas J. Mariani and Rodney J. Folz. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression Free Radical Biology and Medicine 33: 3337-3349, 2002.

James T. Trent and Mark S. Hargrove. A Ubiquitously Expressed Human Hexacoordinate Hemoglobin. J Biol Chem 31:538-545, 2002.

Jun Denga, Liqin Yua, Chunsheng Liu et al. Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos. Aquatic Toxicology 93: 29-36, 2009.

Jun Hu, Yong Liang, Minjie Chen, Wiley Periodicals and Xiaorong Wang. Assessing the Toxicity of TBBPA and HBCD by Zebrafish Embryo Toxicity Assay and Biomarker Analysis. Inc. Environ Toxicol 24: 334-342, 2008.

Kishiko Ogawa, Katsuhiko Suzuki, Mitsuharu Okutsu, Kyoko Yamazaki and Shoji Shinkai. The association of elevated reactive oxygen species levels from neutrophils with low-grade inflammation in the elderly. Immunity & Ageing 5:13, 2008.

Kenneth R. Bridges & Howard A. Pearson. Anemias and other red cell disorders. Chapter15: 306, 2008.

Luzzatto L, Battistuzzi G. Glucose-6-phosphate dehydrogenase. Adv Hum Genet 14:217-329, 1985.

Livingstone, D.R.. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull. 42: 656-666, 2001.

Lassègue B, Griendling KK. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol. 30(4):653-661, 2010

Makiya Nishikawa. Reactive oxygen species in tumor metastasis Cancer Letters 266: 53-59, 2008.

M. M. C. Wamelink, E. A. Struys and C. Jakobs. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J Inherit Metab Dis 31:703-717, 2008.

Mastruzzo C, Crimi N, Vancheri C. Role of oxidative stress in pulmonary fibrosis. Monaldi Arch Chest Dis 57:173-176, 2002.

Murakami S. Caenorhabditis elegans as a model system to study aging of learning and memory. Mol Neurobiol. 35(1):85-94, 2007.

Makiya Nishikawa. Reactive oxygen species in tumor metastasis. Cancer Letters 266:53-59, 2008.
Mutsuo Sekiguchi & Teruhisa Tsuzuki. Oxidative nucleotide damage: consequences and prevention. Oncogene) 21: 8895-8904, 2002.

Marc Schmid, Frank Gerlach, Aaron Avivi et al. Cytoglobin Is a Respiratory Protein in Connective Tissue and Neurons, Which Is Up-regulated by Hypoxia. The Journal of Biological Chemistry 279:8063-8069, 2004.

Mejias R, Villadiego J, Pintado CO, Vime PJ, Gao L, Toledo-Aral JJ, Echevarria M, Lopez-Barneo J. Neuroprotection by transgenic expression of glucose-6-phosphate dehydrogenase in dopaminergic nigrostriatal neurons of mice. J Neurosci. 26(17):4500-4508, 2006.

N.B.S. Lozac Central Role of Voltage Gated Calcium Channels and Intercellular Calcium Homeostasis in Autism: Clinical findings in autism and relevance of dysfunctional calcium signalling in: oxidative stress. 30-33, 2010.

Nazzareno Ballatori, Suzanne M. Krance, Sylvia Notenboom, Shujie Shi, Kim Tieu, and Christine L. Hammond. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem. 390(3): 191-214, 2009.

Pei-Jou Chua, Gerorge Wai-Cheong Yip, and Boon-Huat Bay. Cell Cycle Arrest Induced by Hydrogen Peroxide Is Associated with Modulation of Oxidative Stress Related Genes in Breast Cancer Cells. Experimental Biology and Medicine. 234(9):1086-1094, 2009.

Prof MD Cappellini MD and Prof G Fiorelli MD. Glucose-6-phosphate dehydrogenase deficiency. The Lancet 371: 64-74, 2008.
Pier Paolo Pandolfi, Fatima Sonati, Roberta Rivil, Philip Mason, Frank Grosveld and Lucio Luzzattol. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. The EMBO Journal 14(21): 5209-5215, 1995.

P. Venditti1, R. Pamplona, V. Ayala, R. De Rosa, G. Caldarone and S. Di Meo. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage. The Journal of Experimental Biology 209: 817-825, 2006.

Richard Y. M. Ma, Tommy H. K. Tong, Alice M. S. Cheung, Anthony C. C. Tsang, Wai Ying Leung and Kwok-Ming Yao. Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. Journal of Cell Science 118: 795-806, 2004.

Samuel N. Heyman, Seymour Rosen, Mogher Khamaisi and Christian Rosenberger. Reactive Oxygen Species and the Pathogenesis of Radiocontrast-Induced Nephropathy. Invest Radiol 45: 188-195, 2010.

Sun C, Wu Z, Jia F, Wang Y, Li T and Zhao M. Identification of zebrafish LPTS: a gene with similarities to human LPTS/PinX1 that inhibits telomerase activity. Gene 420: 90-98, 2008.

Sroka J, Madeja Z. Reactive oxygen species in regulation of cell migration. The role of thioredoxin reductase Postepy Biochem. 55(2):145-152, 2009.

San Martin A, Griendling KK. Redox control of vascular smooth muscle migration. Antioxid Redox Signal. 1; 12(5):625-640, 2010.

Takizawa T, Huang IY, Ikuta T, Yoshida A. Human glucose-6-phosphate dehydrogenase: primary structure and cDNA cloning. Proc Natl Acad Sci USA. 83:4157-4161, 1986.
Tuteja G, Kaestner KH. Forkhead transcription factors. Cell. 5:192, 2007.

Tudek B, Winczura A, Janik J, Siomek A, Foksinski M, Oliński R. Involvement of oxidatively damaged DNA and repair in cancer development and aging. Am J Transl Res. 15:254-284, 2010.

Tian, W.-N., Braunstein, et al. Importance of glucose 6-phosphate dehydrogenase activity in cell death. Am. J. Physiol. (Cell) 276: 1121-1131, 1999.

V. Robles, E. Cabrita, P. de Paz, S. Cunado, L. Anel, M.P. Herraez. Effect of a vitrification protocol on the lactate dehydrogenase activities and the hatching rates of Zebrafish (Danio rerio) and Turbot (Scophthalmus maximus) embryos. Theriogenology 61:1367-1379, 2004.

Viviana Varela, Carina M. Rivolta, Sebastia A. Esperante, Laura Grun eiro-Papendieck, Ana Chiesa, and Hector M. Targovnik. Three Mutations (p.Q36H, p.G418fsX482, and g.IVS19-2A C) in the Dual Oxidase 2 Gene Responsible for Congenital Goiter and Iodide Organification Defect. Clinical Chemistry 52:182-191, 2006.

WHO Working Group. Glucose-6-phosphate dehydrogenase deficiency. WHO Working Group. Bull World Health Organ 67:601-611, 1989.

Westerfield M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Brachydanio rerio). Eugene, Oregon: University of Oregon Press. , 1995.

Yamauchi M., Kim E.Y., Iwata H., Tanabe S. Molecular characterization of the aryl hydrocarbon receptors (AhR1 and AhR2) from red seabream (Pagrus major). Comp. Biochem. Physiol. 141: 177-187, 2005.

Zhiwei Wang, Aamir Ahmad, Yiwei Li, Sanjeev Banerjee, Dejuan Kong, Fazlul H. Sarkar. Forkhead box M1 transcription factor: A novel target for cancer therapy. Cancer Treatment Reviews 36: 151-156, 2010.

Zhiquan Zhang, Kira Apse, Jiongdong Pang, and Robert C. Stanton. High Glucose Inhibits Glucose-6-phosphate Dehydrogenase via cAMP in Aortic Endothelial Cells. The Journal of Biological Chemistry 275:40042-40047, 2000.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 黃璋如,2004,歐洲有機農業之發展政策與產銷狀況,農政與農情,150,68-75。
2. 黃璋如,2000,有機蔬菜直接銷售之利弊與展望,農業經營管理年刊,6期,52-68。
3. 林銘洲,2006,我國現階段有機農業政策與輔導成果,農政與農情,
4. 林宜靜、陳禎祥、曾倫崇,2006,產品類型與實虛通路型態對顧客價值、顧客滿意度與忠誠度之影響,顧客滿意學刊,2卷,2期,121-160。
5. 楊迎春、廖國鋒,2009,探討品牌形象、通路型態與消費者特性對品牌權益之影響—以女性內衣為例,紡織綜合研究期刊,19卷,2期,54-67。
6. 蕭銘雄、蔣惠蓮,2005,消費者特性、網路企業特性、產品特性、以及網路環境特性對網路購物行為影響之研究,樹德科技大學資訊管理系,資訊管理展望,7卷,2期。
7. 謝佳慧,2000,台灣的有機農業,雜糧與畜產,2-9。
8. 1. 朱志宏,政治資金的問題與對策,國家政策季刊,第三期,1989年9月。
9. 2. 朱雲鵬,政商掛勾與利益輸送,中國論壇,第三十一卷第十期,1991年7月。
10. 4. 李惠宗,德國政治獻金制度之研究,美歐月刊,第九卷第六期,1994年6月。
11. 5. 江炳倫,我國競選經費現狀調查,中國論壇,第十四卷第一期,1982年4月
12. 6. 吳東野,從德日經驗觀察行政院版的政治獻金管理條例,國家政策論壇,2003年8月。
13. 7. 吳重禮、黃綺君,〈必要之惡?從McCain-Feingold 法案看政治行動委員會的功能與影響〉,《政治科學論叢》,第十五期,2001年12月。
14. 8. 沈玄池,德國政黨經費來源之研究,中央研究院歐美研究季刊,第23卷第一期,1993年3月。
15. 9. 張世熒,行政院「政治獻金管理條例草案」評析,中國行政評論,第十二卷第三期,2003年6月。