跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/24 13:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃志誠
研究生(外文):Huang Chih-Cheng
論文名稱:以流變學方式探討數種生物性複合高分子溶液的凝膠點
論文名稱(外文):Rheological Characterization of Gel Point for Several Complex Biopolymer Solutions
指導教授:徐善慧徐善慧引用關係
指導教授(外文):Hsu Shan-Hui
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:107
中文關鍵詞:凝膠點流變學靜電交互作用力增效交互作用力溶膠-凝膠相轉變碎形
外文關鍵詞:gel pointrheologyelectrostatic interactionsynergismsol-gel transitionfractal
相關次數:
  • 被引用被引用:2
  • 點閱點閱:464
  • 評分評分:
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:0
本研究以流變儀研究生物性高分子複合溶液凝膠系統的凝膠點,探討系統中物理性吸引力及組成比例對凝膠網狀結構的影響。吸引力機制包含靜電交互作用力及增效作用 (synergism)。靜電吸引交互作用力只發生在帶相反電性的高分子,有時稱為polyanion-polycation interactions。增效交互作用力則常見於plant galactomannans (locust bean gum與guar gum) 與具雙螺旋結構的galactans (carrageenan、agar) 的混合膠系統。利用動態黏彈測試偵測混合膠系統在溶膠-凝膠相轉變之際的凝膠點,系統到達凝膠點時tand值不隨所施的頻率而變,即tand = tan(np/2),n為動態臨界指數。將n代入Muthukumar的凝膠理論公式即可預測混合系統在凝膠點時的碎形維度, df。由碎形維度對應到一特定的碎形結構,可得知凝膠系統網狀結構密度疏鬆程度。碎形指數越大,表系統的網狀結構越緊密,意味混合膠的機械性質越強;在食品上則可代表混合膠口感較佳。
在靜電交互作用力系統方面,大多數的混合系統呈現高度的非均質狀態,且迅速形成不溶物,僅幾丁聚醣與gelatin混合膠系統呈均質狀態,可用流變儀偵測其凝膠過程。在此混合系統中,組成與n之間的變化關係與化學交聯系統十分相似,此可能代表網狀結構與形成的機制無關 (化學鍵結或物理作用力)。在增效作用系統方面,由於galactomanna與konjac glucomannan的水溶性不佳,造成混合膠溶液呈現高度的混濁狀,導致真正的凝膠點被模糊或遮蔽掉,利用流變儀測量,只能找到假性凝膠點。
The gel point of complex biopolymer solutions was studies by rheometers (SR5 and RFS), and the effect of physical attractive interactions and composition (or stoichiometry) to the network structure of mixed gels was explored. The attractive forces include electrostatic interaction and synergism. Electrostatic interaction takes place between two polymers with opposite charges. Synergistic interaction is often found in mixed solutions of plant galactomannans (locust bean gum or guar gum) and galactans (carrageenan or agar). According to the definition of gel point defined by Winter, when the system reaches the sol-gel transition, tand does not vary with frequency and remains constant (tand = tan(np/2), n is a critical exponent). Fractal dimension, df, can be obtained by theoretical formula of Muthukumar. The larger of the fractal dimension is, the tighter is the network formed by the mixed gels. The mixed gels with larger df generally exhibit better mechanical properties. In food science, the larger df may imply firmer texture.
Among the mixed gel systems in electrostatic interaction that we studied, the gel point can only be found in chitosan-gelatin mixed system. In other systems, insoluble coacervates generally formed so the gel point cannot be detected by a rheometer. In the chitosan-gelatin mixed system, the relationship between mixing ratio and n is similar to that in traditional chemical cross-linking systems. This may imply that the network structure is independent of the forming mechanism (i.e. chemical binding or physical interaction). In the synergistic interaction systems, owing to less solubility of galactomannan and konjac glucomannan, the mixed gel solutions show high degree of heterogeneity, making the exact gel point be screened. In that case, only "pseudo" gel-ponits were found.
頁次
謝誌
中文摘要
英文摘要
目錄
圖目錄
表目錄
符號對照表
壹、 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-2-1 凝膠點定義的發展歷史 3
1-2-1-1 化學交聯系統 3
1-2-1-2 物理交聯系統 8
1-2-1-3 生物性高分子系統 9
1-2-2 碎形理論 11
1-2-3 凝膠理論 12
1-2-4 Mixed hydrocolloid gels 16
1-2-4-1 交互作用力的機制 17
1-2-4-1-1 共價鍵交互作用力 17
1-2-4-1-2 靜電交互作用力 17
1-2-4-1-3 增效作用 (synergism) 20
貳、儀器測量原理 27
2-1 流變學簡介 27
2-2 測量原理 27
2-3 幾何元件 - 錐板 (cone) 30
參、實驗 33
3-1 材料 33
3-2 實驗儀器 36
3-3 流變儀操作程序 36
3-3-1 RFS (Rheometrics Fluid Spectrometer) 37
3-3-2 SR5 (Universal Stress Rheometer) 37
3-3 方法 38
肆、結果與討論 40
4-1 幾丁聚醣與gelatin混合系統 (均質系統) 42
4-2 Type II collagen (非均質系統) 59
4-2-1 幾丁聚醣與collagen (type II) 混合系統 (非均質系統) 62
4-3 Carrageenan與galactomannan及konjac glucomannan混合系統
(非均質系統) 74
4-3-1 Carrageenan與LBG混合系統 75
4-3-2 Carrageenan與konjac glucomannan混合系統 83
4-4 其他hydrocolloid混合系統 (非均質) 89
4-4-1 靜電交互作用力系統 89
4-4-2 增效作用系統 91
伍、結論 94
陸、參考文獻 96
Adam, M., Delsanti, M., and Durand, D. Mechanical measurement in the reaction bath during the polycondensation reaction, near the gelation threshold. Macromoleculars, 18, 2285-2290, 1985.
Andreas Hugerth, Ninus Caram-Lelham, and Lars-Olof Sundeof. The effect of charge density and conformation on the polyelectrolyte complex formation between carrageenan and chitosan. Carbohydrate Polymers, 34, 149-156, 1997.
Annable, P., Williams, P. A., and Nishinari, K. Interaction in xanthan-glucomannan mixtures and the influence of electrolyte. Macromolecules, 27, 4204-4211, 1994.
Antonietti, M., Lindmer, P., Sillescu, H., Ehlich, O., Folsch, K. J., and Schmidt, M. Micronetworks by end-linking of polystyrene. 1. Synthesis and Characterizaton by light and neutron-scattering. Macromolecules, 22, 2802-2812, 1989.
Baker, C. W., and Whistler, R. L. Carbohydrate Research, 45, 237-243, 1975.
Brownsey, G. J., Cairns, P., Miles, M. J., and Morris, V. J. Evidence for intermolecular binding between xanthan and the glucomannan konjac mannan. Carbohydrate Research, 176, 329-334, 1988.
Cairns, P., Miles, M. J., Morris, V. J. X-ray diffraction studies of kappa-carrageenan-tara gum mixed gels. International Journal of Biological Macromolecules, 8, 124-127, 1986.
Cairns, P., Miles, M. J., Morris, V. J., and Brownsey, G. J. X-ray fibre-diffraction studies of synergistic, binary polysaccharide gels. Carbohydrate Research, 160, 411-423, 1987.
Cairns, P., Miles, M. J., Morris, V. J. X-ray diffraction studies on konjac mannan-kappa carrageenan mixed gels. Carbohydrate Polymers, 8, 99-104, 1988.
Chambon, F., and Winter, H. H. Stopping of crosslinking reaction in a PDMS polymer at the gel point. Polymer Bulletin, 13, 499-503, 1985.
Chambon, F., Perovic, Z. S., Macknight, W. J., and Witer, H. H. Rheology of model polyurethanes at the gel point. Macromolecules, 19, 2146-2149, 1986.
Chambon, F and Winter, H. H. Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometriy. Journal of Rheology, 31, 683-697, 1987.
Cheetham, N. W. H., McCleary, B. V., Teng, G., Lum, F., and Maryanto. Gel-permeation studies on xanthan-galactomannan interactions. Carbohydrate Polymers, 6, 257-268, 1986.
Chilvers, G. R., and Morris, V. J. Coacervation of gelatin-gellan gum mixtures and their use in microencapsulation. Carbohydrate Polymers, 7, 111-120, 1987.
Cui, W., Eskin, N. A. M., Biliaderis, C. G., and Mazza, G. Synergistic interactions between yellow mustard polysaccharides and galactomannans. Carbohydrate Polymers, 27, 123-127, 1995.
Dea, I. C. M., MacKinnon, A. A., and Rees, D. A. Tertiary and quaternary structure in aqueous polysaccharide systems which model cell wall cohesion: reversible changes in conformation and association of agarose, carrageenan and galactomannan. Journal of Molecular Biology, 68, 153-172, 1972.
Dea, I. C. M., Morris, E. R., Rees, D. A., Welsh, E. J., Barnes, H. A., and Price, J. Associations of like and unlike polysaccharides: mechanism and specificity in galactomannans, interacting bacterial polysaccharides and related systems. Carbohydrate Research, 57, 249, 1977.
Dea, I. C. M. Interactions of ordered polysaccharide structures-synergism and freeze-thaw phenomena. In Polysaccharides in Food, eds. Blanshard, J. M. V., and Mitchell, J. R. Butterworths, London, 229-247, 1979.
Dea, I. C. M., and Ress, D. A. Affinity interactions between agarose and b-1,4-glycans: a model for polysaccharide association in algal cell walls. Carbohydrate Polymers, 7, 183-224, 1987.
Deacon, M. P., Davis, S. S., White, R. J., Nordman, H., Carlstedt, I., Errington, N., Rowe, A. J., and Harding, S. E. Are chitosan-musin interactions specific to different regions of the stomach? Velocity ultracentrifygation offers a clue. Carbohydrate Polymers, 38, 235-238, 1999.
de Gennes, P. G. Scaling Concepts in Polymer Physics, Cornell University: 4th ed. Ithaca, New York, 29-49, 129-162, 1991.
Durand, D., Delsanti, M., Adam, M., and Luck, J. M. Frequency dependence of viscoelastic properties of branched polymers near gelation threshold. Europhysics Letters, 3, 297-301, 1987.
Fernandes, P. B. Influence of galactomannan on the structure and thermal behavior of xathan/galactomannan mixtures. Journal of Food Engineering, 24, 269-283, 1995.
Ferry, J. D. Viscoelasticity Property of Polymers, 3rd Ed. John Wiley & Sons, New York, 1-14, 1980.
Flory, P. J. Molecular size distribution in three dimensional polymers. I. Gelation. Journal of the American Chemical Society, 63, 3083-3096, 1941.
Gillberg, L., and Tornell, B. Preparation of rapeseed protein isolates. Precipitation of rapeseed proteins in the presence of polyacids. Journal of Food Science, 41, 1070-1075, 1976.
Glenny, R. W., Robertson, H. T., Yamashiro, S., and Bassingthwaighte, J. B. Applications of fractal analysis to physiology. Journal of Applied Physiology, 70, 2351-2367, 1991.
Hansen, P. M. T. Hydrocolloid-protein interactions: Relationship to stabilization of fluid milk products. A review. In Gums and Stabilisers for the Food Industry ed. Phillips, G. O., Wedlock, D. J., and Williams, P. A. Pergamon Press, Oxford, UK, 127-138, 1990.
Hess, W., Vilgis, T. A., and Winter, H. H. Dynamic critical behavior during chemical gelation and vulcanization. Macromolecules, 21, 2536-2542, 1988.
Hodgson, D. F., and Amis, E. J. Dynamic viscoelasticity during a sol-gel reaction. Physical Review A, 41, 1182-1185, 1990.
Hossain, K. S., and Nemoto, N. Dynamic light scattering of iota carrageenan gelling system. Journal of Non-Crystalline Solids, 682-687, 1998.
Hsu, S., and Jamieson, A., M. Viscoelastic behavior at the thermal sol-gel transition of gelatin. Polymer, 34, 2602-2608, 1993.
Hsu, S. H., and Huang, C. C. Fractal analysis in colloidal science. Journal of the Chinese Colloid and Interface society, 21, 1-9, 1998.
Hsu, S. H. Fractal dimension of colloidal aggregates by rheological measurements: a pioneer study. Journal of the Chinese Colloid and Interface society, 21, 11-16, 1998.
Hsu, S. Rheological studies on gelling behavior of soy protein isolates. Journal of Food Science, 64, 136-140, 1999.
Hsu, S., Lu, S., and Huang, C. Viscoelastic changes of rice starch suspensions during gelatization. Journal of Food Science, 65, 215-220, 2000.
Hsu, S., and Yu, T. L. Dynamic viscoelasticity study of the phase transition of poly(N-isopropylacrylamide). Macromolecular Rapid Communications, 21, 476-480, 2000.
Hugerth, A., Caram-Lelham, N., and Sundelof, L.-O. The effect of charge density and conformation on the polyelectrolyte complex formation between carrageenan and chitosan. Carbohydrate Polymers, 34, 149-156, 1997.
Ikeda, S., Kumagai, H., Sakiyama, T., Chu, C. H., and Nakamura, K. Method for analyzing pH-sensitive swelling of amphotheric hydrogels. Applicatiion to a polyelectrolyte complex gel prepared from xanthan and chitosan. Biosci. Biotech. Biochem., 59, 14220-1427, 1995.
Izuka, A., and Winter, H. H. Molecular weight dependence of viscoelasticity of polycaprolactone critical gels. Macromolecules, 25, 2422-2428, 1992.
Kalichevsky, M. T., Oford, P. D., and Ring, S. G. The incompatibility of concentrated aqueous solutions of dextran and amylose and its effect on amylose gelation. Carbohydrate Polymers, 6, 145-154, 1986.
Kohyama, K., Iida, H., and Nishinari, K. A mixed system composed of different molecular weights konjac glucomannan and kappa carrageenan: large deformation and dynamic viscoelastic study. Food Hydrocolloids, 7, 213-226, 1993.
Kronig, R. de L. The theory of dispersion of X-rays. Journal of the Optical Society America, 12, 547-557, 1926.
Lin, Y. G., Mallin, J. C. W., Chien, and Winter, H. H. Dynamic mechanical measurement of crystallization-induced gelation in thermoplastic elastomeric poly(propylene). Macromolecules, 24, 850-854, 1991.
Lubensky, T. C., and Issacson, J. Field theory and polymer size distribution for branched polymers. Journal de Physique (Paris), 42, 175-188, 1981.
Mackay, J. E., Stainsby, G., and Wilson, E. L. A comparison of the reactivity of alginate and pectata esters with gelatin. Carbohydrate Polymers, 5, 223, 1985.
Martin, J. E., Adolf, D., Wilcoxon, J. P. Viscoelasticity of near-critical gels. Physical Review Letters, 61, 2620-2623, 1988.
Martin, J. E., Adolf, D., and Wilcoxon, J. P. Viscoelasticity near the sol-gel transition. Physical Review A, 39, 1325-1322, 1989.
Matsumoto, T., Kawai, M., and Masuda, T. Heterogeneous molecular aggregation and fractal structure in chitosan/acetic acid systems. Biopolymer, 31, 1721-1726, 1991.
Matsumoto, T., Kawai, M., and Masuda, T. Rheological properties and fractal structure of concentrated polyion complexes of chitosan and alginate. Biorheology, 30, 435-441, 1993.
McNamee, J. E. Fractal perspectives in pulmonary physiology. Journal of Applied Physiology, 71, 1-8, 1991.
Michon, C., Cuvelier, G., Launay, B., and Parker, A. Viscoelastic properties of i-carrageenan / gelatin mixtures. Carbohydrate Polymers, 331, 161-169, 1996.
Mo, X. Study of chitosan and gelatin blends. Gaofenzi Xuebao, (2), 222-226, 1997.
Morris, V. J. Multicomponent gels. In Gums and Stabilisers for the Food Industry, vol. 3, ed. Phillips, G. O., Wedlock, D. J., and Williams, P. A. Elsevier Applied Science Publishers, London and New York, 87-89, 1986.
Morris, E. R. Mixed polymer gels. In Food Gels, ed. Harris, P. Elsevier Applied Science, London, 291-359, 1990.
Muller, R., Gerard, E., Dugand, P., Rempp, P., and Gnanou, Y. Rheological characterization of the gel point: a new interpretation. Macromolecules, 24, 1321-1326, 1991.
Muthukumar, M. Dynamics of polymeric fractals. The Journal of Chemical Physics, 83, 3161-3168, 1985.
Muthukumar, M. Screening effect on viscoelasticity near the gel point. Macromolecules, 22, 4656-4658, 1989.
Nishinari, K., Miyoshi, E., Takaya, T., and Williams, P. A. Rheological and DSC studies on the interaction between gellan gum and konjac glucomannan. Carbohydrate Polymers, 30, 193-207, 1996.
Piculell, L., Iliopoulos, I., Linse, R., Nilsson, S., Turquois, I., Viebke, C., and Zhang, W. Association and segregation in ternary polymer solutions and gels. In Gums and Stabilisers for the Food Industry 7, eds Phillips, G. O., Williams, P., and Wedlock, D. J. IRL Press, Oxford, 309-322, 1994.
Rees, D. A. Sharply polysaccharides. The Biochemical Journal, 126, 257-273, 1972 (a).
Rees, D. A. Polysaccharide gels. A molecule view. Chemistry and Industry, 630-636, 1972 (b).
Richtering, H. W., Gagnon, K. D., Lenz, R. W., Fuller, R. C., and Winter, H. H. Physical gelation of a bacterial thermoplastic elastomer. Macromolecules, 25, 2429-2433, 1992.
Rochas, C., Taravel, F. R., and Turquois, I. N.M.R. studies of synergistic kappa carrageenan-carob galactomannan gels. International Journal of Biological Macromolecules, 12, 353-358, 1990.
Rubinstein, M., Colby, R. H., and Gilmor, J. R. Dynamic scaling for polymer gelation. Polymer Preprints, Division of Polymer Chemistry, American Chemical Society, 30, 81-82, 1989.
Sander, L.M. Fractal growth. Scientific American, 256, 82-88, 1987.
Scanlan, J. C., and Winter, H. H. Composition dependence of the viscoelasticity of end-linked poly(dimethylsiloxane) at the gel point. Macromolecules, 24, 47-54, 1991.
Schuppner, H. R. Jr Heat reversible gel and method. Australian Patent, 401-404, 1967.
Smith, A. K., Nash, A. M., Eldridge, A. C., and Wolf, W. J. Journal of Agricultural and Food Chemistry, 10, 302-304, 1962.
Snoeren, Th. M. H., Payens, T. A., Jeurnink, J., and Both, P. Electrostatic interaction between k-carrageenan and k-casein. Milchwissenschaft, 30, 393-396, 1975.
Stockmayer, W. H. Theory of molecular size distribution and gel formation in branched polymers. The Journal of Chemical Physics, 11, 45-55, 1943.
Stockmayer, W. H. Theory of molecular size distribution and gel formation in branched polymers. II. General cross linking. The Journal of Chemical Physics, 12, 125-131, 1944.
Takaharu, S., Chia-Hong, C., Tokomoyuki, F., and Toshimasa, Y. Preparation of a polyelectrolyte complex gel from chitosan and k-carrageenan and its pH-sensitive swelling. Journal of Applied Polymer Science, 50, 2021-2025, 1993.
te Nijenhuis, K., and Winter, H. H. Mechanical properties at the gel point of a crystallizing poly(vinyl chloride) solution. Macromolecules, 22, 411-414, 1989.
Ting, S. P., Pearce, E. M., and Kwei, T. K. Journal of Polymer Science. Polymer Letters Edition, 18, 201, 1980.
Tolstoguzov, V. B. Functional properties of protein-polysaccharide mixtures. In Functional Properties of Food Macromolecules, ed. Mitchell, J. R., and Ledward, D. A. Elsevier Applied Science Publishers, London, 385, 1986.
Tolstoguzov, V. B. Interaction of gelatin with polysaccharides. In Gums and Stabilisers for the Food Industry 5. ed. Phillips, G. O., Wedlock, D. J., and Williams, P. A. OUP, Oxford, UK, 1990.
Tomida, H., Nakamura, C., and Kiryu, B. A novel method for the preparation of controlled-release theophylline capsules coated with a polyelectrolyte complex of k-carrageenan and chitosan. Chemical and Pharmaceutical Bulletin, 42, 979-981, 1994.
Tschmak, G. Ja., Wajnermann, E. S., and Tolstoguzov, V. B. The structure and properties of complex gels of gelatin and pectin. Nahrung, 20, 321, 1976.
Tung, C. Y. M., and Dynes, P. J. Relationship between viscoelastic properties and gelation in thermosetting systems. Journal of Applied Polymer Science, 27, 569-574, 1982.
Valles, E. M., Carella, J. M., Winter, H. H., and Baumgaertel, M. Gelation of a radiation crosslinked model polyethylene. Rheologica Acta, 29, 535-542, 1990.
Viebke, C. A light scattering study of carrageenan/galactomannan interactions. Carbohydrate Polymers, 28, 101-105, 1995.
Williams, P. A., Clegg, S. M., Langdon, M. J., Nishinari, K., and Piculell, L. Investigation of the gelation mechanism in k-carrageenan/konjac mannan mixtures using differential scanning calorimetry and electron spin resonance spectroscopy. Macromolecules, 26, 5441-5446, 1993.
Williams, P. A., Day, D. A., Langdon, M. J., Phillips, O. G., and Nishinari, K. Synergistic interaction of xanthan gum with glucomannans and galactomannans. Food Hydrocolloid, 6, 489-493, 1991.
Winter, H. Analysis of linear viscoelasticity of a crosslinking polymer at gel point. Journal of Rheology, 30, 367-382, 1986.
Winter, H. Can the gel point of a cross-linking polymer be detected by the G''-G'''' crossover? Polymer Engineering and Science, 27, 1698-1702, 1987.
Winter, H. H., Morganelli, P., and Chambon, F. Stoichiometry effects on rheology of model polyurethanes at the gel point. Macromolecules, 21, 532-535, 1988.
Zimm, B. H., and Stockmayer, W. H. The dimensions of chain molecules containing branches and rings. The Journal of Chemical Physics, 17, 1301-1314, 1949.
Zhu, P. W., and Napper, D. H. Studies of aggregation kinetics of polystyrene latices sterically stabilized by poly(NIPAM). Physical Review E, 1360-1366, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top