跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 11:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳郁婷
研究生(外文):Yu-TingChen
論文名稱:應用Laplace Adomian分解法於變化輪廓環形鰭片之週期性溫度邊界的熱傳遞與熱應力分析
論文名稱(外文):Laplace Adomian Decomposition Method for Analyses of Heat Transfer and Thermal Stress with the Periodic Base Temperature in Variable Profile Annular Fin
指導教授:陳朝光陳朝光引用關係
指導教授(外文):Chao-Guang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:130
中文關鍵詞:Laplace Adomian分解法變化輪廓熱傳遞熱應力環形鰭片
外文關鍵詞:Laplace Adomian decomposition methodLADMheat transfervariable finthermal stressannular fin
相關次數:
  • 被引用被引用:3
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本文應用Laplace Adomian 分解法解決變化輪廓環形鰭片之熱傳遞與熱應力問題。熱傳遞問題之參數包括變化傳導係數、變化對流係數與輻射常數,並給予環形鰭片底部有週期性溫度邊界,求解環形鰭片之溫度分布曲線,以該溫度分布曲線對照該溫度下之飽和水蒸氣壓,求解出環形鰭片之熱應力分布曲線(包含徑向應力與切向應力)。文中探討各熱傳遞參數與鰭片輪廓之變化對溫度分布與熱應力分布之影響,以及各熱傳遞參數與鰭片熱傳效率之關係曲線。
  研究結果得知,溫度分布隨著傳導係數的降低,對流係數、輻射係數與鰭片厚度遞減率的提高而下降,然而改變各熱傳遞參數與鰭片輪廓對於熱應力分布幾乎沒有影響。
  相對於傳導係數與對流係數,鰭片熱傳效率分布受輻射係數影響對曲線分布之影響劇烈,當三種熱傳遞參數非座落於微小區間時,鰭片熱傳效率會隨著熱傳遞參數增加而降低。相同熱傳遞參數下,凹形鰭片之鰭片熱傳效率略高於梯形鰭片與凸形鰭片。

In this article, the Laplace Adomian decomposition method (LADM) is used to solve the heat transfer and thermal stress analyses in variable profile annular fin. The heat transfer problem including the parameters of temperature-dependent conduction and convection, and the constant radiation coefficient, with the periodic temperature as boundary condition as well. Solving the temperature distribution in annular fin, and find out the saturated vapor pressure which is under the temperature meantime, to solve the thermal stress distribution, including the radial stress and the tangential stress. Investigating the effect of temperature distribution and thermal stress distribution by both heat transfer parameters and the diversification of fin profile and fin efficiency distribution with every heat transfer parameter.

The results show that temperature distribution lower by the lower conductivity, the higher convection coefficient, radiation coefficient and decline rate of fin thickness. But change any heat transfer coefficient and the fin profile would not change the thermal stress distribution. In the high temperature heat transfer process, there have obviously impact on having the radiation coefficient. Improve the radiation coefficient can dissipate heat quickly, make the fin cooling down.

摘要 I
Laplace Adomian Decomposition Method for Analyses of Heat Transfer and Thermal Stress with the Periodic Base Temperature in Variable Profile Annular Fin II
誌謝 IX
目錄 X
表目錄 XV
圖目錄 XVI
符號說明 XX
第一章 緒論 1
1-1 前言 1
1-2 非線性系統 3
1-3 本文架構 5
1-4 文獻回顧 6
1-4-1 Adomian分解法 7
1-4-2 環狀鰭片之熱傳遞與熱應力 9
第二章 Laplace Adomian 分解法 (LADM) 12
2-1 Adomian 分解法 12
2-2 Adomian 多項式 17
2-2-1 非線性(nonlinear)多項式 17
2-2-2 非線性微分(derivative)多項式 19
2-3 修正Adomian分解法 22
2-3-1 修正ADM(一) 22
2-3-2 修正ADM(二) 28
2-4 Laplace Adomian分解法 34
2-4-1 運算法則 34
2-4-2 文獻驗證 36
第三章 模型建構與理論分析 46
3-1 模型建構 46
3-1-1 熱傳遞理論之建構 49
3-1-2 彈性材料應力場理論之建構 53
3-2 Laplace Adomian 分解法分析 59
3-2-1 無因次化與位置平移 59
3-2-2 LADM解題程序 61
第四章 熱傳遞與熱應力分析結果與討論 66
4-1 溫度分布影響 66
4-1-1 傳導參數影響 66
4-1-2 對流參數影響 71
4-1-3 輻射參數影響 75
4-1-4 鰭片厚度遞減率影響 79
4-1-5 輪廓差異影響 83
4-2 徑向熱應力影響 85
4-2-1 傳導參數影響 86
4-2-2 對流參數影響 89
4-2-3 輻射參數影響 92
4-2-4 鰭片厚度遞減率影響 95
4-2-5 輪廓差異影響 98
4-3 切向熱應力影響 99
4-3-1 傳導參數影響 100
4-3-2 對流參數影響 103
4-3-3 輻射參數影響 106
4-3-4 鰭片厚度遞減率影響 109
4-3-5 輪廓差異影響 112
4-4 鰭片熱傳效率分布影響 113
4-4-1 傳導參數影響 113
4-4-2 對流參數影響 115
4-4-3 輻射參數影響 117
4-4-4 輪廓差異影響 119
第五章 總結與建議 122
5-1 參數對溫度分布影響之總結 122
5-2 參數對應力分布影響之總結 123
5-3 參數對鰭片熱傳效率分布影響之總結 124
5-4 建議 125
參考文獻 126

[1]Adomian G. Solving frontier problems modelled by nonlinear partial differential equations 1991;22:91–4.
[2]Adomian G. Delayed Nonlinear Dynamical Systems 1995;22:77–9.
[3]Abbaoui K, Cherruault Y. Convergence of Adomian’s method applied to differential equations. Kybernetes 1994;28:103–9. doi:10.1108/03684929910277779.
[4]Cherruault Y, Adomian G. Decomposition methods: A new proof of convergence. Math Comput Model 1993;18:103–6. doi:10.1016/0895-7177(93)90233-O.
[5]Cherruault Y, Saccomandi G, Some B. New results for convergence of Adomian’s method applied to integral equations. Math Comput Model 1992;16:85–93.
[6]Cherruault Y. Convergence of Adomian ’ s Method. Kybernetes 1993;18:31–8.
[7]Hosseini MM, Nasabzadeh H. On the convergence of Adomian decomposition method. Appl Math Comput 2006;182:536–43. doi:10.1016/j.amc.2006.04.015.
[8]Abdelrazec A, Pelinovsky D. Convergence of the Adomian decomposition method for initial-value problems. Numer Methods Partial Differ Equasion 2007;23:904–22. doi:10.1002/num.
[9]Cordshooli GA, Vahidi a. R. Phase synchronization of Van der Pol-Duffing oscillators using decomposition method. Adv Stud Theor Phys 2009;3:429–37.
[10]Wazwaz A-M, El-Sayed SM. A new modificatio of the Adomian decomposition method for linear and nonlinear operators. Appl Math Comput 2001;122:393–405.
[11]Wazwaz A-M. A new algorithm for calculating adomian polynomials for nonlinear operators. Appl Math Comput 2000;111:33–51.
[12]Ghosh S, Roy a., Roy D. An adaptation of adomian decomposition for numeric-analytic integration of strongly nonlinear and chaotic oscillators. Comput Methods Appl Mech Eng 2007;196:1133–53. doi:10.1016/j.cma.2006.08.010.
[13]Hasan YQ, Zhu LM. Modified Adomian decomposition method for singular initial value problems in the second-order ordinary differential equations. Surv Math Its Appl 2008;3:183–93.
[14]Ramana P V., Raghu Prasad BK. Modified Adomian decomposition method for Van der Pol equations. Int J Non Linear Mech 2014;65:121–32. doi:10.1016/j.ijnonlinmec.2014.03.006.
[15]Khuri SA. A Laplace decomposition algorithm applied to a class of nonlinear differential eequations. Appl Math Comput 2001;4:141–55.
[16]Singh N, Kumar M. Adomian decomposition method for solving higher order boundary value problems. Math Theory Model 2011;2:11–23.
[17]Tsai P-Y, Chen C-K. Free vibration of the nonlinear pendulum using hybrid Laplace Adomian decomposition method. Int J Numer Method Biomed Eng 2011;27:262–72. doi:10.1002/cnm.
[18]Yang YT, Chien SK, Chen CK. A double decomposition method for solving the periodic base temperature in convective longitudinal fins. Energy Convers Manag 2008;49:2910–6. doi:10.1016/j.enconman.2008.03.003.
[19]Yang Y-T, Chang C-C, Chen C-K. A double decomposition method for solving the annular hyperbolic profile fins with variable thermal conductivity. Heat Transf Eng 2010;31:1165–72. doi:10.1080/01457631003689294.
[20]Aziz a. Periodic Heat Transfer in Straight Fins. J Heat Transfer 1972:310–4.
[21]Antar M a. Steady and transient numerical analysis of the performance of annular fins. Int J Energy Res 2001;25:1197–206. doi:10.1002/er.748.
[22]Allan D. Kraus, Abdul Aziz JW. Extended Surface Heat Transfer. 2002.
[23]Mokheiner EMA. Performance of annular fins with different profiles subject to variable heat transfer coefficient. Int J Heat Mass Transf 2002;45:3631–42.
[24]Coşkun SB, Atay MT. Fin efficiency analysis of convective straight fins with temperature dependent thermal conductivity using variational iteration method. Appl Therm Eng 2008;28:2345–52. doi:10.1016/j.applthermaleng.2008.01.012.
[25]Arslantürk C. Analysis of thermal performance of annular fins with variable thermal conductivity by homotopy analysis method. Therm Sci Technol 2010;30:1–7.
[26]Wu S. Analysis on Transient Thermal Stresses in an Annular Fin. J Therm Stress 1997;20:591–615. doi:10.1080/01495739708956120.
[27]Chiu C-H, Chen C-K. Application of the decomposition method to thermal stresses in isotropic circular fins with temperature-dependent thermal conductivity. Acta Mech 2002;157:147–58.
[28]Chiu C-H, Chen C-K. Thermal stresses in annular fins with temperature-dependent conductivity under periodic boundary condition. J Therm Stress 2002;25:475–92. doi:10.1080/01495730252890195.
[29]Mehdi Bayat, M. Saleem, B.B. Sahari, A.M.S.Hamouda EM. Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. Int J Press Vessel Pip 2009;79:493–7.
[30]Chung BTF, Zhou Y, Wang Y, Yeh LT. A new look at optimum design for convecting-radiating annular fins of trapezoidal profile. Open Thermodyn J 2011;5:93–103.
[31]Torabi M, Yaghoobi H, Aziz a. Analytical solution for convective-radiative continuously moving fin with temperature-dependent thermal conductivity. Int J Thermophys 2012;33:924–41. doi:10.1007/s10765-012-1179-z.
[32]Zhang G, Chung BTF. Design charts for circular fins of arbitrary profile subject to radiation and convection with wall resistances. Open Thermodyn J 2012:15–24. doi:10.2174/1874396X01206010015.
[33]Ishak Gokhan AKSOY. Adomian decomposition method for heat conduction in an annular fin of hyperbolic profile with temperature dependent thermal conductivity. Therm Sci Technol 2013;33:1–8.
[34]Moradi A, Rafiee R. Analytical solution to convection-radiation of a continuously moving fin with temperature-dependent thermal conductivity. Therm Sci 2013;17:1049–60. doi:10.2298/TSCI110425005M.
[35]Goodier SPTJN, Timoshenko SP, Goodier JN. Theory of elasticity. Eng Soc Monogr 1970;v. 7.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊