|
[1]Adomian G. Solving frontier problems modelled by nonlinear partial differential equations 1991;22:91–4. [2]Adomian G. Delayed Nonlinear Dynamical Systems 1995;22:77–9. [3]Abbaoui K, Cherruault Y. Convergence of Adomian’s method applied to differential equations. Kybernetes 1994;28:103–9. doi:10.1108/03684929910277779. [4]Cherruault Y, Adomian G. Decomposition methods: A new proof of convergence. Math Comput Model 1993;18:103–6. doi:10.1016/0895-7177(93)90233-O. [5]Cherruault Y, Saccomandi G, Some B. New results for convergence of Adomian’s method applied to integral equations. Math Comput Model 1992;16:85–93. [6]Cherruault Y. Convergence of Adomian ’ s Method. Kybernetes 1993;18:31–8. [7]Hosseini MM, Nasabzadeh H. On the convergence of Adomian decomposition method. Appl Math Comput 2006;182:536–43. doi:10.1016/j.amc.2006.04.015. [8]Abdelrazec A, Pelinovsky D. Convergence of the Adomian decomposition method for initial-value problems. Numer Methods Partial Differ Equasion 2007;23:904–22. doi:10.1002/num. [9]Cordshooli GA, Vahidi a. R. Phase synchronization of Van der Pol-Duffing oscillators using decomposition method. Adv Stud Theor Phys 2009;3:429–37. [10]Wazwaz A-M, El-Sayed SM. A new modificatio of the Adomian decomposition method for linear and nonlinear operators. Appl Math Comput 2001;122:393–405. [11]Wazwaz A-M. A new algorithm for calculating adomian polynomials for nonlinear operators. Appl Math Comput 2000;111:33–51. [12]Ghosh S, Roy a., Roy D. An adaptation of adomian decomposition for numeric-analytic integration of strongly nonlinear and chaotic oscillators. Comput Methods Appl Mech Eng 2007;196:1133–53. doi:10.1016/j.cma.2006.08.010. [13]Hasan YQ, Zhu LM. Modified Adomian decomposition method for singular initial value problems in the second-order ordinary differential equations. Surv Math Its Appl 2008;3:183–93. [14]Ramana P V., Raghu Prasad BK. Modified Adomian decomposition method for Van der Pol equations. Int J Non Linear Mech 2014;65:121–32. doi:10.1016/j.ijnonlinmec.2014.03.006. [15]Khuri SA. A Laplace decomposition algorithm applied to a class of nonlinear differential eequations. Appl Math Comput 2001;4:141–55. [16]Singh N, Kumar M. Adomian decomposition method for solving higher order boundary value problems. Math Theory Model 2011;2:11–23. [17]Tsai P-Y, Chen C-K. Free vibration of the nonlinear pendulum using hybrid Laplace Adomian decomposition method. Int J Numer Method Biomed Eng 2011;27:262–72. doi:10.1002/cnm. [18]Yang YT, Chien SK, Chen CK. A double decomposition method for solving the periodic base temperature in convective longitudinal fins. Energy Convers Manag 2008;49:2910–6. doi:10.1016/j.enconman.2008.03.003. [19]Yang Y-T, Chang C-C, Chen C-K. A double decomposition method for solving the annular hyperbolic profile fins with variable thermal conductivity. Heat Transf Eng 2010;31:1165–72. doi:10.1080/01457631003689294. [20]Aziz a. Periodic Heat Transfer in Straight Fins. J Heat Transfer 1972:310–4. [21]Antar M a. Steady and transient numerical analysis of the performance of annular fins. Int J Energy Res 2001;25:1197–206. doi:10.1002/er.748. [22]Allan D. Kraus, Abdul Aziz JW. Extended Surface Heat Transfer. 2002. [23]Mokheiner EMA. Performance of annular fins with different profiles subject to variable heat transfer coefficient. Int J Heat Mass Transf 2002;45:3631–42. [24]Coşkun SB, Atay MT. Fin efficiency analysis of convective straight fins with temperature dependent thermal conductivity using variational iteration method. Appl Therm Eng 2008;28:2345–52. doi:10.1016/j.applthermaleng.2008.01.012. [25]Arslantürk C. Analysis of thermal performance of annular fins with variable thermal conductivity by homotopy analysis method. Therm Sci Technol 2010;30:1–7. [26]Wu S. Analysis on Transient Thermal Stresses in an Annular Fin. J Therm Stress 1997;20:591–615. doi:10.1080/01495739708956120. [27]Chiu C-H, Chen C-K. Application of the decomposition method to thermal stresses in isotropic circular fins with temperature-dependent thermal conductivity. Acta Mech 2002;157:147–58. [28]Chiu C-H, Chen C-K. Thermal stresses in annular fins with temperature-dependent conductivity under periodic boundary condition. J Therm Stress 2002;25:475–92. doi:10.1080/01495730252890195. [29]Mehdi Bayat, M. Saleem, B.B. Sahari, A.M.S.Hamouda EM. Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. Int J Press Vessel Pip 2009;79:493–7. [30]Chung BTF, Zhou Y, Wang Y, Yeh LT. A new look at optimum design for convecting-radiating annular fins of trapezoidal profile. Open Thermodyn J 2011;5:93–103. [31]Torabi M, Yaghoobi H, Aziz a. Analytical solution for convective-radiative continuously moving fin with temperature-dependent thermal conductivity. Int J Thermophys 2012;33:924–41. doi:10.1007/s10765-012-1179-z. [32]Zhang G, Chung BTF. Design charts for circular fins of arbitrary profile subject to radiation and convection with wall resistances. Open Thermodyn J 2012:15–24. doi:10.2174/1874396X01206010015. [33]Ishak Gokhan AKSOY. Adomian decomposition method for heat conduction in an annular fin of hyperbolic profile with temperature dependent thermal conductivity. Therm Sci Technol 2013;33:1–8. [34]Moradi A, Rafiee R. Analytical solution to convection-radiation of a continuously moving fin with temperature-dependent thermal conductivity. Therm Sci 2013;17:1049–60. doi:10.2298/TSCI110425005M. [35]Goodier SPTJN, Timoshenko SP, Goodier JN. Theory of elasticity. Eng Soc Monogr 1970;v. 7.
|