跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 09:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭翰琦
研究生(外文):Han-Chyi Hsiao
論文名稱:以類神經網路求解模糊多階層規劃問題
論文名稱(外文):Utilizing Artificial Neural Network Techniques for Solving Fuzzy Multi-level Programming Problems
指導教授:時序時時序時引用關係溫于平溫于平引用關係
指導教授(外文):Hsu-Shih ShihUe-Pyng Wen
學位類別:碩士
校院名稱:義守大學
系所名稱:工業管理學系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:88
中文關鍵詞:類神經網路多階層規劃能量函數多目標線性規劃路網設計
外文關鍵詞:Artificial neural networksMulti-level ProgrammingEnergy functionMulti-objective linear programmingNetworks design
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1028
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究目的在於如何以類神經網路(artificial neural networks, ANNs)動態系統求解模糊多階層規劃問題(fuzzy multi-level programming problems, fuzzy MLPPs)。首先,討論類神經網路的概念與特性,並藉由Lagrangian乘數法(Lagrangian multiplier)與懲罰法函數法(penalty function)將最佳化問題(optimization problems)轉換成一個適切的能量函數(energy function),並探究此類神經網路技術應用於最佳化問題的可行性。其次,探討如何以類神經網路解決明確(crisp)與具有模糊特質的多目標線性規劃問題,並期望整合於多階層規劃問題的模糊趨近法中,然後擴充至模糊多階層規劃問題上,再將所發展之演算法應用於路網設計(networks design)問題上。
在解決最佳化問題方面,自Hopefield and Tank (1985)提出類神經網路演算法後,此技術一直被視為一具有潛力之計算工具。其解法為利用能量函數將最佳化問題轉換為一非線性微分方程系統(a system of non-linear differential equations),當此動態系統達到穩定狀態(steady state)時,能量函數將達到極小值,此即為其最佳解;雖然,現代數值方法已有效解決大型和複雜的最佳化問題。然而,類神經網路平行分散式(parallel-distributed)計算結構和非線性動力系統的演算機制,可以更快速且及時獲得解答,並藉由類神經網路計算的雛形(prototype),實現於超大規模積體電路(very large scale integrated, VLSI)上,以求解及時多階層規劃問題。
This study aims to utilize the dynamic system of artificial neural networks (ANNs) to solve fuzzy multi-level programming problems (MLPPs). In this analysis, basic concepts of ANNs are discussed and an optimization problem is converted into an adequate energy function through Lagrangian multiplier and penalty function. Then, the proposed ANNs procedure is proven to be feasible for optimization. The procedure is extended to solve the multi-objective linear programming problem (MOLP) with crisp and fuzzy coefficients. After that, the procedure is adopted to deal with MLPPs with a top-down process. The issues relevant to both coefficients are also discussed. Furthermore, the procedure is verified through a network design example.
The algorithm of ANNs has been viewed as a computational technique since Hopefield and Tanks’ work (1985). It enables the transfer of the optimization problem into a system of non-linear differential equations based on an energy function. When the dynamic system reaches a steady state, the optimal solution can be obtained. The non-tradition algorithm is efficient for solving complex problems, and is especially useful for implementation on a very-large-scale-integrated (VLSI), in which the MLPPs can be solved on a real time basis.
中文摘要
英文摘要
誌謝
目錄 I
圖目錄 III
表目錄 IV
1. 緒論
1.1 研究動機與背景 1
1.2 研究目的 3
1.3 研究架構 3
2. 以類神經網路求解最佳化問題
2.1 類神經網路概觀 6
2.1.1 類神經網路架構 7
2.1.2 類神經網路類型 9
2.1.3 應用類神經網路可能遭遇之問題 10
2.2 文獻探討 11
2.2.1 Hopfield and Tank網路 13
2.2.2 Kennedy and Chua網路 14
2.2.3 Rodríguez-Vázquez網路 14
2.2.4 Lee’s連續型類神經網路模式 15
2.3 最佳化問題的求解方法 16
2.3.1 Lagrangian乘數法 16
2.3.2 懲罰函數法 18
2.4 類神經網路最佳化理論與穩定性 19
2.4.1 類神經網路最佳化理論 19
2.4.2 類神經網路的穩定性 20
2.5 類神經網路應用於最佳化問題 22
2.5.1 最陡降法 22
2.5.2 Runge-Kutta法 23
2.5.3 類神經網路架構對於標準形式的線性規劃問題 24
2.5.4 類神經網路架構對於具有不等限制式的線性規劃問題 28
2.5.5 類神經網路架構對於具有不等限制式的二次規劃問題 31
2.6 本章小結 36
3. 以類神經網路求解模糊多目標線性規劃問題
3.1 多目標決策問題 38
3.2 模糊理論 41
3.3 模糊多目標線性規劃 43
3.4 類神經網路方法 45
3.5 本章小結 49
4. 以類神經網路求解多階層規劃問題
4.1 文獻探討 50
4.2 多階層規劃問題之求解方法 51
4.3 混合整數法 53
4.4 可能性規劃 65
4.5 本章小結 70
5. 路網設計問題
5.1 文獻探討 71
5.1.1 均衡路網設計問題 72
5.1.2 均衡路網指派問題 73
5.1.3 連續型均衡路網設計問題之二階層規劃模式 74
5.2 均衡路網設計問題求解方法 75
5.3 簡單路網測試 75
5.4 本章小結 80
6. 結論與建議 83
6.1 結論 83
6.2 建議 84
參考文獻 85
[中文部分]
王新發(民83),應用線性近似法求解Stackelberg對策行為-以路網設計為例。碩士論文,管理科學研究所,交通大學,新竹。
李柏鋒 (民85),數學規劃模式能量函數建立之探討。碩士論文,工業工程研究所,元智大學,桃園。
卓訓榮與林文斌(民82),FRANK-WOLFE演算法計算效率再提昇-以交通路網均衡指派為例。運輸計畫季刊,第二十二卷,第三期,189-202。
卓訓榮,李智輝(民84),靜態路網交通指派模式與求解回顧。運輸計畫季刊,第二十四卷,第三期,283-298。
許志義 (民83),多目標決策。五南圖書,台北。
曹勝雄 (民82),路網設計問題啟發式解法與其多目標決策之研究。博士論文,交通運輸研究所,交通大學,新竹。
葉怡成 (民88),類神經網路模式與應用實作。儒林圖書,台北。
[英文部分]
Abe, S., J. Kawakami, and K. Hirasawa (1992), Solving Inequality Constrained Combinatorial Optimization Problems by the Hopfield Neural Networks. Neural Networks, 5, 663—670.
Beckmann, M.J., C.B. McGuire and C.B. Winston (1956), Studies in the Economics of Transportation. Yale University Press, New Haven, Connecticut.
Bellman, R.E. and L.A. Zadeh (1970), Decision Making in a Fuzzy Environment. Management Science, 17b(4), 141-164.
Bialas, W.F. and M.H. Karwan (1984), Two-level Linear Programming. Management Science, 30, 1004-1020.
Buckley, J.J. (1988), Possibilistic Linear Programming with Triangular Fuzzy Numbers. Fuzzy Sets and Systems, 20(1), 135-138.
Chen, Y.H. and S.C. Fang (1998), Solving Convex Programming Problems with Equality Constraints by Neural Networks. Computers and Mathematics with Applications, 38(7), 41-68.
Chua, L.O. and G.N. Lin (1984), Nonlinear Programming without Computation. IEEE Transactions on Circuits and Systems, 31(2), 182-188.
Chua, L.O. and G.N. Lin (1985), Errata to ''Nonlinear Programming without Computation''. IEEE Transactions on Circuits and Systems, 32(7), 736.
Cichocki, A., R. Unbehauen, K. Weinzierl and R. Hölzel (1996), A New Neural Network for Solving Linear Programming problems. European Journal of Operational Research, 93, 244-256.
Dubois, D. and H. Prade (1988), Possibility Theory. Plenum Press, NY.
Dudnikov, E. (2001), Solving Quadratic Programming Problems with Linear Hopfield Networks. Proceedings IJCNN ''01 International Joint Conference on Neural Networks,1 ,371-375.
Fortuny-Amat, J. and B. McCarl (1981), A representation and Economic Interpretation of a Two-level Programming Problem. Journal of Operational Research Society, 32, 783-792.
Fredric, M.H. and Ivica Kostanic(2001), Principles of Neurocomputing for Science and Engineering. McGraw-Hill, N.Y.
Friesz, T.L. and S. Shah (2001), An Overview of Nontraditional Formulations of Static and Dynamic Equilibrium Network Design. Transportation Research Part B: Methodological, 35(1), 5-21.
Gen, M., K. Ida and R. Kobuchi (1998), Neural Network Technique for Fuzzy Multiobjective Linear Programming. Computers Industrial Engineering, 35(3-4), 543-546.
Hopfield, J.J. and D.W. Tank (1985), ''Neural'' Computation of Decisions in Optimization Problems. Biological Cybernetics, 52, 141-152.
Kennedy, M.P. and L.O. Chua (1987), Unifying the Tank and Hopfield Linear Programming Circuit and the Canonical Nonlinear Programming Circuit of Chua and Lin. IEEE Transactions on Circuits and Systems, 34(2), 210-214.
Kennedy, M.P. and L.O. Chua (1988), Neural Networks for Nonlinear Programming. IEEE Transactions on Circuits and Systems, 35(5), 554-562.
Lai, Y.J. (1996), Hierarchical Optimization: A Satisfactory Solution. Fuzzy Sets and Systems. 77, 321-335.
Lai, Y.J. and C.L. Hwang (1994), Fuzzy Multiple Objective Decision Making. Springer-Verlag, N.Y.
Lee, E.S. and R.J. Li (1993), Fuzzy Multiple Objective Programming and Compromise Programming with Pareto Optimum. Fuzzy Sets and Systems, 53, 275-288.
Lee, E.S. and H.S. Shih (2001), Fuzzy and Multi-Level Decision Making: An Interactive Computational Approach. Springer-Verlag, London, UK.
Lee, T.S. (1996a), On the Stability Theory of Continuous Neural Networks. Journal of Yunlin Institute of Technology, 5(1), 147-152.
Lee, T.S. (1996b), Solving Nonlinear Optimization Problems Using Neural Networks. Journal of Yunlin Institute of Technology, 5(2), 199-209.
Lillo, W.E., M.H. Loh, S. Hui and S.H. Zak (1993a) On Solving Constrained Optimization Problems with Neural Networks: A Penalty Method Approach. IEEE Transactions on Neural Networks, 4(6), 931-940.
Lillo, W.E., S. Hui and S.H. Zak (1993b), Neural Networks for Constrained Optimization Problems. International Journal of Circuit Theory and Applications, 21, 385-399.
Lindfield, G. and J. Penny (1995), Numerical Methods Using MATLAB. Ellis Horwood.
LINGO (1999), LINGO: The Modeling Language and Optimizer (Extended 6.0). Lindo Systems Inc., Chicago, IL.
Luhandjula, M.K. (1986), On Possibilistic Linear Programming. Fuzzy Sets and Systems, 18(1), 15-30.
Maa, C.Y. and M.A. Shanblatt (1992a), Linear and Quadratic Programming Neural Network Analysis. IEEE Transactions on Neural Networks, 3(4), 580-594.
Maa, C.Y. and M.A. Shanblatt (1992b), A Two-Phase Optimization Neural Network. IEEE Transactions on Neural Networks, 3(6), 1003-1009.
Meng, Q., H. Yang and M.G.H. Bell (2001), An Equivalent Continuously Differentiable Model and a Locally Convergent Algorithm for the Continuous Network Design Problem. Transportation Research Part B: Methodological, 35(1), 83-105.
Negi, D. and E.S. Lee (1993), Possibility Programming by the Comparison of Fuzzy Numbers. Computers and Mathematics with Applications, 25(9), 43-50.
Pyne, I.B. (1956), Linear Programming on an Electronic Analog Computer. Transactions of the American Institute Electrical Engineers, 75, 139-143.
Quaddus, M.A. and M.S. Khan (1999), Business Applications of Artificial Neural Networks: An Updated Review and Analysis. Proceedings ICONIP ''99 6th International Conference on Neural Information Processing, 2, 819-824.
Ripley, B.D. (1996), Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge.
Rodríguez-Vázquez, A., R. Domínguez-Castro, A. Rueda, J.L. Huertas and E. Sánchez-Sinencio (1990), Nonlinear Switched-Capacitor ''Neural'' Networks for Optimization Problems. IEEE Transactions on Circuits and Systems, 37(3), 384-398.
Shih, S.H., Y.J. Lai and E.S. Lee (1996), Fuzzy Approach for Multi-level Mathematical Programming Problems. Computers and Operations Research, 23(1), 73-91.
Smith, M.J. (1979), The Existence, Uniqueness and Stability of Traffic Equilibria. Transportation Research B, 13, 295-304.
Solanki, R. S., J.K. Gorti and F. Southworth (1998), The Highway Network Design Problem. Transportation Research Part B: Methodological, 32(2), 127-140.
Suwansirikul, C., T.L. Friesz and R.L. Tobin (1987), Equilibrium Decomposed Optimization: A Heuristic for the Continuous Equilibrium Network Design Problem. Transportation Science, 21(4), 254-263.
Taha, H.A. (1995), Operations Research. Prentice Hall, Englewood Cliffs, NJ, 5th ed.
Tank, D.W. and J.J. Hopfield (1986), Simple ''Neural'' Optimization Networks: An A/D Converter, Signal Decision Circuit, and a Linear Programming Circuit. IEEE Transactions on Circuits and Systems, 33(5), 533-541.
Vanderplaats, G.N. (1984), Numerical Optimization Techniques for Engineering Design with Applications. Mcgraw-Hill, N.Y.
Vicente, L.N. and P.H. Calamai (1994), Bilevel and Multilevel Programming: A Bibliography Review. Journal of Global Optimization, 5(3), 291-306.
Wardrop, J.G. (1952), Some Theoretical Aspects of Road Traffic Research. Proceedings of Institute of Civil Engineers, Part II, 325-378.
Wen, U.P. (1981), Mathematical Methods for Multilevel Linear Programming. Ph.D. Thesis, State University of New York at Buffalo, NY.
Wen, U.P. and W.F. Bialas (1986), The Hybrid Algorithm for Solving the Three-level Linear Programming Problem. Computers and Operations Research, 13(4), 367-377.
Wen, U.P. and S.T. Hsu (1991), Linear Bi-level Programming Problems- A Review. Journal of Operational Research Society, 42, 125-133.
Wen, U.P. and S.F. Lin (1996), Finding an Efficient Solution to Linear Bilevel Programming Problem: An Effective Approach. Journal of Global Optimization, 8, 295-306.
Wen, U.P. and Y.H. Yang (1990), Algorithms for Solving the Mixed Integer Two-level Linear Programming Problem. Computers and Operations Research, 17, 133-142.
Wu, A. and P.K.S. Tam (1999), A Neural Network Methodology and Strategy of Quadratic Optimisation. Neural Computing and Applications, 8, 283—289.
Yang, H. and M.G.H. Bell (2001), Transport Bilevel Programming Problems: Recent Methodological Advances. Transportation Research Part B: Methodological, 35(1), 1-4.
Zadeh, L.A. (1965), Fuzzy Sets. Information and Control, 8, 338-353.
Zadeh, L.A. (1978), Fuzzy Sets and a Basis for a Thoery of Possibility. Fuzzy Sets and Systems, 1(1), 3-28.
Zak, S.H., V. Upatising and S. Hui (1995), Solving Linear Programming Problems with Neural Networks: A Comparative Study. IEEE Transactions on Neural Networks, 6(1),.94-104.
Zeleny, M. (1973), A Concept of Compromise Solutions and the Method of the Displaced ideal, Computers and Operations Research, 1, 479-496.
Zimmermann, H.-J. (1978), Fuzzy Programming and Linear Programming with Several Objective Functions. Fuzzy Sets and Systems, 1, 45-55.
Zimmermann, H.-J. (1996), Fuzzy Set Theory and Its Applications. Kluwer, Boston. 3rd ed.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top