跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘宇彥
研究生(外文):Yu-Yen Pan
論文名稱:新屬種深居彎型生痕化石Pennichnus formosae於臺灣東北海岸中新世大寮層的訂立與介紹
論文名稱(外文):Pennichnus formosae igen. nov. isp. nov. –A deep-reaching L-shaped burrow in the Miocene Taliao Formation, northeastern coast of Taiwan.
指導教授:施路易
指導教授(外文):Ludvig Löwemark
口試委員:鄧屬予Shahin Exton DashtgardMasakazu NARA
口試委員(外文):Louis Teng
口試日期:2019-01-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:119
中文關鍵詞:生痕化石新屬種大寮層早中新世遠濱過度帶下部濱面帶動物行為
DOI:10.6342/NTU201900509
相關次數:
  • 被引用被引用:0
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在臺灣東北角野柳及八斗子區域廣泛出露的早中新世大寮層中,集中保存了許多難以分類歸屬的L型穴居生痕化石於下部野柳砂岩段,該種生痕化石的主要特徵為其特殊的羽毛狀構造。由於在以往研究中並無任何紀錄描述此樣貌的生痕化石,故本研究依此型態提出了新屬種生痕化石Pennichnus formosae。
為了取得Pennichnus formosae的外觀模型並分析其分布環境,本研究在野柳及八斗子區域的下部野柳砂岩段中,測量了數量豐富的樣本並加以分析。此區共計有319個樣本,各樣本的管直徑、垂直深度、水平延展長度以及周圍羽毛狀構造的擾動寬度皆被量測建檔。為了能夠有更細部的型態外觀剖析,本研究對部分樣本進行成分及內構造的分析,包含岩礦分析、能量色散X-射線光譜分析 (EDS)、X射線電腦斷層掃描 (CT scanning) 和X射線螢光光譜分析 (XRF)。
本研究目前命為Pennichnus formosae的生痕化石,其外觀為一L形的管狀生痕,此管狀構造先以垂直層面方向向下延伸超過70公分,再轉往水平,最長的水平延伸可達一公尺。此生痕化石的管壁為薄襯裡,直徑2–3公分,管內則由均質的沉積物填充,而特殊的羽毛狀構造則集中在垂直豎管的上部。值得注意的是,在某些樣本的管內含有一根較細的內管。結合環境分析結果,本研究推斷Pennichnus formosae為分布在遠濱過度帶到下部濱面帶的居住構造。
本研究提出了六種可能的生痕製造者,包含甲殼類動物、雙殼類動物、海葵、腕足動物、蠕蟲狀的無脊椎動物及脊椎動物。此六類生物都沒有辦法解釋所有Pennichnus formosae所涵蓋的特徵。最有可能的生痕製造者為蠕蟲狀動物,因為其細長的身軀能夠直接支撐管壁防止崩塌,不過蠕蟲狀動物無法製造內管。由於內管只出現在部分樣本,因此有可能是由另一隻小型生物,在前一位生痕製造者(如前述所提的蠕蟲狀動物)死亡並分解後,再次進入管中所留下的痕跡。抑或是後期成岩作用導致管中心和近管壁區域產生顏色差異,使管中心形成類似內管的樣貌。
At the northeastern coast of Taiwan, peculiar, more than one meter long, L-shaped burrows surrounded by distinct feather-like structures were observed within certain strata of the Miocene Taliao Formation. Because this kind of trace fossil has not been described previously, a new ichnospecies, Pennichnus formosae, is proposed.
To decode the secret of Pennichnus, a morphological model had to be constructed, and the depositional environment needed to be assessed. At the Yehliu and Badouzi study areas, 319 specimens were photographed and several morphological parameters were measured. In addition, selected samples were studied in detail using petrographic thin sections, SEM, EDS, CT scanning, and XRF analysis, to address the subtle details in the morphology of different parts of Pennichnus.
Pennichnus consists of a large (vertical penetration > 70 cm; horizontal extension >1m), L-shaped, thinly lined, passively filled burrow, 2–3 cm in diameter, with distinct cone-in-cone structures appearing around the upper shaft, and an inner tube sometimes occurring inside the burrow. The trace fossil is distributed from proximal lower shoreface to lower offshore, and the morphological observations suggest that it was used as a dwelling burrow inhabited for a longer period of time.
Six possible producers are discussed in this study, crustaceans, bivalves, sea anemones, brachiopods, vermiform invertebrates, and vertebrates. The most probable producer of Pennichnus is a vermiform organism, such as giant annelids or eels, who use their slender body to support the burrow. One argument against this ethological model is the inner tube, which can’t be satisfactory explained by a vermiform producer. However, it is likely that the inner tube is produced by an unrelated, smaller organism which entered the burrow after the vermiform producer of Pennichnus died or migrated out of the burrow.
Acknowledgement I
中文摘要 II
Abstract IV
Content VI
List of figures VIII
Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Ichnology and trace fossils 2
1.3. Ichnotaxonomy 3
1.3.1. Status of ichnotaxa 3
1.3.2. The role of morphology in ichnotaxonomy 3
Chapter 2. Geological background 8
Chapter 3. Materials and Methods 16
3.1. Identification and morphological description of Pennichnus 20
3.1.1. Identification of Pennichnus 20
3.1.2. Classification of exposed part 21
3.1.3. Classification of preserved type 23
3.1.4. Internal features of Pennichnus 24
3.2. The morphological measurement of Pennichnus 24
3.3. Grinding process 25
3.4. Stratigraphic column 27
3.5. Laboratory analyses 27
3.5.1. Computed tomography scanning 27
3.5.2. Optical mineralogy observation 28
3.5.3. SEM-EDS analysis 29
3.5.4. XRF analysis 30
Chapter 4. Results 32
4.1. Sedimentary observations in the Yehliu and Badouzi areas 32
4.1.1. Sedimentary characteristics in Yehliu peninsula 32
4.1.2. Sedimentary characteristics in Badouzi promontory 38
4.2. Observations on the Pennichnus 41
4.2.1. General configuration of Pennichnus specimen 41
4.2.2. Inner tube and concave laminations 47
4.2.3. Cross-cutting relationship between Pennichnus and other trace fossils 49
4.3. Exposure type of Pennichnus 49
4.4. Petrographic analysis 54
4.4.1. Connection of different exposed parts 54
4.4.2. Petrographic thin sections 55
4.4.3. Elemental variation of burrow boundary and feather-like structures 58
Chapter 5. Discussion 60
5.1. Morphological interpretation of Pennichnus formosae 60
5.2. Depositional environment of Pennichnus 66
5.3. Two possible ethological models of Pennichnus 69
5.4. One-producer hypothesis 69
5.4.1. Crustacean 70
5.4.2. Bivalve 75
5.4.3. Lingulid brachiopods 80
5.4.4. Sea anemone 82
5.4.5. Vermiform invertebrate 84
5.4.6. Vermiform vertebrate 85
5.5. Comparison of six possible producers 88
5.6. Secondary colonization or diagenesis hypothesis 89
5.7. Nomenclature of Pennichnus 92
Chapter 6. Conclusion 93
Reference 95
Appendix 101
Aoyama, J., Shinoda, A., Sasai, S., Miller, M., & Tsukamoto, K. (2005). First observations of the burrows of Anguilla japonica. Journal of Fish Biology, 67(6), 1534-1543.
Böhlke, J. (1957). On the occurrence of garden eels in the western Atlantic, with a synopsis of the Heterocongrinae. Proceedings of the Academy of Natural Sciences of Philadelphia, 109, 59-79.
Baird, W. (1869). Remarks on several Genera of Annelides, belonging to the Group Eunicea, with a notice of such Species as are contained in the Collection of the British Museum, and a description of some others hitherto undescribed. Journal of the Linnean Society of London, Zoology, 10(46), 341-361.
Bertling, M., Braddy, S. J., Bromley, R. G., Demathieu, G. R., Genise, J., Mikuláš, R., Nielsen, J. K., Nielsen, K. S. S., Rindsberg, A. K., Uchman, A., & Schlirf, M. (2006). Names for trace fossils: a uniform approach. Lethaia, 39(3), 265-286.
Biswas, S., Mishra, S., Satpathy, K., & Selvanayagam, M. (2010). First record of stargazer snake eel Brachysomophis cirrocheilos (Osteichthyes: Ophichthidae) from India. Marine Biodiversity Records, 3.
Bromley, R. G. (1996). Trace Fossils: Biology, Taxonomy and Applications: Routledge.
Bromley, R. G., & Asgaard, U. (1991). Ichnofacies: a mixture of taphofacies and biofacies. Lethaia, 24(2), 153-163.
Bromley, R. G., & Frey, R. W. (1974). Redescription of the trace fossil Gyrolithes and taxonomic evaluation of Thalassinoides, Ophiomorpha and Spongeliomorpha. Bulletin of the Geological Society of Denmark, 23(3-4), 311-335.
Buatois, L. A., & Mángano, M. G. (2011). Ichnology: Organism-substrate interactions in space and time: Cambridge University Press.
Buck, S. G., & Goldring, R. (2003). Conical sedimentary structures, trace fossils or not? Observations, experiments, and review. Journal of Sedimentary Research, 73(3), 338-353.
Buckley, A., & Woods, R. (1987). The surface oxidation of pyrite. Applied Surface Science, 27(4), 437-452.
Chai, B. H. (1972). Structure and tectonic evolution of Taiwan. American Journal of Science, 272(5), 389-422.
Chen, W. S., Yu, H. S., Yui, T. F., Chung,S. L., Lin, C. H., Lin, C. W. & Wang, K. L. (2016). An introduction to the Geology of Taiwan. Geological Society of Taiwan, 53-58.
Child, C. (1908). Regulation of Harenactis attenuata in Altered Environment. The Biological Bulletin, 16(1), 1-17.
Chou, J. T. (1970). A stratigraphic and sedimentary analysis of the Miocene in northern Taiwan. Petroleum Geology of Taiwan, 7, 145-189.
Chou, J. T. (1976). Sedimentology and paleogeography of the Miocene clastic sequence in northern Taiwan, with emphasis on its sandstones. Petroleum Geology of Taiwan, 13, 83-118.
Curran, H. A., & White, B. (1991). Trace fossils of shallow subtidal to dunal ichnofacies in Bahamian Quaternary carbonates. Palaios, 498-510.
Dashtgard, S. E., & Gingras, M. K. (2012). Marine invertebrate neoichnology Developments in Sedimentology (Vol. 64, pp. 273-295): Elsevier.
Essink, K. (1999). Ecological effects of dumping of dredged sediments; options for management. Journal of Coastal Conservation, 5(1), 69-80.
Fauchald, K., & Jumars, P. A. (1979). The diet of worms: a study of polychaete feeding guilds.
Frey, R. W., Curran, H. A., & Pemberton, S. G. (1984). Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus. Journal of Paleontology, 333-350.
Frey, R. W., & Howard, J. D. (1975). Endobenthic adaptations of juvenile thalassinidean shrimp. Bulletin of the Geological Society of Denmark, 24, 283-297.
Frey, R. W., Howard, J. D., & Pryor, W. A. (1978). Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 23, 199-229.
Frey, R. W., & Pemberton, S. G. (1985). Biogenic structures in outcrops and cores. I. Approaches to ichnology. Bulletin of Canadian Petroleum Geology, 33(1), 72-115.
Gilbert, M. A. (1977). The behavior and functional morphology of deposit feeding in Macoma balthica (Linne, 1758), in New England. Journal of Molluscan Studies, 43(1), 18-27.
Gingras, M. K., Dashtgard, S. E., MacEachern, J. A., & Pemberton, S. G. (2008). Biology of shallow marine ichnology: a modern perspective. Aquatic Biology, 2(3), 255-268.
Goldring, R., Pollard, J., & Taylor, A. (1997). Naming trace fossils. Geological Magazine, 134(2), 265-268.
Griffis, R. B., & Suchanek, T. H. (1991). A model of burrow architecture and trophic modes in thalassinidean shrimp (Decapoda: Thalassinidea). Marine Ecology Progress Series, 171-183.
Hanken, N. M., Bromley, R. G., & Thomsen, E. (2001). Trace fossils of the bivalve Panopea faujasi, Pliocene, Rhodes, Greece. Ichnos: An International Journal of Plant & Animal, 8(2), 117-130.
Ho, C. S., Hsu, M. Y., Jen, L. S., & Fong, G. S (1964). Geology and coal resources of the northern coastal area of Taiwan. Bulletin of the Geological Survey of Taiwan, 15, 1-23.
Ho, C. S., Tsan, S., Pan, C., & Yang, Y. (1954). Geology of the Nanchuang coal field, Miaoli, Taiwan: Taiwan Geol. Survey Bull(6), 1-59.
Ho, C. S. (1986). An introduction to the Geology of Taiwan: Explanatory Text of the Geologic Map of Taiwan: Central Geological. Survey, MOEA.
Hong, E. (1988). The sedimentary environments of the Miocene-lower Pliocene series in northwestern foothills of Taiwan based on lithofacies and ichnofacies analyses. National Taiwan University Department of Geology, PhD thesis, 1-114.
Hong, E. & Huang, E. (2001). Formation of the pedestal rocks in the Taliao Formation, northern coast of Taiwan. Western Pacific Earth Sciences, 1(1), 99-106.
Hong, E. & Wang, Y. (1988). Basin analysis of the upper Miocene-lower Pliocene series in northwestern foothills of Taiwan. Ti-Chih, 8, 1-20.
Hong, E. & Wang, Y. (1990). The stratigraphy of the Miocene and Pliocene series in the northwestern foothills of Taiwan. Special publication of the Central Geological Survey, 4, 49-62.
Huang, J. S. & Hsieh, K. H. (1991). The sedimentary environment changes and stratigraphic boundaries near the junction of the Mushan and Taliao Formations from the observations of a drilling core. Ti-Chih, 11(2), 147-154.
Huang, C. Y., & Cheng, Y. M. (1983). Oligocene and Miocene planktic foraminiferal biostratigraphy of northern Taiwan. Proc. Geol. Soc. China, 26, 21-56.
Ichikawa, Y. (1930). Explanatory text of the geological map of Taiwan in the scale of 1:50000. Taihoku sheet.
Knaust, D. (2015). Siphonichnidae (new ichnofamily) attributed to the burrowing activity of bivalves: Ichnotaxonomy, behavior and palaeoenvironmental implications. Earth-Science Reviews, 150, 497-519.
Knaust, D. (2017). Atlas of trace fossils in well core: appearance, taxonomy and interpretation: Springer.
Löwemark, L., & Hong, E. (2006). Schaubcylindrichnus formosus isp. nov. in Miocene Sandstones from Northeastern Taiwan. Ichnos, 13(4), 267-276. doi:10.1080/10420940600843757
Löwemark, L., Zheng, Y. C., Das, S., Yeh, C. P., & Chen, T. T. (2016). A peculiar reworking of Ophiomorpha shafts in the Miocene Nangang Formation, Taiwan. Geodinamica Acta, 28(1-2), 71-85.
Lin, A. T., Watts, A. B. & Hesselbo, S. P. (2003). Cenozoic stratigraphy and subsidence history of the South China Seamargin in the Taiwan region. Basin Research, 15(4), 453-478.
MacEachern, J., Bann, K., Hampson, G., Steel, R., Burgess, P., & Dalrymple, R. (2008). The role of ichnology in refining shallow marine facies models Recent advances in models of siliciclastic shallow-marine stratigraphy (Vol. 90, pp. 73-116): SEPM Special Publication.
MacEachern, J. A., Zaitlin, B. A., & Pemberton, S. G. (1999). A sharp-based sandstone of the Viking Formation, Joffre Field, Alberta, Canada; criteria for recognition of transgressively incised shoreface complexes. Journal of Sedimentary Research, 69(4), 876-892.
Mata, S. A., Corsetti, C. L., Corsetti, F. A., Awramik, S. M., & Bottjer, D. J. (2012). Lower Cambrian anemone burrows from the upper member of the Wood Canyon Formation, Death Valley region, United States: Paleoecological and Paleoenvironmental significance. Palaios, 27(9), 594-606.
McCosker, J. E., & Randall, J. E. (2002). Ophichthys melanochir, A Junior Synonym of the Highfin Snake Eel Ophichthus altipennis. Copeia, 2002(3), 798-799.
Nordstrom, D. K. (1982). Aqueous pyrite oxidation and the consequent formation of secondary iron minerals: Soil Science Society of America.
Pemberton, S. G., Frey, R. W., & Bromley, R. G. (1988). The ichnotaxonomy of Conostichus and other plug-shaped ichnofossils. Canadian Journal of Earth Sciences, 25(6), 866-892.
Piffer, P. R., Arruda, E. P., & Passos, F. D. (2011). The biology and functional morphology of Macoma biota (Bivalvia: Tellinidae: Macominae). Zoologia (Curitiba), 28(3), 321-333.
Pollard, J., Goldring, R., & Buck, S. (1993). Ichnofabrics containing Ophiomorpha: significance in shallow-water facies interpretation. Journal of the Geological Society, 150(1), 149-164.
Powilleit, M., Graf, G., Kleine, J., Riethmüller, R., Stockmann, K., Wetzel, M., & Koop, J. (2009). Experiments on the survival of six brackish macro-invertebrates from the Baltic Sea after dredged spoil coverage and its implications for the field. Journal of Marine Systems, 75(3-4), 441-451.
Pryor, W. A. (1975). Biogenic sedimentation and alteration of argillaceous sediments in shallow marine environments. Geological Society of America Bulletin, 86(9), 1244-1254.
Randall, J. E., Allen, G. R., & Steene, R. C. (1997). Fishes of the great barrier reef and coral sea: University of Hawaii Press.
Reineck, H. E. (1958). Wühlbau-Gefüge in Abhängigkeit von sediment-umlagerungen. Senckenbergiana lethaea, 39(1-2), 1-14.
Ride, W. (1999). International code of zoological nomenclature: International Trust for Zoological Nomenclature.
Rindsberg, A. K. (2018). Ichnotaxonomy as a science. Paper presented at the Annales Societatis Geologorum Poloniae.
Savazzi, E. (1991). Burrowing in the inarticulate brachiopod Lingula anatina. Palaeogeography, Palaeoclimatology, Palaeoecology, 85(1), 101-106.
Schieber, J. R. (2002). The role of an organic slime matrix in the formation of pyritized burrow trails and pyrite concretions. Palaios, 17(1), 104-109.
Stanistreet, I., Le Blanc Smith, G., & Cadle, A. (1980). Trace fossils as sedimentological and palaeoenvironmental indices in the Ecca Group (Lower Permian) of the Transvaal. Transactions of the Geological Society of South Africa, 83, 333-344.
Stanley, S. M. (1968). Post-Paleozoic adaptive radiation of infaunal bivalve molluscs: a consequence of mantle fusion and siphon formation. Journal of Paleontology, 214-229.
Sun, S. C. (1985). The Cenozoic tectonic evolution of offshore Taiwan. Energy, 10(3-4), 421-432.
Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4(6), 67-89.
Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Memoir. Geol. Soc. China, 6, 21-33.
Teng, L. S. (1988). Stratigraphic records of the late Cenozoic Penglai orogeny of Taiwan. Acta Gelological Taiwanica, 25, 205-224.
Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76.
Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10), 949-952.
Teng, L. S. (2007). Quaternary tectonics of Taiwan. Central Geological Survey Special Publication, 18, 24.
Teng, L. S., Yuan, W., Tang, C. H., Huang, C. Y., Huang, T. C., Yu, T. C., Yu, M. S. & Ke, A. (1991). Tectonic aspects of the Paleogene depositional basin of northern Taiwan. Proceedings of Geology Society, China, 34, 313-336.
Thomsen, E., & Vorren, T. O. (1984). Pyritization of tubes and burrows from Late Pleistocene continental shelf sediments off North Norway. Sedimentology, 31(4), 481-492.
Tyler, J. C., & Smith, C. L. (1992). Systematic significance of the burrow form of seven species of garden eels (Congridae, Heterocongrinae). American Museum novitates; no. 3037.
Uchida, H. O., Tanase, H., & Kubota, S. (2009). An extraordinarily large specimen of the polychaete worm Eunice aphroditois (Pallas)(Order Eunicea) from Shirahama, Wakayama, central Japan.
Yu, N. T., & Teng, L. S. (1999). Depositional environments of the Taliao and Shihti Formations, northern Taiwan. Bulletin of the Central Geological Survey, Taiwan, 12, 99-132.
Zonneveld, J. P., & Gingras, M. K. (2013). The Ichnotaxonomy of Vertically Oriented, Bivalve-Generated Equilibrichnia BIVALVE-GENERATED EQUILIBRICHNIA. Journal of Paleontology, 87(2), 243-253.
Zonneveld, J. P., & Pemberton, S. G. (2003). Ichnotaxonomy and Behavioral Implications of Lingulide-Derived Trace Fossils from the Lower and Middle Triassic of Western Canada. Ichnos, 10(1), 25-39. doi:10.1080/10420940390238249
Zorn, M., Gingras, M., & Pemberton, S. (2010). Variation in burrow-wall micromorphologies of select intertidal invertebrates along the Pacific Northwest coast, USA: behavioral and diagenetic implications. Palaios, 25(1), 59-72.
Zwarts, L., & Wanink, J. (1989). Siphon size and burying depth in deposit-and suspension-feeding benthic bivalves. Marine Biology, 100(2), 227-240.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top